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End-to-End Bandwidth Guarantees Through Fair
Local Spectrum Share in Wireless Ad-Hoc Networks

Saswati Sarkar, Member, IEEE, and Leandros Tassiulas, Member, IEEE

Abstract—Sharing the common spectrum among the links in
a vicinity is a fundamental problem in wireless ad-hoc networks.
Lately, some scheduling approaches have been proposed that
guarantee fair share of bandwidth among the links. The quality
of service perceived by the applications however depends on the
end-to-end bandwidth allocated to the multihop sessions. We pro-
pose an algorithm that provides provably maxmin fair end-to-end
bandwidth to sessions. The algorithm combines a link scheduling
that avoids collisions, a fair session service discipline per link, and
a hop-by-hop window flow control. All the stages of the algorithm
are implementable based on local information, except the link
scheduling part that needs some network-wide coordination.

I. INTRODUCTION

L INK transmission scheduling in multihop wireless net-
works has been investigated over the last twenty years.

The earlier work was focused on guaranteeing end-to-end
connectivity whenever that was feasible [1], [8], [14]. Trans-
mission scheduling algorithms that provide some guarantees
on the rates obtained by each link have lately been proposed
[6], [7], [15], [11], [22]. The quality of service perceived by the
applications, however, depends on the end-to-end bandwidth
allocated to the multihop sessions. We address the objective of
providing maxmin fair end-to-end bandwidth to sessions.

Providing end-to-end rate guarantees in wired networks has
been studied extensively [4], [13]. Nevertheless, a separate inves-
tigation is necessary for wireless ad-hoc networks as the sched-
uling constraints are different from the wireline networks. For
example, the strategies in wireline networks rely on the feature
that links can be scheduled independent of each other. However,
in wireless ad-hoc networks links traversing the same node can
not simultaneously transmit packets. Different design techniques
are required to address these scheduling dependencies. Also, in
ad-hoc networks the scheduling decisions are taken at the MAC
layersof individualnodes thatdonothaveaccess tonetwork-wide
information. However, the fair rate of each session depends on
several network wide attributes, e.g., the routes and packet gen-
eration rates of different sessions, the congestion in vicinity of
each node, etc. It therefore appears that attaining end-to-end fair
bandwidth would require cross-layer optimization, knowledge
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of network wide information at each node and coordination of
the scheduling at different nodes in a session’s path.

We combine features of network control approaches for wired
networks with wireless link scheduling techniques to design a
provably maxmin fair rate allocation algorithm. The algorithm
combines a link scheduling that avoids collisions, a fair session
service discipline per link and a hop-by-hop window flow con-
trol. It does not need the nodes to know any network or transport
layer information, e.g., the end-to-end session routes, the packet
arrival rates, etc., and does not compute the fair rates apriori.
Thus, the optimality result that proves maxmin fairness of the
resulting end-to-end rates is an important contribution of this
paper, and indicates that cross-layer optimization does not in-
troduce significant additional complexity in this case.

The proposed algorithm is centralized. It is however worth-
while to observe that the only centralized component is the
link scheduling that needs to compute a maximum weighted
matching of the network graph. We will discuss a possible
approach based on a recent result in scheduling [9], for approx-
imating this computation by a distributed policy. This may lead
to a fully distributed solution with suboptimal performance.
Note that like many other scheduling strategies proposed for
wireless networks, e.g., [5], [12], [21], and [22], we need this
computation for optimally resolving the link dependencies, and
not for sessions being multi-hop.

Recently, Radunovic et al. [16] proposed a centralized algo-
rithm for computing the end-to-end maxmin fair rates. It may
be possible to use these computed rates to regulate the source’s
release of packets (e.g., at the transport layer) so as to obtain the
maxmin fair rates. The disadvantage of this sequential approach
is that the rates must be recomputed every time the topology or
the packet arrival rates change. This does not happen with our
algorithm since it does not have a precomputation phase. Fur-
thermore, they assume that a node can transmit simultaneously
on multiple links, which several transceivers can not do.

Finally, fairness can be defined in many different ways, and
maxmin fairness is one of these notions. Another notion for fair-
ness is to maximize the sum of the certain functions of the rates
(utilities) of all users. Recently, algorithms have been proposed
for attaining this goal in wireless networks [3], [9], [12], [23].

In Section II, we describe the fairness objective and the
network model, and present conditions that are necessary
and sufficient for a bandwidth allocation to be maxmin fair.
In Section III, we present a scheduling strategy that attains
maxmin fairness and describe its performance guarantees. In
Section IV, we investigate via simulation the performance of
the algorithm for different values of certain parameters. In
Section V, we discuss several implementation related features
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TABLE I
SUMMARY OF THE FREQUENTLY USED SYMBOLS

of our algorithm. We summarize the frequently used symbols
in Table I, and present the proofs in the Appendix.

II. FAIRNESS OBJECTIVE AND NETWORK MODEL

We consider a wireless network with nodes, links, and
multihop sessions. Each session has a source, destination and

some relay nodes. The session routes are predetermined. Time is
slotted. Every node has one radio unit. Thus, in a slot, a node can
either transmit one packet, or receive one packet, or remain idle.
We assume that all packets have the same number of bits. Every
link can transmit 1 packet per slot. Thus, if a session transmits
at the rate of packets per slot, each of its relays must serve
(transmit or receive) ’s packets for fraction of total time, and
’s source and destination must serve ’s packets for fraction

of total time. Every node has a frequency that is unique in its
two-hop neighborhood. Thus, only the transmissions that have
a common node interfere with each other. Hence, the links that
are active at any slot must constitute a matching. For example,
a bluetooth network satisfies the previous assumptions [10]. We
do not consider channel errors.

A bandwidth allocation is feasible if there ex-
ists a scheduling sequence that attains rate for each session
. We examine the conditions for feasibility of a bandwidth al-

location. First, assume that the source node for each session

has an infinite supply of packets at all times. Let be
the set of sessions that originate (terminate) at node , and
be the set of sessions node relays. Hajek et al. [5] showed
that if the network is a bipartite graph,1 then a bandwidth al-
location is feasible if and only if at each node

. Intuitively,
is the bandwidth consumed by sessions traversing

node as a session can receive a rate only if each of its relay
nodes serve it for fraction of the total time and its source
and destination serve it for fraction of the total time. Thus,
a bandwidth allocation is feasible if and only if
at each node the sum of the bandwidth consumed at by
all sessions traversing is less than or equal to 1. Many wire-
less networks, e.g., bluetooth networks are bipartite graphs. For
nonbipartite graphs, a sufficient (but not necessary) condition
for the feasibility of a bandwidth allocation is that

for each node [5]. In
practice, bandwidth is allocated so as to utilize the bandwidth
capacity of the nodes only partially under normal circumstances,
and reserve the rest of the capacity for use during transient over-
loads. Thus, combining the two cases, we assume that a con-
dition for feasibility of a bandwidth allocation

where is the desired bandwidth utiliza-

1A bipartite graph is one where the vertex set can be partitioned in two sets
such that there is no edge between the vertices in the same set.
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tion factor ( for nonbipartite graphs and for bi-
partite graphs). We refer to this constraint as the node capacity
constraint.

A source may not have an infinite supply of packets. If a ses-
sion generates packets at rate , then its bandwidth is upper
bounded by . We refer to this constraint as the de-
mand constraint.

Definition 1: A bandwidth allocation is feasible if and only
if it satisfies both the demand and the node capacity constraints.

Definition 2: A feasible bandwidth allocation
is maxmin fair, if it satisfies the fol-

lowing property w.r.t. any other feasible bandwidth allocation
: if there exists a such that , then there

exists a such that and .
Maxmin fairness is considered to be a good notion of fairness,

as it guarantees equal bandwidth to sessions that traverse paths
of similar congestion level and generate packets at equal rates.
Note that the maxmin fair rate allocation is unique since the
feasible set is compact and convex [17].

For nonbipartite topology graphs the feasible set as defined
before (referred to as ) is a subset of the actual feasible set
(referred to as ). Thus, the maxmin fair allocation in
is an approximation of that in . We now comment on
the nature of this approximation. We first describe the notion of
relative fairness proposed in [17].

Definition 3: A bandwidth allocation is fairer than another
bandwidth allocation if: a) , and b) existence of an

such that , implies that there exists a such that
and .

This definition leads to another equivalent definition of a
maxmin fair bandwidth allocation [19].

Definition 4: A feasible bandwidth allocation is maxmin
fair if and only if it is fairer than all other feasible bandwidth
allocations.

The feasible set obtained by selecting in the node-ca-
pacity constraints is a superset of . It turns out that the maxmin
fair bandwidth allocation in has the following properties:
a) , and b) is fairer than or equal to . Thus, for
nonbipartite graphs the approximate maxmin fair bandwidth al-
location is in the worst case times a bandwidth allocation
that is fairer than the actual maxmin fair bandwidth allocation .
Henceforth, for simplicity, in the nonbipartite topology graphs,
we will refer to the approximate maxmin fair bandwidth alloca-
tion as the maxmin fair bandwidth allocation.

We now present a necessary and sufficient condition for
maxmin fairness.

Definition 5: A node is a bottleneck node of a session if
session ’s bandwidth is the maximum among the bandwidth of
the sessions traversing and is
equal to the bandwidth utilization factor .

We next present a necessary and sufficient condition for
maxmin fairness in multihop wireless networks, which is sim-
ilar to the bottleneck condition for maxmin fairness in wireline
networks [2].

Lemma 1: A feasible bandwidth allocation is maxmin fair if
and only if the following holds: for every session , either the
bandwidth allocated to session is equal to , or the session
has a bottleneck node.

III. BACK-PRESSURE BASED FAIR BANDWIDTH ALLOCATION

ALGORITHM

We propose a modular approach for attaining maxmin
fairness for multihop sessions. The first module estimates the
maxmin fair bandwidth share of each session in each node
in the session’s path, and releases packets for transmission in
accordance with these estimates. The second module sched-
ules the transmission of the released packets so as to attain
the estimates. Note that the modules operate in parallel. This
modularization allows the use of different algorithms in the
first module for different fairness objectives, e.g., weighted
maxmin fairness (Section V). The bandwidth shares computed
as per the desired objective can now be attained using, in the
second module, the existing maximum difference backlog
scheduling [21]. This scheduling can stabilize the network for
any feasible arrival process. Since the packet release process
is fair and, hence, feasible, the overall framework attains the
desired fairness objective. We present the basic algorithm that
attains maxmin fairness in Subsection III-A, and consider
generalizations in Subsection III-B and Section V.

A. Basic Algorithm

We consider the special case that every session is saturated,
i.e., its source node always has a packet . We
present the algorithm in Fig. 1. Here, we describe each part. Fair
bandwidth is estimated by a token generation process. Every
node generates tokens for all sessions traversing the node. The
token generation process is so designed that the tokens are gen-
erated for each session at the session’s maxmin fair rate. When-
ever a new token is generated for a session at the session’s
source, the source node releases a new packet for transmission.
Thus, the packet release process is maxmin fair. Only the re-
leased packets are eligible for transmission.

We describe the token generation process fora session at node
. Node samples in round robin order the sessions traversing

it. Node samples sessions in at most fraction of slots. Also,
whenever generates a token for a session it relays, it does not
sample in thenext slot.Thus, thesumof the tokengeneration rates
of sessions originating or terminating at and twice the token
generation rates of sessions relays does not exceed . Let
and be the immediate upstream and downstream (i.e., adjacent)
nodes of node in session path. Let be the number of
tokens generated for session at node in the interval . Let

sample session in slot . Then, generates a token to session
in slot if and only if .

Thus, session receives a token at unless the number of tokens
for session at substantially exceeds that at the adjacent nodes;
this prohibitive difference is the window parameter, . In slot

samples the next session in the round robin order if and only
if does not generate a token for session . Note that the source
(destination) node of a session has only one adjacent node for
the session, and thus decides whether to generate a token based
on the number of tokens at only one adjacent node. Tokens are
never removed from a node.

We now explain why for each session the token generation
rate equals the maxmin fair rate. The maxmin fair rate of a ses-
sion is determined by the bandwidth offered by the session’s
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Fig. 1. Pseudocode of the fair bandwidth allocation algorithm for saturated sessions.

bottleneck node which is the most congested node in the ses-
sion’s path. Intuitively, a session’s token generation rate at any
node in its path should equal that at its bottleneck node; the dif-
ficulty in attaining this equality is that the nodes do not have
explicit information about the bottleneck node. A node learns
the bottleneck information implicitly by relating the token gen-
eration process for a given session to that at the adjacent nodes
in the session’s path. The number of tokens for a session at two
adjacent nodes in the session’s path differ by at most at any
time , and the difference is at most for that at any two
nodes in the session’s path, where is the maximum number of
nodes in the session’s path. Thus, the rates of token generation
for a session are equal at any two nodes in the session’s path. A
session’s bottleneck node samples it at the least rate in its path.
Hence, a session’s token generation rate at each node is upper
bounded by its sampling rate at its bottleneck node; the token
generation rate in fact equals this sampling rate which turns out
to be the session’s maxmin fair rate.

Lemma 2: Let be the maxmin fair rates of the
sessions. Let be the number of tokens generated for ses-
sion at node in interval . Then, in any time interval

, if , where
and are constants.

We define and in the proof of Lemma 2, in terms of
(refer to Table I and Fig. 1 for definitions of these

quantities). Note that the values of and do not depend on
the interval .

The implicit discovery of the bottleneck information from
the bandwidth allocation process at neighboring nodes has been
motivated by fair bandwidth allocation algorithms in wireline
networks [4]. This is commonly termed as “back-pressure.” The
mechanisms used in this discovery, e.g., the sampling and the
token generation, and also the link scheduling are however sig-
nificantly different due to the dependence between the sched-
uling of different links in wireless networks which does not arise
in wireline networks.
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Fig. 2. Pseudocode of the token generation process at the source nodes for systems with some unsaturated sessions.

Whenever the source node of a session generates a new token
for the session, it releases a new packet. The maximum differ-
ence in backlog scheduling [21] transmits the released packets
along the prespecified routes to the desired destinations. The
maximum difference in backlog scheduling assigns a weight to
each link as follows. The difference in backlog of a session in
a link is equal to the difference between the number of released
packets of the session waiting at the source node of the link and
that at the destination node of the link. The weight of a link is
the maximum difference in backlog of the sessions traversing
the link. Note that only a session’s source may have packets
that have not been released. The links that constitute a max-
imum weighted matching are scheduled for service. When a
link is scheduled, a released packet of the session that has the
maximum difference in backlog in the link is served. The max-
imum difference in backlog scheduling stabilizes a network if
the packet arrival process is feasible [20]. The packet arrival
process in the current network is the packet release process. To-
kens and, hence, packets are released for each session at the
maxmin fair rate (Lemma 2) which is feasible by definition.
The network is thus stable, and hence the rate of delivery of
packets of a session to the session’s destination equals the ses-
sion’s packet release rate which is the session’s maxmin fair
rate.

Theorem 1: Let be the maxmin fair rates of the
sessions. Let be the number of packets for session that
have reached session ’s destination by time . Then, in any time
interval , if ,
where, and are constants.

Note that , which we define in the following proof, does not
depend on the interval .

Proof of Theorem 1: From Lemma 2, the number of
packets of session released from ’s source in any interval

differs from by at most . Since
is feasible, results in [20] show that the packet queue length
at any time in any node is bounded by a constant , if the

maximum difference in backlog scheduling is used. Thus, the
number of ’s packets that reach ’s destination in any interval

differs from by at most a constant , where
. Note that and depend on and

not on the interval .
Theorem 1 shows that in any interval the number of packets

of a session delivered to the destination differs from the maxmin
fair number by at most a constant. Thus, the long term rates are
maxmin fair.

B. Generalization for Addressing the Unsaturated Case

A session is unsaturated if its source does not always have
packets for transmission, i.e., . When some or all ses-
sions are unsaturated, the maxmin fair rates can be attained by
altering the token generation procedure at the source node in the
basic algorithm in Section 1; refer to Fig. 2 for the modification.
The source node of a session now does not generate a new token
for the session if it does not have a packet that has not been re-
leased. The rest of the algorithm remains the same. Note that
the modification applies to all sessions; therefore, the algorithm
need not know which sessions are saturated. If a session is sat-
urated, then the modification will not be executed as its source
will always have packets that have not been released.

If a session has a low rate of packet generation, then it receives
fewer tokens at the source and subsequently at other nodes as
well, since back-pressure upper bounds by a constant the
difference between the number of tokens for a session in any two
nodes. Thus, the session obtains fewer transmission opportuni-
ties, and hence, less bandwidth as required for maxmin fairness.

We prove Lemma 2 in the Appendix for pseudodeterministic
arrival processes in which the number of packets gener-

ated for any session in any interval of length is upper bounded
by and lower bounded by for any . Here, is
the long term arrival rate of a session , and is the burstiness.
Similar to the saturated case, Theorem 1 can be proved using
Lemma 2 and, thus, the modified algorithm attains the maxmin
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Fig. 3. First figure shows the topology with 21 nodes and 14 sessions that is used in the simulations. The second figure considers the case when all the sessions
are saturated. The third figure considers the case when all the sessions are saturated, except session 7 which receives packets at the rate 0.1 per unit time.

fair rates. Let . Now, , and depend on
, and .

IV. PERFORMANCE EVALUATION

We now examine using simulations: a) the time required for
convergence of the token generation rates to the maxmin fair
rates, and b) how the convergence depends on the choice of the
window parameter . Note that we do not have a tight analyt-
ical bound on the convergence time. The lower bound on ,
needed to guarantee the convergence results in Lemma 2 and
Theorem 1, depends on , and . Thus, this bound
is impossible to compute without explicit knowledge of the net-
work topology. This motivates the investigation of the impact of
different choices of on the convergence of the token genera-
tion rates to the maxmin fair values.

We present simulation results for a network of 21 nodes and
14 sessions that is shown in Fig. 3. Here, . We simu-
late the token generation procedure in C. We do not simulate
the maximum difference in backlog scheduling, as it has been
known to attain any feasible rate if the packet arrival process is

feasible [20]. We consider the relative difference between the
long term token generation rate for each session at its source

and the maxmin fair rate . The relative differ-
ence, which we call relative error, at time for session is

. We plot the maximum and average relative
errors over all sessions as a function of in Fig. 3. In Fig. 3, the
second figure considers the case when all the sessions are sat-
urated; the third figure considers the case when all sessions are
saturated except session 7 that receives packets at the rate 0.1
per unit time.

We observe the following from Fig. 3. The average relative
error decays fast, e.g., it is less than 0.05 within 500 slots. The
maximum relative error decays slower indicating that a few
sessions experience slower convergence. The token generation
rates converge to the maxmin fair rates even though ;
the lower bound for guaranteed convergence is . We ob-
served similar trends for several other topologies. We conclude
that on an average, the token generation rate converges rapidly
to the maxmin fair bandwidth. Also, in practice, convergence
is not sensitive to the choice of and moderate values of ,
e.g., , ensure convergence. Thus, small window sizes
can be used to control the delay and buffer requirements.
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V. DISCUSSION AND CONCLUSION

The token generation and the scheduling can operate in par-
allel. A sequential operation increases the overall delay in at-
taining the desired bandwidth allocation.

The scheme need not restart if new sessions join or old ses-
sions leave. The analytical performance guarantees hold even in
this dynamic scenario.

The analytical performance guarantees hold even when a
node knows the number of tokens at its neighbors after a delay,
as long as the delay is upper bounded. We have shown in [18]
that the rates obtained by a similar back-pressure technique
converges to the maxmin fair rates irrespective of the feedback
delay. The guarantees also hold when the scheduling decisions
are taken, and/or tokens are generated at intervals, as long as
the intervals are upper bounded. When tokens are generated at
intervals, multiple tokens must be generated to each session
simultaneously.

The algorithm is adaptive as it does not need the statistics of
the arrival process.

The algorithm requires per-flow states at the nodes. However,
this is not likely to substantially increase the complexity in wire-
less networks as the number of sessions traversing a node is lim-
ited by the available bandwidth rather than by the computational
complexity.

A node can execute the token generation and the packet
release processes with the knowledge of the status of only its
one-hop neighbors. The maximum difference backlog sched-
uling is however a centralized procedure as it requires the
computation of a maximum weighted matching. A maximal
matching2 can however be computed in a distributed manner
[9]. Recently, performance guarantees have been obtained for
maximal matching based schedulings [9]. It may be possible to
use these results to prove that the combination of the current
token generation scheme, packet release process and a sched-
uling that uses maximal matching instead of the maximum
backlog scheduling attain approximately maxmin fair rates.
This is a topic of future investigation.

The system does not remove any token. Thus, the register
storing the number of tokens may overflow. The performance
guarantees hold if equal number of tokens of a session are
removed from each node in the session’s path. The removal
process can be executed by periodic exchange of synchroniza-
tion information. The additional system overhead is small as
the periods are long.

We now consider some important generalizations. We first
consider the more generalized notion of weighted maxmin fair-
ness. Let the weight of session be . A feasible bandwidth
allocation is weighted maxmin fair, if it satis-
fies the following property w.r.t. any other feasible bandwidth
allocation : If there exists a such that ,
then there exists a such that and .
Unequal weights allow allocation of bandwidth on the basis
of the quality of service requirements. A session with a higher
weight can have a bandwidth higher than another even if both
sessions travel the same path and generate packets at the same

2A set of edges is a maximal matching if it is a matching and if every edge
not in the matching shares an end-point with some edge in the matching.

rate. The sampling procedure in the basic algorithm presented
in Section I must be altered to attain the weighted maxmin fair
rates. In any slot , node samples the session that has the min-
imum weighted number of tokens, i.e., the minimum value of

among all sessions traversing the node. Thus, the
sessions with higher weights are sampled more often. The rest
of the algorithm remains the same. Theorem 1 and Lemma 2
hold.

We have so far assumed that every link can transmit 1 packet
per unit time. We now consider that link can transmit packets
per unit time.3 First, the node capacity condition for feasibility
changes because of this generalization. Let be the set of
links in session ’s path that are incident on node . Note that

consists of two links if relays and one link if is the
source or destination of . Now, the node capacity constraint
is that at each node [23].
A modified token generation and scheduling algorithm will at-
tain the maxmin fair rates. The token generation process dif-
fers in that a node now generates fractional number of tokens.
More specifically, when a node samples a session it gen-
erates tokens and it samples the sessions
in all sampling slots (nodes no longer idle in slots succeeding
the token generation slots since they now generate fractional to-
kens). The source of each session maintains a queue of packets
that it has generated but not released for transmission, and re-
leases a packet from this queue only when the difference be-
tween the amount of tokens and the number of released packets
is 1 or more. The source does not generate any token if this
queue is empty. The rest of the token generation process is the
same. We assume that is rational for each . Let
where are relatively co-prime integers. Let be the least
common multiple of s for all links. The scheduling process dif-
fers in that the scheduling must be computed at the beginning of
intervals of slots and persisted with during the interval. This
is necessary since the links can not transmit fractional packets.

We now outline a scheduling algorithm that would attain
the maxmin fair rates in the actual feasible set in nonbipartite
graphs. For simplicity, we again assume that for each
. Let be the set of links that are in session ’s path

and have both end points in a set of nodes. A rate alloca-
tion vector is feasible in a nonbipartite graph if and only if
for each subset of nodes, , with odd cardinality (i.e., odd

), [5]. There exists a
token-generator for each constraint, which will be denoted by
the corresponding subset. Each token generator samples in
round-robin order all the sessions involved in the constraint.
Let be the number of tokens generated by the token
generator for constraint for session till time . When the
generator for samples , it generates token to
if and only if the total number of tokens generated by a gener-
ator corresponding to another constraint involving is at least

where is a parameter. Note that if ,
then session is not involved in constraint . Session releases
a packet for transmission whenever increases,
and the released packets are transmitted as per the maximum

3For simplicity, we still assume that all packets have the same number of bits,
but this can be relaxed easily.
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difference in backlog scheduling described before. The rate
of packet delivery at each destination is maxmin fair in the
actual feasible set. This token generation can be implemented
in distributed manner by maintaining separate token generators
for different constraints at each node involved in the constraint,
and relating the generation processes in the adjacent nodes as
described before. The token generation will still require expo-
nential number of generators per node and therefore consume
exponential computation complexity per slot. This limits its
practical utility. Some open research problems are to determine
whether there exists a polynomial complexity token generation
scheme for attaining the exact maxmin fair rates in nonbipartite
topology graphs, and designing one if one such exists.

We now summarize the contributions of this paper. We con-
sider the objective of attaining maxmin fairness in multihop
wireless ad-hoc networks. We present conditions that are neces-
sary and sufficient for a bandwidth allocation to be maxmin fair.
We present an adaptive scheduling strategy that attains maxmin
fairness for sessions with different traffic demands. The strategy
can be generalized to attain other fairness objectives such as
weighted maxmin fairness.

APPENDIX

PROOF OF LEMMA 1

Consider a feasible bandwidth allocation . As-
sume that for each , either , or session has a bottleneck
node. We show that is maxmin fair. Consider any
session . If , then ’s bandwidth can not be increased
while maintaining feasibility. Let have a bottleneck node, . If
’s bandwidth is increased, the bandwidth of some other session
that traverses must be decreased to satisfy the node capacity

constraint. Bandwidth of any session traversing is either less
than or equal to that of . Thus, any increase in ’s bandwidth
will decrease that of some session that has bandwidth less than
or equal to ’s bandwidth. Thus, is maxmin fair.

Now consider a maxmin fair bandwidth allocation
. We will show that for each , either ,

or session has a bottleneck node. Consider any session .
Let and let not have a bottleneck node. Thus, at
each node in ’s path, either there exists a session such that

, or the sum of the bandwidth of all sessions traversing
node is less than . In either case, ’s bandwidth can be
increased without decreasing that of any other session that
has bandwidth less than or equal to ’s bandwidth and without
violating the feasibility conditions. This contradicts the fact
that is maxmin fair.

APPENDIX

PROOF OF LEMMA 2

We prove Lemma 2 for a system that consists of both sat-
urated and unsaturated sessions. Let, be the number of
packets generated for session at ’s source in interval .

Then (1)

Let , where and are relatively prime positive
integers. Let each node sample the sessions in slots in every
contiguous slots.

We prove using the following steps. a) We show that if a ses-
sion generates packets at rate or higher, and if it is sampled
at rate or higher at every node in its path, then it receives to-
kens at rate or higher from every node in its path (Lemma 3).
b) We next show that a session’s sampling rate at any node in
its path equals its maxmin fair rate (Lemma 4). By definition,
a session’s maxmin fair rate is less than or equal to its packet
generation rate. The result follows.

We introduce some terminologies and subsequently state
Lemmas 3 and 4. Let be the number of times session
is sampled at node in the interval be the number of
nodes in session ’s path, , and are constants
that will be formulated later. We prove Lemmas 3 and 4 in
Sections C and D.

Lemma 3: Consider an arbitrary and a sequence of dis-
joint intervals, , that satisfies the following
property for session , for every positive integer and every se-
quence of subintervals

, for some . At every node in ’s path

(2)

where and are constants that do not depend on and the
sub intervals . Let and

. Then, at every node in ’s path

(3)

Lemma 4: Let be the maxmin fair rates of ses-
sions . Consider any positive integer , and an arbi-
trary nondecreasing sequence of times . Let

, where is defined in (7) to (12).
For each node and for each session traversing

(4)

(5)

(6)

Here, and are constants that do not depend on
.

We introduce the notion of “rank” of a session for defining
and . A session has rank if its mamin fair rate is , the th
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lowest among the maxmin fair rates of different sessions. Let
be the number of distinct ranks

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

Now, and .
Proof of Lemma 2: Lemma 2 follows from (5) and (6) of

Lemma 4 with and .

APPENDIX

PROOF OF LEMMA 3

We first present the intuition behind the proof. The proof is by
induction on the number of nodes in a session’s path. The ses-
sions with one node form the base case (allowing such sessions
simplify the proof). Note that any such session receives a token
every time it is sampled and has a packet that has not been re-
leased, since no adjacent node applies back-pressure. Now, the
lemma follows for the base case from the lower bounds on the
sampling and packet generation rates. We next assume that the
lemma holds for all sessions with nodes, and then prove the
lemma for sessions with nodes. Consider a session with

nodes and adjacent nodes and in its path (Fig. 4).
Node does not prevent the generation of any token at un-
less the number of tokens at is more than that at . If the
number of tokens at is more than that at does not
prevent any token generation at , and the nodes from to the
destination generate tokens as though they constitute a session
with fewer nodes, oblivious to the presence of the nodes from
to the source. By induction hypothesis, and from the sampling
and packet generation rates, the session receives tokens at rate

or higher at in these intervals. In all these slots, the number
of tokens at exceed that at by . Thus, s token genera-
tion rate is lower bounded by ’s token generation rate which
is at least . In other slots, does not prevent the generation
of any token at . Thus, the token generation at the nodes from
the source to resembles that for a session with fewer nodes.
Thus, by induction hypothesis and the assumption on the sam-
pling rate, in all slots, generates tokens at rate or higher for
the session. Note that a session spanning 2 nodes can also be
taken as the base case, but then the proof becomes longer. Also,
sessions of all path lengths need not be present in the system.

Proof of Lemma 3: We prove by induction on the number
of nodes in a session’s path.

First, consider a session with one node . Let not be the
source of . The lemma holds from the assumption on the sam-
pling rate [condition (2)]. Now, let be the source of . Let

be the last slot in interval in which does not have a
packet that has not been released. Also, recall that is
the number of packets of session at its source at time that
have not been released.

[from (1)]

since (15)

Node generates a token for session every time it samples
in

[from (2)]

[from (15) and (16)] (16)

Thus, (3) holds in the base case.
We assume that (3) holds for all sessions with or fewer

nodes, and prove (3) for an arbitrary session with nodes.
Consider an arbitrary node in ’s path. If the number of tokens
of at does not exceed that at nodes adjacent to in ’s
path by or more in the intervals , then
the token generation process for at is not affected by back-
pressure, and the proof is similar to the base case. Thus, we
assume that there exists in ’s path a node that is adjacent
to , and at some time in these
intervals. Let a slot where exceeds by be a
type 1 slot, and a slot where exceeds by be
a type 2 slot; a slot may neither be type 1 nor type 2. Consider
each interval separately. Consider the sequences of type
1 and 2 slots that are obtained after removing the slots without
numbers. The last slot in such a sequence of type-1 (2) slots is
denoted a “u” (“v”) slot. The th “u-slot” (“v-slot”) of the th
interval is (Fig. 5). Note that

(17)

(18)

(19)
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Fig. 4. We show the path of a session between source S and destination D.
The A-set consists of nodes S;C;A and the B-set consists of nodes B;D.

Fig. 5. We show two intervals [t ; w ] and [t ; w ], and some type
1 and 2 slots. We also show the corresponding u and v slots. Here,
[t ; u ]; [t ; u ]; (v ; u ] are example sub-intervals that end in u-slots and
start from the nearest v-slot or t -slot.

If the link between and is removed, then the nodes in ’s
path that remain connected to is the -set ( -set) (Fig. 4).
Let -set ( -set) consist of nodes. Note that

. Thus, . Consider a sub-interval
that ends at a slot and starts from a (inclusive) or a -slot
(not inclusive), whichever is the nearest to the -slot (Fig. 5).
Let there be such subintervals in , and .
These sub-intervals do not consist of any type 2 slot. Thus,
does not prevent any session token generation at in these
subintervals. Hence, in these sub-intervals, the token generation
for in the nodes in the -set resembles that in the nodes of
a session of length . Condition (2) holds for in every node
in the - set for every set of subintervals of these sub-inter-
vals, since any such subinterval is in for some . Thus,
the number of tokens generated for in these subintervals
in each node of the -set can be lower bounded using the in-
duction hypothesis. The sub-intervals in are and

, if as in Fig. 5; the subintervals
are , otherwise. We assume that for
all ; the argument is similar if for some or all . From
induction hypothesis

(20)

[from (17) and (19)]

(21)

[from (17) and (18)] (22)

[from (21) and (22)]

[from (20)] (23)

Now, consider the subintervals obtained after removing these
subintervals from . These new sub-intervals do

not contain any type 1 slot. Thus, does not prevent any session
token generation at . Hence, the session token generation

in the nodes in the -set resembles that of a session of length
. The number of session tokens generated at in

these sub-intervals can be lower bounded from the induction
hypothesis. There are at most such sub-intervals, which
are of the form and , since we assume that

Thus

(24)

Adding (23) and (24)

(25)

Note that and thus, . We have
implicitly assumed that at least one type-1 slot exists in each
interval ; this justifies the summation from to
in (20). Under this assumption, . Hence, (3) holds for
session at node . If there is no type-1 slot in for some
, then the summation in (20) must be over the intervals

that have at least one type-1 slot. Let be the number of such
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intervals. Now, must be replaced with . Since
, (3) holds at all nodes in ’s path.

APPENDIX

PROOF OF LEMMA 4

We outline the proof for the special case that all sessions are
saturated. We use induction on the rank of a session. For the
base case , using a property of the round robin sampling,
we show that all sessions are sampled at a rate or higher at
every node. Now, (5), the lower bound on the token generation
rate follows from Lemma 3. Next, we show (6), i.e., the token
generation rates are upper bounded by for all sessions with
rank 1. This follows because the sampling and, hence, the token
generation rate is upper bounded by at the bottleneck node,
and due to back-pressure the token generation rates for a session
are equal at different nodes in the session’s path. Now, consider
the induction case, i.e., arbitrary . The token generation rates
of sessions with rank lower than are upper bounded by their
respective maxmin fair rates which are upper bounded by .
Sessions of rank or higher are sampled in a certain minimum
fraction of the slots in which the sessions with rank lower than

do not receive tokens. Therefore, the lower bound on the sam-
pling rate of sessions with rank or higher follows. Again, the
lower bound on the token generation rate follows from Lemma
3. We prove, as in the base case, the upper bound on the token
generation rate for sessions with rank .

We consider both saturated and unsaturated sessions in the
formal proof.

Proof of Lemma 4: We prove the following for ranks
, by induction on .

For each node , for each session that traverses and has
rank greater than or equal to , for any positive integer , and
for any nondecreasing sequence of times

(26)

For each node , for each session that traverses and has
rank greater than or equal to , for any positive integer , and
for any nondecreasing sequence of times

(27)

If a session has rank , and

(28)

For each node , for each session that traverses and has
rank , for any positive integer , and for any nondecreasing
sequence of times

(29)

We first prove (26)–(29) for . Note that
. Consider a node . Let be the set of

sessions traversing and be the set of sessions relays.
Note that and . From the sampling
process, in any interval

Now, using

Since sessions are sampled in round robin order,
for any two sessions

traversing . Thus, for any session traversing

Thus, every session traversing node is sampled at least
times for any arbitrary

sequence of nondecreasing times , and any
arbitrary . Since . Thus, (26) holds
with and .

Since . Hence, (27)
follows from Lemma 3 with and

.
Now, we prove (28) for . Consider a session with rank

1 and . Thus, . Let be the source of

from (1) and (27) for

since and

Thus, (28) follows for .
Now, we prove (29) for . Consider a session with

rank 1. Let be a node in ’s path. Consider a sequence of
nondecreasing times

(30)

The last step follows from (27) for . First, let .
Thus, has a bottleneck node . Let be the set of sessions
traversing node . Since has rank 1, , rank

, and . Recall that is the set
of sessions that originate or terminate at and is the set of
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sessions that relay. Let . First, let be ’s
source or destination.

from (27) since rank

(31)

Now, let relay

from (27) since rank

since

(32)

Now, let . Let denote the source of

[from (28) and (1)]

since

(33)

From (31)–(33), there exists a node in ’s path such that

(34)

Now

(35)

[from (35)]

[from (34)] (36)

From (30) and (36)

(37)

Thus, for , (29) follows from (37) with
and

.
Now, we assume (26)–(29) for , and show that

(26)–(29) hold for .
We first prove (26). Consider a session with rank greater

than or equal to . Consider a node in ’s path. Let
traverses rank

traverses rank
relays and relays . Now,

and includes . From the sampling process,
in any interval

Now, using for
each

Since sessions are sampled in round-robin order,
for any two sessions

traversing . Thus

Thus
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The last inequality follows since rank , and
, and . Also,

. Thus, induction hypothesis
[inequality (29)] applies. Now

since

The last step follows since rank and, hence,
. Thus, from (38), (26) holds for , with

, and .
Consider a session with rank greater than or equal to .

Note that , and . Thus,
(27) follows from Lemma 3, with
and .

The proof for (28) is similar to that in the base case.
Now, we prove (29) for . The argument is similar to

that for the base case. We point out the differences. Consider a
session with rank . Let be a node in ’s path. Consider
any sequence of nondecreasing times

from (27) for (39)

Now, first let . Since . Thus,
has a bottleneck node, . Since has rank , all sessions
traversing must have rank less than or equal to . Recall
that is the set of sessions that originate or terminate at

and is the set of sessions that relay. Let .
First, let originate or terminate at

[from (27)]

(40)

The last step follows since
.

Now, let relay

[from (27)]

The last step follows since
. Thus

(41)

Now, let . Let denote the source of . Like in the
base case, using (27) and (1), we can prove that

(42)

From (40)–(42), there exists a node in ’s path such that

(43)
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From (43), like in the base case

(44)

From (39) and (44)

(45)

Thus, (29) follows from (45) with
and

. Thus, (26)–(29) hold in the induction
case.

Note that are increasing in both and . Thus,
from (26), (27), and (29), Lemma 4 holds with and

.
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