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Abstract—This paper presents an important application of a where b = 1 and w[n] is additive white Gaussian noise
novel information theoretic order estimation method, minimum (AWGN) with zero-mean and variance,ﬁ,. The additive
description complexity (MDC). The selection of optimum num- noise is independent of the input. The input is a quasi-

ber of poles and zeros in identification of LTI systems based . . - . N
on observed data is accomplished by MDC. The comparison of stationary signal [2]. Finite length data, input -

MDC with important existing order estimation methods, MDL 1, - -+, un]" and outputy™ = [y1,---,yn]", is available.
and AIC, is provided. The following equation is another representation of (1)
I. INTRODUCTION By = Au + w. @)

In parametric order estimation problem the main goal
is to provide a proper parametric model representation byhe goal is to estimate the true parametét =
using the finite observed noisy data which is generated B¢, @i, -, @k, 01, -, b3y, 17, given the observed data.
the true model. In this estimation, competing model sets dyote that with the data of finite lengtV, the maximum
possibly different order are considered. The goal is to choo¥@lue forA/1 and M2 is N. The prior assumption is that
a model set and a member of that model set as the “ be&¥ @ member of a compact séty, 1s,), Which is a subset
representative of the correct model set and the true modéf. RMIEMZ,
The competing sets might not include the true mode. Hence,
the tradeoff between noise fitting and under-modelling plays
an important role in order estimation. Consider a subset ob(,;, r,) Which is denoted by
Minimum description complexity (MDC) is a new method S(,,, .m,) With the following specification. The subset in-
of order estimation which is proposed in [7]. The approackludes parameters o, ar,) in the form
is based on comparison of a defined distance measure, .
description complexity. The method is comparable with the ¢ = a0, a1, -+, @m0, 01, by, 0,017 (3)

existing order esimation methods such as Akaike mformqh order estimation methods, first the estimate of the true

tion criterion (AIC) [1] and two-stage minimum description model in subsets of different order is provided. In this paper

length (MDL) [3]. MDC can be implemented in various orderthe estimation method is ML estimate.

estimation problems. For exampl'e', it is comparable with the In subsetS,,, .,y the maximum likelihood (ML) estimate
existing methods in signal denoising [6]. Also, the metho 0% i ’

can be used in order estimation with any orthonormal basis.
In this paper, we examine one important application of MDC é(yN’ ulv, S(my,ms)) = arg _ min faN:0,uN)  (4)
which is order estimation in identification of LTI systems. 0€S(my.ma)

Order estimation for LTI systems is a special case pf Ord%heref(YN;e,uN) is the probability distribution function

o : . e\(10df) of the output given the parametéris generated the
both AIC and MDL coincide with special cases of MDC.d ta. Here,Y’N denotes the random process apl is a

In this scenario, the order denotes the number of poles ag mple of this random process. To simplify notations, the
zeros of the LTI system. We compare MDC with AIC andML estimate is also denoted bf}(S( ) '
mi,mz2)/"

MDL, and discuss some properties of the methods in this The next step in order estimation is comparison of the esti-

application such as importance of consistency. mates in subsets of different order. In this paper, we consider
Il. PROBLEM STATEMENT the nested subsets of the for,,, 1,), 1 < my < M; and
We consider the class of stable, causal, single-input/singlé-< ma < M>. By the comparison, the order estimation

output, linear time-invariant, discrete-time systems. Input an@ethod chooses a subset and the estimate in that subset as
output of the system are related as follows the best representatives of the true model set and the true

M, M, model. The method proposes a criterion for comparison of
Z biyln —i] = Z a*uln — i + wn], 1) the subsets. Akaike informatiqn critgrion (AI.C) is an estimate
o o of the mean of Kullback-Leibler information distance of

Ill. ORDERESTIMATION METHODS



the true densityf(Y";0*,u"), and the estimated density For any element ofS(,, 1), define és(mm) in set
FYN:0(S(my,ms), ™). The criterion in this approach is  S(,, m2) as

AIC(YN, Stmy.my)) = _ 1
W™ Smsma) (S, me)) =arg . _min BV (6, YY), (10)

1 A
=~ 108 LN 0(S (s o) ™) + 5 B) &mmn N

N
Another important order estimation method is two-stagnlan this process the class of estimators are chosen such that

minimum description length (MDL) which is defined in [3]. 0" @Y ¢ € S(ar, az,)

This approach suggests choosing a model set and the ML . B

estimate in that model set which provides the minimum code ~ £o (9(YN7UN’ 5(m1+m2))) = 0(S(m,+m2)) (11)
length. The codelength corresponds to a prefix code which

is defined based on Shannon coding. The provided criterid¥Pte that this condition implies that #f is an element of

in this approach is S(m,,m2), the estimator in that subset is unbiased.
N Given a set of observed data, the goal is to estimate
MDL(y™, S(mny,ms)) = DC(0*,0(S(m, m2))) in each subset and choose the subset

1 N.j N log N which minimizes this criterion. The challenge is to use the
Nlogf(y (St map) ) +m 2N © observed data, and therefolé(y", (S, m,))), in each
Bayesian information criterion(BIC) approach assumes subset to provide bounds on the criterion, without the prior
prior probability for the competing model sets and suggestssumption in (7). With validation probabilify bounds on
to select the model which yields the maximum posteriothis criterion is provided in [7]
probability [4]. BIC’s criterion is the same as the two-stage R
MDL in (6) LS(ml,mz) < Dc(e*ve(s(mlmﬂ))) < US(ml,mz) (12)
It is very important to note that the closed forms for AIC in )
(5) and MDL and BIC in (6) are provided with the following where both the upper and lower bounds are functions

two assumptions of p, V(y™,0(S(m, m»)), and the probability distribution

i of V(Y™ ,0(S(m, m,)))- Details of the calculation of the

0% € Stmi+my) and my +my << N. (7) " pounds on the desired description complexity is in [7].
However, in application these assumptions can't be check&®" comparison of the subsets the obtained upper bound is
a priori for all the competing subsets. compared and the subset for which this bound is minimized

One important problem here is calculation of these criterii§ chosen.
for the subsets which do not includ®. No method of The behavior of lower and upper bounds as a functial¥ of
validation of the prior assumptions in (7) for all the subsetdnd as the length of data is growing is studied in [7]. In each
exits. Hence, since the closed forms obtained in (5) and (8)bset, the relation between the estimat(f(,,, m,)) and
are only functions ofy", é(S(ml,m)),mumz, and N, the 07 (S(m.,m,)) depend on the cost function, the probability
same closed forms are used fdi the subsets. distribution family and the prior assumption on the order of

Sy M)
A. Minimum Description Complexity (MDC) (v, 012)

A new method of subset selection and quality evaluation IV. APPLICATION OFAIC, MDL, AND MDC FOR THE
is introduced in [7]. The method assumes that the parametric CONSIDEREDMODEL CLASS
pdf f(y™V;6,u") is a continuous function of V, 4. Unlike . _ o o
the existing methods, this approach does not use the prior'” this section the order estimation criteria for the model

assumption in (7). class in (1) is provided. The probability distribution of output
Here we describe the method briefly. Define a positivér €achd is
cost functionV'(6,y™) on S, a,) and YV for which ) 1N —N (0)112
Eg, +V (05, YN) > 0 is a finite number and fN:0,uN) = e 2No% (13)
1 1 V2o,
N N
EHINV(QQ’Y )2 Eelﬁv(el’y ) ®) wherey () is the mean of ¥ when the data is generated

for any 6; and any#s in S(us, as,), With the equality only Py ¢ in (1). From (4), the ML estimator 08" in subset
for when#; = 6,. Choose the cost function such that it is a¥(mi,m2) IS
continuous function of botd andy” . .
Definition: The description complexity df ¥ with parameter 0(S(mi,ma)) = arg | _ min N —g¥ O (14
6;, when the data is generated Byis defined by ()

1 For calculation of AIC and MDL, the distribution in (13) is
DCn(0,61) = EQNV(Q]_,YN>. (9)  substituted in (5) and (6).



1) Calculation of MDC: We use the following cost func- where

tion N 20202
9, Stmyms)) = T — My + ~ L+ K(a). (18)
V(0,y™) = —log f(y";0,u™) (15) s
andm,, = (1 — ™3™2)o,, and
which satisfies the condition in (8). In this case o)
Ow ao? 1
1 K(Oé) =2« 7N +x— §m11)~ (19)
DCy(6,0) = log+/2m02 + 3 (16) VN
wherez is defined as follows
is the differential entropy which is a fixed number for all A
by 2 =V(0s, s v™) (20)

elements ofS,,, .,). Therefore, comparison of MDC is

same as comparison of the Kullback-Leibler distancé’of and is calculated by using the observed data.

andfs,, .., - Note that this is the same criterion that AIC  Proper conditions oy and 3y for when the length

estimates. However, since MDC does not implement the priaf data is growing are provided in [5], [7]. In the subset

assumptions in (7, the approach is different from AIC. S(m1,ms)» as the length of the data grows, if the following
It is important to note that for this class of problems theconditions are satisfied

ML estimator satisfies the necessary condition in (11).

The upper and lower bounds on MDC are provided prob- am ey =oo ., lim fy = oo, (1)
abilistically in two steps: . ay . BN

. o . im -2 =0 , lim “X =0, 22

step 1 The observed informatio® (6(S . ms)), y™) is lm VN NZ% N (22)

a sample of a Chi-square distribution. The expected valyge upper and lower bounds on MDC approach each other
and variance of this random variable are given in AppendiX,q we have

A. Because of the structure of this random variable we R B
can probabilistically validate D@*, 8" (S(u,.m,))). In this 0(S(my,mz)) = 0" (S(ma,ms))- (23)

st?%, thg fdescri[?]tionbcompllehxity, bmf[,e*(s(mhmz))) is Also, with these conditions the validation and confidence
validated for eap su S?t with pro at iy . probabilities approach one, which guarantees the consistency
step 2 Next is to estimate D@, 0(S(,,m,))), Which ¢ Mpc.

itself is a sample of a Chi-square random variable. The ¢ is important to mention that for this model class both
expected value and variance of this random variable are givafjc in (5) and MDL in (6) coincide with special cases of

in Appendix A. Because of the structure of this randony,pc with special choices ofvy and fy. Whenay =
variable, the validation in Step 1 is enough to provid% — 0, MDC is the same as AIC. Withuy = 0 and

probabilistic bound on this random variable. With confidenc%N — /1 T mzlog(N), MDC is the same as two-stage
probability p and validation probabilityp; upper and lower \ipL [7]. '

bounds for DGO*, 6(S(n, m,))) are provided.

Note that calculation of this criterion is not as straightfor- V- |DENTIFICATION AND ORDER ESTIMATION FOR LTI
ward as calculation of AIC in (5) and MDL in (6). This is SYSTEMS IN APPLICATION
due to the fact that the prior restricted assumptions in (7) areIn this section, we implement the methods for order
not used. For subsets that; +m is large enough andli/; + estimation of LTI systems with input-output relation given
M, — (m1 + my) is also Large enough, the two Chi-squareén (1). We start with the least complicated model class,
distributions can be estimated with Gaussian distributions HyilR models. The presence of the additive noise plays an
the use of central limit theorem. The provided bounds witimportant role in the following model classification and order
confidence probability = Q(Gy) and validation probability estimation.

p1 = Q(ax) are provided in [7f. The method of approach A - pinite Length Impulse Response (FIR) Models

in this calculation is similar to what has been introduced in . ]
[5] . In this case, provided thaty > %(1 B r Consider a subclass of models in (1) such that

(1-%)o

the upperbound on MDC which is used as the comparison M, . ,
criterion is yln] =Y ajuln — i + wn]. (24)
=0
m
MDC (Y™, Sty ma)) = 9N, Smyma)) + NUQ This is the class for whicid/; = 0. To implement AIC and

y MDL based on the required conditions in (7){; has to be
+5\/N + 9N, Stmymey) (A7) much smaller thanV, M, << N. Since for calculation of
these criteria only the asymptotic results are used, the notion
) of very small,<<, for finite N is not well defined. For these
1Q(x) = J% ffx e~ 7 du conventional order estimation approaches the only important



method of quality evaluation is to check the behavior of the N
estimator as length of data grows, i.e., to check whether the BN
order estimate is consistent. A consistent method chooses the R
correct model set which includé$ and has minimum order ‘
asymptotically.

On the other hand, MDC does not impose any constraint
on Ms. In this approach the finite numbéi, can be the
same as the length of dafd. The consistency of MDC is
guaranteed with proper choice @andp, . Also, the provided
upper bound and lower bound on MDC for differentand
p1 (validation and confidence probabilities) can be used for R
evaluation of the quality of the estimates.

We demonstrate the performance of the methods with the - , - Hh N= - .
following example. Consider an FIR filter of length 30, forDaéhzéd |iggt'lg1.umoc|)_rzdggﬁé I];ﬁre.slagglssglizjhli'r\:e?/\?i?ﬁ ;glﬁ*’;sgilic.
which 0.9995 .

a;j =.3(.5) 1 +3(i —1)(.8)""1,0 < < 30. (25)

L . . . . ) ) The optimum order choice of all the methods is a function
In this simulation, the input is an independent identicallyys »s M, and the noise variance ( or equivalently SNR).
d.istribu_ted (IID) Bernoulli sequence of-1. In the .first However, only for MDC, a method of quality evaluation
simulation, the length of data i = 200 and the signal f the estimates forfinite length data is available through

to noise ratio (SNR) is 10dB. The optimum, provided by - caicyjation of both upper and lower bounds on the desired
the order estimation methods for 50 trials are shown in Figuigiterion.

(1). For MDC the validation and confidence probabilities are
p = p1 = .9991, i.e., for when the Gaussian estimates ofg
the Chi-square distributions are used and we have 5 =

2log(log(N)). As the figure shows, AIC overestimates the Consider a subclass of models in (1) such that

Infinite Length Impulse Response (IIR) Models

yln] = ZG?U[H—Z’] +wln]. (28)

This is the class for whicld/; = 0 and the prior knowledge
is that M5 in (24) is not finite, but the impulse response is
an [; sequence. Although AIC and MDL are implemented
for this case, only a fast decay rate on the impulse response
compare to the data length provides a proper situation similar
to the condition)M,; << N, for large enoughV. Note that
in this case with a finite length data, a model with, = N
is enough to generate the output. Similar to the FIR case,
Yo s w B W mow m w4 % MDC can assume that/, = N.

In the following simulation, the impulse response is

Fig. 1. Optimum ordemn} for 50 trials with N = 200, SNR=10dB.

AIC: Dashed line '—". MDL: Solid line. MDC: Solid line with star ", i—1 . i—1 .
D= p1 = 0.9991 . a; =.3(.5)" +30—1)(.8)"", 0<. (29)

This is a stable system with 2 poles. With a fixed SNR, Both
MDL and AIC choose larger and larger orders as the length
AIC: mj =50, MDL: m} =23 of the data grows. Note that consistency of MDL guarantees
MDC : m} = 27 (26) the choice of Ia_rger and Igrger ord_ers as the length grows

since the true filter here is not finite length. However, in

On average MDC's estimate is closer to 30. Figure (2) showgractical problems we might need to provide an FIR estimate
another example with a higher SNR (SNR=15db) and af the IR system even as the length of data grows. This issue

length of the filter. The average afs in this 50 trials is

longer data IV = 300). In this case is raised in problems such as in blind channel identification
. - [9]. For these cases, with proper choicepoind p;, MDC
AIC: my =52, MDL: my =27 provides an FIR estimate for the system. MDC thresholding

MDC: m5 =29 (27) is another method which can be used in this scenario [7].



1) Additive Output NoiseColored noise in the estimation In this simulation for finiteV, the performance of MDC
causes nonlinearity in the estimation error. To avoid this better than MDL. As it was mentioned before, MDL is the
problem we suggest representing a class of models witame as MDC wheny = 0 and 8y = /m1 + mz log(N).
colored noise with a subclass of IR systems. Consider MDL is under-modeling compare to the MDC we used. In

class of models with the following structure application of MDC,a and Gy are not functions of the
My M, order. For the purpose of comparison, these numbers have to
S by —il +wn—i) =Y ajun—i,  (30) bethesame forall the subsets. MDL provides a lower bound
=0 =0 for MDC with ay = 0 and Sy = log(NN). This argument

whereb; — 0 and M, and M, are finite andw[n] is ANGN. expla'lns' the MDL. under-modeling for when the length of
data is finite and is not largenough .

The input-output relation can be represented also as follows 1) Additive Colored NoiseFor the discussed model class

B(y +w) = Au. (31) in (1) we assume that the additive noise is white. Here,
we consider the model class which has a colored additive

Folr Fhis rrpodel cl:las§ tf;}e ?oise is colored. The input-outpyf ice Similar approach to what is argued for the IIR systems
relationship Is also in the form and models with colored noise in Section V-B.1 can be

_ éu tw (32) considered for this model sets. Consider the following class
Y= B ' of models
For this new representatioh/; = 0, and M, is not finite. M M; M3
Therefore, this is a subclass of the IIR models which were Y _biy[n —i] =Y auln —i]+ Y caw[n—i],  (40)
discussed previously. i=0 i=0 i=0
C. Auto-Regression(ARX) Models wherebo =1, or equivalently
Consider the model class in (1) or equivalently gy - gx +w (41)
By = Au+w. (33) ' This model is a subclass of models with infinite number of
In this case, the order estimation method estimates t#&ro and poles, i.e., the ARX models with white noise when
number of poles and zeros of the system. M; and M, are not finite. With the additional assumption

An example of order estimation is provided in the follow-that C's zeros are inside the unit circle, the system model is
ing simulation. The simulated model has the following zergtable and the identification and order estimation procedure

and poles is similarly extended from the case with finite humber of
zero and poles for this model class. Similar to IIR models,
zeros:[.b —8 —.3+.5) —.3-.5j 25 (34) in this case consistency is not the helpful property of the
poles: [2+ .8 2—.8j .3 —.2 —.6 .7 order estimator. It is important to provide a method of quality
35 —1—.1j —.1+4.1j] (35) evaluation of the estimated order and therefore, MDC is the
preferred.

Therefore, the correct order is for a subset with 7 polels=

7 and 9 zeros;mi = 9. Similar to the previous simulations, D. Unknown Noise Variance

the unit power input is 1ID. The length of the dataé = The noise variance in this paper is assumed to be known. In
300, and the noise variance is, = .1. For 30 trials the AIC and MDL unknown noise variance is estimated in each
average estimated order with AIC and MDL are subsetseparately. The calculation of the variance in each
. . subset can be done by estimation of the cross-correlation and
AIC: mj =10, m3 =10 (36)  the use of singular value decomposition (SVD) [8]. However,
MDL: mj =5 mis=7 (37) in MDC for comparison of the model sets theme estimate

of variance for all the subsets is used . [6] has the details on
simultaneous order estimation and noise variance estimation
with MDC.

MDC estimate withp = p; = .9995 is also calculated. The
average estimated order of the 30 trials is

MDC: mi=9, mj="T. (38) VI. CONCLUSION

As the length of data is increased 16 = 1000 in all the In this paper, an efficient method of order estimation for
methods the variance of optimum order in 30 trials becomasT| systems is provided. It is assumed that the additive noise
smaller. AIC is over estimating both the number of zeros ag Gaussian. However, by using the of law of large numbers,
poles and MDL still is under estimating and chooses the order estimation method can be implemented for a larger
e e set of probabilistic model classes with additive non-Gaussian

MDL: my =7, m; =T, (39) noise. Also, the white additive noise can be generalized to

while MDC still selects the correct order. colored additive noise. This extends the application of the



new method for order estimation of ARX models to ordethe validated bounds ohC y (9,5(5(,,”1,,”2))) are provided

estimation of ARMAX models.

Some critical prior assumptions which are used in calcu-

lating AIC and MDL can not be validated. Also, the closed

forms in these methods are provided for large enough datfl] H. Akaike.
length. For these methods the important property to check

is consistency. It is known that AIC is not consistent and

over-estimates the order. On the other hand, as it is show{?]
in the examples, the consistent MDL approach is under-
estimating the true order in some cases. In this paper it i$3]
shown that the consistency of MDC depends on the choice

of the validation and confidence probabilities. In practical

problems, more than consistency of a method is needed.
It is required to provide a method of quality evaluation of [4]

the order estimation for a given large, but finite, length of

data. MDC provides a method of probabilistic validation of [5]
the bounds on the desired criterion. Unlike the conventional
methods, the variances of the involved random variables

in calculation of the criterion, which are nonzero due to

the finiteness of the length of data, are not ignored. The6]
quality of the estimated order depends on the structure of
the model class and validation and confidence probability.
The consistency of the method, as the length of data growd7]
is guaranteed by proper choice of validation and confidence
probabilities. With these properties and in comparison with
the existing methods, MDC promises to be the prominent

candidate for order estimation of LTI systems.
VII. APPENDIXA

The mean and variance of Chi-square random variable

V(O(S(my m2)), YN) are
Eg(V(O(Stmym2), YY) = DCx (8,8(S(m,.m2)))

ml—l—mg

5N (42)

N N—(mi+m
var (V(Q(S(ml,mg)),YN)) = #

+% (DCN (6’ e_(S(mhnLQ))) - DCN(ea 0)) . (43)

For the first step, consider the subsetsYi’¥ which are
defined by eachd as follows. The set is a ball whose
center is the mean OV(é(S(ml)mg))7YN) and probability
of the set isp,. Validate #s for which the observed sample
V(0(S(m,.m2)),y™) is in this set defined by.

The desired criterion D(B,ésmm)) is a random vari-
able with the following mean and variance

EHDCN(07 é(s(ml,nﬂ))) - DCN (97 é(S(TYLl,MQ)))
mi + mo

44

5N (44)
« my +m

vargDCn (0, 0(S(my m2))) = % (45)

Therefore, with probabilityp, similar to the validation step,

upper and lower bounds on this random variable based on
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