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Abstract— This paper presents an important application of a
novel information theoretic order estimation method, minimum
description complexity (MDC). The selection of optimum num-
ber of poles and zeros in identification of LTI systems based
on observed data is accomplished by MDC. The comparison of
MDC with important existing order estimation methods, MDL
and AIC, is provided.

I. I NTRODUCTION

In parametric order estimation problem the main goal
is to provide a proper parametric model representation by
using the finite observed noisy data which is generated by
the true model. In this estimation, competing model sets of
possibly different order are considered. The goal is to choose
a model set and a member of that model set as the “ best’
representative of the correct model set and the true model.
The competing sets might not include the true mode. Hence,
the tradeoff between noise fitting and under-modelling plays
an important role in order estimation.

Minimum description complexity (MDC) is a new method
of order estimation which is proposed in [7]. The approach
is based on comparison of a defined distance measure,
description complexity. The method is comparable with the
existing order estimation methods such as Akaike informa-
tion criterion (AIC) [1] and two-stage minimum description
length (MDL) [3]. MDC can be implemented in various order
estimation problems. For example, it is comparable with the
existing methods in signal denoising [6]. Also, the method
can be used in order estimation with any orthonormal basis.
In this paper, we examine one important application of MDC
which is order estimation in identification of LTI systems.
Order estimation for LTI systems is a special case of order
estimation of linear models with additive noise. In this case,
both AIC and MDL coincide with special cases of MDC.
In this scenario, the order denotes the number of poles and
zeros of the LTI system. We compare MDC with AIC and
MDL, and discuss some properties of the methods in this
application such as importance of consistency.

II. PROBLEM STATEMENT

We consider the class of stable, causal, single-input/single-
output, linear time-invariant, discrete-time systems. Input and
output of the system are related as follows

M1∑

i=0

b∗i y[n− i] =
M2∑

i=0

a∗i u[n− i] + w[n], (1)

where b∗0 = 1 and w[n] is additive white Gaussian noise
(AWGN) with zero-mean and varianceσ2

w. The additive
noise is independent of the input. The input is a quasi-
stationary signal [2]. Finite length data, inputuN =
[u1, · · · , uN ]T and outputyN = [y1, · · · , yN ]T , is available.
The following equation is another representation of (1)

By = Au + w. (2)

The goal is to estimate the true parameterθ∗ =
[a∗0, a

∗
1, · · · , a∗M2

, b∗1, · · · , b∗M1
]T , given the observed data.

Note that with the data of finite lengthN , the maximum
value forM1 andM2 is N . The prior assumption is thatθ∗

is a member of a compact setS(M1,M2), which is a subset
of RM1+M2.

III. O RDER ESTIMATION METHODS

Consider a subset ofS(M1,M2) which is denoted by
S(m1,m2) with the following specification. The subset in-
cludes parameters ofS(M1,M2) in the form

θ = [a0, a1, · · · , am1 , 0, · · · , b1, · · · , bm1 , 0, · · · , 0]T . (3)

In order estimation methods, first the estimate of the true
model in subsets of different order is provided. In this paper
the estimation method is ML estimate.

In subsetS(m1,m2) the maximum likelihood (ML) estimate
of θ∗ is

θ̂(yN , uN , S(m1,m2)) = arg min
θ∈S(m1,m2)

f(yN ; θ, uN ) (4)

wheref(Y N ; θ, uN ) is the probability distribution function
(pdf) of the output given the parameterθ is generated the
data. Here,Y N denotes the random process andyN is a
sample of this random process. To simplify notations, the
ML estimate is also denoted bŷθ(S(m1,m2)).

The next step in order estimation is comparison of the esti-
mates in subsets of different order. In this paper, we consider
the nested subsets of the formS(m1,m2), 1 ≤ m1 ≤ M1 and
1 ≤ m2 ≤ M2. By the comparison, the order estimation
method chooses a subset and the estimate in that subset as
the best representatives of the true model set and the true
model. The method proposes a criterion for comparison of
the subsets. Akaike information criterion (AIC) is an estimate
of the mean of Kullback-Leibler information distance of



the true densityf(Y N ; θ∗, uN ), and the estimated density
f(Y N ; θ̂(S(m1,m2), u

N ). The criterion in this approach is

AIC(yN , S(m1,m2)) =

− 1
N

log f(yN ; θ̂(S(m1,m2)), u
N ) +

m

N
. (5)

Another important order estimation method is two-stage
minimum description length (MDL) which is defined in [3].
This approach suggests choosing a model set and the ML
estimate in that model set which provides the minimum code
length. The codelength corresponds to a prefix code which
is defined based on Shannon coding. The provided criterion
in this approach is

MDL(yN , S(m1,m2)) =

− 1
N

log f(yN ; θ̂(S(m1,m2)), u
N ) + m

log N

2N
. (6)

Bayesian information criterion(BIC) approach assumes a
prior probability for the competing model sets and suggests
to select the model which yields the maximum posterior
probability [4]. BIC’s criterion is the same as the two-stage
MDL in (6).

It is very important to note that the closed forms for AIC in
(5) and MDL and BIC in (6) are provided with the following
two assumptions

θ∗ ∈ S(m1+m2) and m1 + m2 << N. (7)

However, in application these assumptions can’t be checked
a priori for all the competing subsets.

One important problem here is calculation of these criteria
for the subsets which do not includeθ∗. No method of
validation of the prior assumptions in (7) for all the subsets
exits. Hence, since the closed forms obtained in (5) and (6)
are only functions ofyN , θ̂(S(m1,m2)),m1,m2, andN , the
same closed forms are used forall the subsets.

A. Minimum Description Complexity (MDC)

A new method of subset selection and quality evaluation
is introduced in [7]. The method assumes that the parametric
pdf f(yN ; θ, uN ) is a continuous function ofY N , θ. Unlike
the existing methods, this approach does not use the prior
assumption in (7).

Here we describe the method briefly. Define a positive
cost function V (θ, yN ) on S(M1,M2) and Y N for which
Eθ1

1
N V (θ2, Y

N ) ≥ 0 is a finite number and

Eθ1

1
N

V (θ2, Y
N ) ≥ Eθ1

1
N

V (θ1, Y
N ) (8)

for any θ1 and anyθ2 in S(M1,M2), with the equality only
for whenθ1 = θ2. Choose the cost function such that it is a
continuous function of bothθ andyN .
Definition:The description complexity ofY N with parameter
θ1, when the data is generated byθ, is defined by

DCN (θ, θ1) ≡ Eθ
1
N

V (θ1, Y
N ). (9)

For any element ofS(M1,M2), define θ̄S(m1,m2) in set
S(m1,m2) as

θ̄(S(m1,m2)) = arg min
θ1∈S(m1,m2)

Eθ
1
N

V (θ1, Y
N ). (10)

In this process the class of estimators are chosen such that
for any θ ∈ S(M1,M2)

Eθ

(
θ̂(Y N , uN , S(m1+m2))

)
= θ̄(S(m1+m2)) (11)

Note that this condition implies that ifθ is an element of
S(m1,m2), the estimator in that subset is unbiased.

Given a set of observed data, the goal is to estimate
DC(θ∗, θ̂(S(m1,m2))) in each subset and choose the subset
which minimizes this criterion. The challenge is to use the
observed data, and thereforeV (yN , θ̂(S(m1,m2))), in each
subset to provide bounds on the criterion, without the prior
assumption in (7). With validation probabilityp bounds on
this criterion is provided in [7]

LS(m1,m2) ≤ DC(θ∗, θ̂(S(m1,m2))) ≤ US(m1,m2) (12)

where both the upper and lower bounds are functions
of p, V (yN , θ̂(S(m1,m2))), and the probability distribution
of V (Y N , θ̂(S(m1,m2))). Details of the calculation of the
bounds on the desired description complexity is in [7].
For comparison of the subsets the obtained upper bound is
compared and the subset for which this bound is minimized
is chosen.

The behavior of lower and upper bounds as a function ofN
and as the length of data is growing is studied in [7]. In each
subset, the relation between the estimatorθ̂(S(m1,m2)) and
θ̄∗(S(m1,m2)) depend on the cost function, the probability
distribution family and the prior assumption on the order of
S(M1,M2).

IV. A PPLICATION OFAIC, MDL, AND MDC FOR THE

CONSIDEREDMODEL CLASS

In this section the order estimation criteria for the model
class in (1) is provided. The probability distribution of output
for eachθ is

f(yN ; θ, uN ) =
1√

2πσw

e
− ||y

N−ȳN (θ)||22
2Nσ2

w (13)

whereȳN (θ) is the mean ofY N when the data is generated
by θ in (1). From (4), the ML estimator ofθ∗ in subset
S(m1,m2) is

θ̂(S(m1,m2)) = arg min
θ∈S(m1,m2)

||yN − ȳN (θ)||2 (14)

For calculation of AIC and MDL, the distribution in (13) is
substituted in (5) and (6).



1) Calculation of MDC: We use the following cost func-
tion

V (θ, yN ) = − log f(yN ; θ, uN ) (15)

which satisfies the condition in (8). In this case

DCN (θ, θ) = log
√

2πσ2
w +

1
2

(16)

is the differential entropy which is a fixed number for all
elements ofS(m1,m2). Therefore, comparison of MDC is
same as comparison of the Kullback-Leibler distance ofθ∗

and θ̂S(m1,m2) . Note that this is the same criterion that AIC
estimates. However, since MDC does not implement the prior
assumptions in (7, the approach is different from AIC.

It is important to note that for this class of problems the
ML estimator satisfies the necessary condition in (11).

The upper and lower bounds on MDC are provided prob-
abilistically in two steps:

step 1: The observed informationV (θ̂(S(m1,m2)), y
N ) is

a sample of a Chi-square distribution. The expected value
and variance of this random variable are given in Appendix
A. Because of the structure of this random variable we
can probabilistically validate DC(θ∗, θ̄∗(S(m1,m2))). In this
step, the description complexity, DC(θ∗, θ̄∗(S(m1,m2))) is
validated for each subset with probabilityp1.

step 2: Next is to estimate DC(θ∗, θ̂(S(m1,m2))), which
itself is a sample of a Chi-square random variable. The
expected value and variance of this random variable are given
in Appendix A. Because of the structure of this random
variable, the validation in Step 1 is enough to provide
probabilistic bound on this random variable. With confidence
probability p and validation probabilityp1 upper and lower
bounds for DC(θ∗, θ̂(S(m1,m2))) are provided.

Note that calculation of this criterion is not as straightfor-
ward as calculation of AIC in (5) and MDL in (6). This is
due to the fact that the prior restricted assumptions in (7) are
not used. For subsets thatm1+m2 is large enough andM1+
M2 − (m1 + m2) is also Large enough, the two Chi-square
distributions can be estimated with Gaussian distributions by
the use of central limit theorem. The provided bounds with
confidence probabilityp = Q(βN ) and validation probability
p1 = Q(αN ) are provided in [7]1. The method of approach
in this calculation is similar to what has been introduced in
[5] . In this case, provided thatαN ≥

√
N
2 (1 − x

(1−m
N )σ2

w
),

the upperbound on MDC which is used as the comparison
criterion is

MDC(yN , S(m1,m2)) = g(yN , S(m1,m2)) +
m

N
σ2

+β

√
4m

N
+ g(yN , S(m1,m2)) (17)

1Q(x) = 1√
2π

∫ x

−x
e−

u2
2 du

where

g(yN , S(m1,m2)) = x−mw +
2α2σ2

w

N
+ K(α). (18)

andmw = (1− m1+m2
N )σ2

w and

K(α) = 2α
σw√
N

√
α2σ2

w

N
+ x− 1

2
mw. (19)

wherex is defined as follows

x = V (θ̂S(m1,m2) , y
N ) (20)

and is calculated by using the observed data.
Proper conditions onαN and βN for when the length

of data is growing are provided in [5], [7]. In the subset
S(m1,m2), as the length of the data grows, if the following
conditions are satisfied

lim
N→∞

αN = ∞ , lim
N→∞

βN = ∞, , (21)

lim
αN√
N

= 0 , lim
N→∞

βN

N
= 0, (22)

the upper and lower bounds on MDC approach each other
and we have

θ̂(S(m1,m2)) → θ̄∗(S(m1,m2)). (23)

Also, with these conditions the validation and confidence
probabilities approach one, which guarantees the consistency
of MDC.

It is important to mention that for this model class both
AIC in (5) and MDL in (6) coincide with special cases of
MDC with special choices ofαN and βN . When αN =
βN = 0, MDC is the same as AIC. WithαN = 0 and
βN =

√
m1 + m2 log(N), MDC is the same as two-stage

MDL [7].

V. I DENTIFICATION AND ORDER ESTIMATION FOR LTI
SYSTEMS IN APPLICATION

In this section, we implement the methods for order
estimation of LTI systems with input-output relation given
in (1). We start with the least complicated model class,
FIR models. The presence of the additive noise plays an
important role in the following model classification and order
estimation.

A. Finite Length Impulse Response (FIR) Models

Consider a subclass of models in (1) such that

y[n] =
M2∑

i=0

a∗i u[n− i] + w[n]. (24)

This is the class for whichM1 = 0. To implement AIC and
MDL based on the required conditions in (7),M2 has to be
much smaller thanN , M2 << N . Since for calculation of
these criteria only the asymptotic results are used, the notion
of very small,<<, for finite N is not well defined. For these
conventional order estimation approaches the only important



method of quality evaluation is to check the behavior of the
estimator as length of data grows, i.e., to check whether the
order estimate is consistent. A consistent method chooses the
correct model set which includesθ∗ and has minimum order
asymptotically.

On the other hand, MDC does not impose any constraint
on M2. In this approach the finite numberM2 can be the
same as the length of dataN . The consistency of MDC is
guaranteed with proper choice ofp andp1. Also, the provided
upper bound and lower bound on MDC for differentp and
p1 (validation and confidence probabilities) can be used for
evaluation of the quality of the estimates.

We demonstrate the performance of the methods with the
following example. Consider an FIR filter of length 30, for
which

a∗i = .3(.5)i−1 + 3(i− 1)(.8)i−1, 0 ≤ i ≤ 30. (25)

In this simulation, the input is an independent identically
distributed (IID) Bernoulli sequence of±1. In the first
simulation, the length of data isN = 200 and the signal
to noise ratio (SNR) is 10dB. The optimumm2 provided by
the order estimation methods for 50 trials are shown in Figure
(1). For MDC the validation and confidence probabilities are
p = p1 = .9991, i.e., for when the Gaussian estimates of
the Chi-square distributions are used and we haveα = β =
2log(log(N)). As the figure shows, AIC overestimates the
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Fig. 1. Optimum orderm∗
2 for 50 trials with N = 200, SNR=10dB.

AIC: Dashed line ’–’. MDL: Solid line. MDC: Solid line with star ’*’,
p = p1 = 0.9991 .

length of the filter. The average of̄m∗
2s in this 50 trials is

AIC : m̄∗
2 = 50, MDL : m̄∗

2 = 23
MDC : m̄∗

2 = 27 (26)

On average MDC’s estimate is closer to 30. Figure (2) shows
another example with a higher SNR (SNR=15db) and a
longer data (N = 300). In this case

AIC : m̄∗
2 = 52, MDL : m̄∗

2 = 27
MDC : m̄∗

2 = 29 (27)
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Fig. 2. Optimum orderm∗
2 for 50 trials with N=300, SNR=15dB. AIC:

Dashed line ’–’. MDL: Solid line. MDC: Solid line with star ’*’,p = p1 =
0.9995 .

The optimum order choice of all the methods is a function
of N , M2 and the noise variance ( or equivalently SNR).
However, only for MDC, a method of quality evaluation
of the estimates forfinite length data is available through
calculation of both upper and lower bounds on the desired
criterion.

B. Infinite Length Impulse Response (IIR) Models

Consider a subclass of models in (1) such that

y[n] =
∞∑

i=0

a∗i u[n− i] + w[n]. (28)

This is the class for whichM1 = 0 and the prior knowledge
is that M2 in (24) is not finite, but the impulse response is
an l1 sequence. Although AIC and MDL are implemented
for this case, only a fast decay rate on the impulse response
compare to the data length provides a proper situation similar
to the conditionM2 << N , for large enoughN . Note that
in this case with a finite length data, a model withM2 = N
is enough to generate the output. Similar to the FIR case,
MDC can assume thatM2 = N .

In the following simulation, the impulse response is

a∗i = .3(.5)i−1 + 3(i− 1)(.8)i−1, 0 ≤ i. (29)

This is a stable system with 2 poles. With a fixed SNR, Both
MDL and AIC choose larger and larger orders as the length
of the data grows. Note that consistency of MDL guarantees
the choice of larger and larger orders as the length grows
since the true filter here is not finite length. However, in
practical problems we might need to provide an FIR estimate
of the IIR system even as the length of data grows. This issue
is raised in problems such as in blind channel identification
[9]. For these cases, with proper choice ofp and p1, MDC
provides an FIR estimate for the system. MDC thresholding
is another method which can be used in this scenario [7].



1) Additive Output Noise:Colored noise in the estimation
causes nonlinearity in the estimation error. To avoid this
problem we suggest representing a class of models with
colored noise with a subclass of IIR systems. Consider a
class of models with the following structure

M1∑

i=0

b∗i (y[n− i] + w[n− i]) =
M2∑

i=0

a∗i u[n− i], (30)

whereb∗0 = 0 andM1 andM2 are finite andw[n] is AWGN.
The input-output relation can be represented also as follows

B(y + w) = Au. (31)

For this model class the noise is colored. The input-output
relationship is also in the form

y =
A

B
u + w. (32)

For this new representationM1 = 0, and M2 is not finite.
Therefore, this is a subclass of the IIR models which were
discussed previously.

C. Auto-Regression(ARX) Models

Consider the model class in (1) or equivalently

By = Au + w. (33)

In this case, the order estimation method estimates the
number of poles and zeros of the system.

An example of order estimation is provided in the follow-
ing simulation. The simulated model has the following zero
and poles

zeros : [.5 − .8 − .3 + .5j − .3− .5j 2 5] (34)

poles : [.2 + .8j .2− .8j .3 − .2 − .6 .7
.35 − .1− .1j − .1 + .1j] (35)

Therefore, the correct order is for a subset with 7 poles,m∗
1 =

7 and 9 zeros,m∗
2 = 9. Similar to the previous simulations,

the unit power input is IID. The length of the data isN =
300, and the noise variance isσw = .1. For 30 trials the
average estimated order with AIC and MDL are

AIC : m̄∗
1 = 10, m̄∗

2 = 10 (36)

MDL : m̄∗
1 = 5, m̄∗

2 = 7 (37)

MDC estimate withp = p1 = .9995 is also calculated. The
average estimated order of the 30 trials is

MDC : m̄∗
1 = 9, m̄∗

2 = 7. (38)

As the length of data is increased toN = 1000 in all the
methods the variance of optimum order in 30 trials becomes
smaller. AIC is over estimating both the number of zeros an
poles and MDL still is under estimating and chooses

MDL : m̄∗
1 = 7, m̄∗

2 = 7. (39)

while MDC still selects the correct order.

In this simulation for finiteN , the performance of MDC
is better than MDL. As it was mentioned before, MDL is the
same as MDC whenαN = 0 andβN =

√
m1 + m2 log(N).

MDL is under-modeling compare to the MDC we used. In
application of MDC,αN and βN are not functions of the
order. For the purpose of comparison, these numbers have to
be the same for all the subsets. MDL provides a lower bound
for MDC with αN = 0 and βN = log(N). This argument
explains the MDL under-modeling for when the length of
data is finite and is not largeenough .

1) Additive Colored Noise:For the discussed model class
in (1) we assume that the additive noise is white. Here,
we consider the model class which has a colored additive
noise. Similar approach to what is argued for the IIR systems
and models with colored noise in Section V-B.1 can be
considered for this model sets. Consider the following class
of models

M1∑

i=0

biy[n− i] =
M2∑

i=0

aiu[n− i] +
M3∑

i=0

ciw[n− i], (40)

whereb0 = 1, or equivalently

B

C
y =

A

C
x + w (41)

This model is a subclass of models with infinite number of
zero and poles, i.e., the ARX models with white noise when
M1 and M2 are not finite. With the additional assumption
that C ’s zeros are inside the unit circle, the system model is
stable and the identification and order estimation procedure
is similarly extended from the case with finite number of
zero and poles for this model class. Similar to IIR models,
in this case consistency is not the helpful property of the
order estimator. It is important to provide a method of quality
evaluation of the estimated order and therefore, MDC is the
preferred.

D. Unknown Noise Variance

The noise variance in this paper is assumed to be known. In
AIC and MDL unknown noise variance is estimated in each
subsetseparately. The calculation of the variance in each
subset can be done by estimation of the cross-correlation and
the use of singular value decomposition (SVD) [8]. However,
in MDC for comparison of the model sets thesame estimate
of variance for all the subsets is used . [6] has the details on
simultaneous order estimation and noise variance estimation
with MDC.

VI. CONCLUSION

In this paper, an efficient method of order estimation for
LTI systems is provided. It is assumed that the additive noise
is Gaussian. However, by using the of law of large numbers,
the order estimation method can be implemented for a larger
set of probabilistic model classes with additive non-Gaussian
noise. Also, the white additive noise can be generalized to
colored additive noise. This extends the application of the



new method for order estimation of ARX models to order
estimation of ARMAX models.

Some critical prior assumptions which are used in calcu-
lating AIC and MDL can not be validated. Also, the closed
forms in these methods are provided for large enough data
length. For these methods the important property to check
is consistency. It is known that AIC is not consistent and
over-estimates the order. On the other hand, as it is shown
in the examples, the consistent MDL approach is under-
estimating the true order in some cases. In this paper it is
shown that the consistency of MDC depends on the choice
of the validation and confidence probabilities. In practical
problems, more than consistency of a method is needed.
It is required to provide a method of quality evaluation of
the order estimation for a given large, but finite, length of
data. MDC provides a method of probabilistic validation of
the bounds on the desired criterion. Unlike the conventional
methods, the variances of the involved random variables
in calculation of the criterion, which are nonzero due to
the finiteness of the length of data, are not ignored. The
quality of the estimated order depends on the structure of
the model class and validation and confidence probability.
The consistency of the method, as the length of data grows,
is guaranteed by proper choice of validation and confidence
probabilities. With these properties and in comparison with
the existing methods, MDC promises to be the prominent
candidate for order estimation of LTI systems.

VII. A PPENDIX A

The mean and variance of Chi-square random variable
V (θ̂(S(m1,m2)), Y N ) are

Eθ(V (θ̂(S(m1,m2)), Y N )) = DCN

(
θ, θ̄(S(m1,m2))

)

−m1 + m2

2N
(42)

var
(
V (θ̂(S(m1,m2)), Y N )

)
=

N − (m1 + m2)
2N2

+
1
N

(
DCN

(
θ, θ̄(S(m1,m2))

)−DCN (θ, θ)
)
. (43)

For the first step, consider the subsets inY N which are
defined by eachθ as follows. The set is a ball whose
center is the mean ofV (θ̂(S(m1,m2)), Y N ) and probability
of the set isp1. Validateθs for which the observed sample
V (θ̂(S(m1,m2)), yN ) is in this set defined byθ.

The desired criterion DC(θ, θ̂S(m1,m2)) is a random vari-
able with the following mean and variance

EθDCN (θ, θ̂(S(m1,m2))) = DCN

(
θ, θ̄(S(m1,m2))

)

+
m1 + m2

2N
(44)

varθDCN (θ, θ̂(S(m1,m2))) =
m1 + m2

2N2
. (45)

Therefore, with probabilityp, similar to the validation step,
upper and lower bounds on this random variable based on

the validated bounds onDCN

(
θ, θ̄(S(m1,m2))

)
are provided

.
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