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Abstract— Motivated by our experience in building sensor
networks for navigation as part of the Networked Embedded
Systems Technology (NEST) project at Berkeley, we consider
the problem of performing Kalman filtering with intermittent
observations. When data travel along unreliable communication
channels in a large, wireless, multi-hop sensor network, the
effect of communication delays and loss of information in the
control loop cannot be neglected. We address this problem
starting from the discrete Kalman filtering formulation, and
modeling the arrival of the observation as a random process.
We study the statistical convergence properties of the estimation
error covariance, showing the existence of a critical value for
the arrival rate of the observations, beyond which a transition
to an unbounded error occurs.

I. INTRODUCTION

Advances in VLSI and MEMS technology have boosted
the development of micro sensor integrated systems. Such
systems combine computing, storage, radio technology, and
energy source on a single chip [1], [2]. When distributed
over a wide area, networks of sensors can perform a vari-
ety of tasks that range from environmental monitoring and
military surveillance, to navigation and control of a moving
vehicle [3] [4] [5]. A common feature of these systems is
the presence of significant communication delays and data
loss across the network. From the point of view of control
theory, significant delay is equivalent to loss, as data needs
to arrive at its destination in time to be used for control.
In short, communication and control become tightly coupled
such that the two issues cannot be addressed independently.

Consider, for example, the problem of navigating a vehicle
based on the estimate from a sensor web of its current
position and velocity. The measurements underlying this
estimate can be lost or delayed due to the unreliability of
the wireless links. What is the amount of data loss that the
control loop can tolerate to reliably perform the navigation
task? Can communication protocols be designed to satisfy
this constraint? At Berkeley, we have faced these kinds of
questions in building sensor networks for pursuit evasion
games as part of the Network Embedded Systems Technology
(NEST) project [2]. Practical advances in the design of
these systems are described in [6]. The goal of this paper
is to examine some control-theoretic implications of using
sensor networks for control. These require a generalization of
classical control techniques that explicitly take into account
the stochastic nature of the communication channel.

In our setting, the sensor network provides observed data
that are used to estimate the state of a controlled system, and
this estimate is then used for control. We study the effect of
data losses due to the unreliability of the network links. We
generalize the most ubiquitous recursive estimation technique
in control—the discrete Kalman filter [7]—modeling the
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arrival of an observation as a random process whose param-
eters are related to the characteristics of the communication
channel. We characterize the statistical convergence of the
expected estimation error covariance in this setting.

The classical theory relies on several prior assumptions
that guarantee convergence of the Kalman filter. Consider
the following discrete time linear dynamical system:

xt+1 = Axt + wt
yt = Cxt + vt, (1)

where xt ∈ <n is the state vector, yt ∈ <m the output
vector, wt ∈ <p and vt ∈ <m are Gaussian random
vectors with zero mean and covariance matrices Q ≥ 0 and
R > 0, respectively. wt is independent of ws for s < t. We
assume that the initial state, x0, is also a Gaussian vector
of zero mean and covariance Σ0. It is well known that,
under the hypothesis of stabilizability of the pair (A,Q)
and detectability of the pair (A,C), the estimation error
covariance of the Kalman filter converges to a unique value
from any initial condition [8].

These classical assumptions have been relaxed in vari-
ous ways [8]. Extended Kalman filtering attempts to cope
with nonlinearities in the model; particle filtering is also
appropriate for nonlinear models, and additionally does not
require that the noise model be Gaussian. More recently,
more general observation processes have been studied. In
particular, in [9], [10] the case in which observations are
randomly spaced in time according to a Poisson process
has been studied, where the underlying dynamics evolve
in continuous time. These authors showed the existence
of a lower bound on the arrival rate of the observations
below which it is possible to maintain the estimation error
covariance below a fixed value, with high probability. The
results were restricted to scalar SISO systems.

We approach a similar problem within the framework of
discrete time, and provide results for general n-dimensional
MIMO systems. In particular, we consider a discrete-time
system in which the arrival of an observation is a Bernoulli
process with parameter 0 < λ < 1, and, rather than asking
for the estimation error covariance to be bounded with high
probability, we study the asymptotic behavior (in time) of its
average. Our main contribution is to show that, depending
on the eigenvalues of the matrix A, and on the structure of
the matrix C, there exists a critical value λc, such that if
the probability of arrival of an observation at time t is λ >
λc, then the expectation of the estimation error covariance
is always finite (provided that the usual stabilizability and
detectability hypotheses are satisfied). If λ ≤ λc, then
the expectation of the estimation error covariance tends to
infinity. We give explicit upper and lower bounds on λc, and
show that they are tight in some special cases.



Philosophically this result can be seen as another manifes-
tation of the well known uncertainty threshold principle [11],
[12]. This principle states that optimum long-range control of
a dynamical system with uncertain parameters is possible if
and only if the uncertainty does not exceed a given threshold.
The uncertainty is modelled as white noise scalar sequences
acting on the system and control matrices. In our case, the
result is for optimal estimation, rather than optimal control,
and the uncertainty is due to the random arrival of the
observation, with the randomness arising from losses in the
network.

The paper is organized as follows. In section II we
formalize the problem of Kalman filtering with intermittent
observations. In section III we provide upper and lower
bounds on the average estimation error covariance of the
Kalman filter, and find the conditions on the observation
arrival probability λ for which the upper bound converges
to a fixed point, and for which the lower bound diverges.
Section IV describes the scalar case and gives an intuitive
understanding of the results. Finally, in section V, we state
our conclusions and give directions for future work.

II. PROBLEM FORMULATION

Consider the canonical state estimation problem. We define
the arrival of the observation at time t as a binary random
variable γt, with probability distribution pγt

(1) = λ, and
with γt independent of γs if t 6= s. The output noise vt is
defined in the following way:

p(vt|γt) =

{

N (0, R) : γt = 1
N (0, σ2I) : γt = 0,

for some σ2 . That is, the variance of the observation at
time t is R if γt is 1, and σ2I otherwise. In reality the
absence of observation corresponds to the limiting case of
σ → ∞. Our approach is to derive Kalman filtering equations
using a “dummy” observation with a given variance when the
real observation does not arrive, and then take the limit as
σ → ∞.

First let us define:

x̂t|t
∆
= E[xt|yt, γt] (2)

Pt|t
∆
= E[(xtx

′
t|yt, γt] (3)

x̂t+1|t
∆
= E[xt+1|yt, γt+1] (4)

Pt+1|t
∆
= E[xt+1x

′
t+1|yt, γt+1] (5)

ŷt+1|t
∆
= E[yt+1|yt, γt+1], (6)

where we have defined the vectors yt

∆
= [y0, . . . , yt]

′ and
γt

∆
= [γ0, . . . , γt]

′. Using the Dirac delta δ(·) we have:

E[(yt+1 − ŷt+1|t)(xt+1 − x̂t+1|t)
′|yt, γt+1] = CPt+1|t (7)

E[(yt+1 − ŷt+1|t)(yt+1 − ŷt+1|t)
′|yt, γt+1] = CPt+1|tC

′+

+δ(γt+1 − 1)R+ δ(γt+1)σ
2I, (8)

and it follows that the random variables xt+1 and yt+1,
conditioned on the output yt and on the arrivals γt+1, are
jointly Gaussian with mean

E[xt+1, yt+1|yt, γt+1] =

(

x̂t+1|t

Cx̂t+1|t

)

,

and covariance

COV (xt+1, yt+1|yt, γt+1) =

=

„

Pt+1|t Pt+1|tC
′

CPt+1|t CPt+1|tC
′ + δ(γt+1 − 1)R + δ(γt+1)σ

2I

«

.

Hence, the Kalman filter equations are modified as follows:

x̂t+1|t = Ax̂t|t (9)

Pt+1|t = APt|tA
′ + Q (10)

x̂t+1|t+1 = x̂t+1|t + Pt+1|tC
′ ˆ

CPt+1|tC
′ + δ(γt+1 − 1)R+

+δ(γt+1)σ
2
I

˜−1
(yt+1 − Cx̂t+1|t) (11)

Pt+1|t+1 = Pt+1|t − Pt+1|tC
′ ˆ

CPt+1|tC
′ + δ(γt+1 − 1)R+

+δ(γt+1)σ
2
I

˜−1
CPt+1|t. (12)

Taking the limit as σ → ∞, the update equations (11) and
(12) can be rewritten as follows:

x̂t+1|t+1 = x̂t+1|t + γt+1Kt+1(yt+1 − Cx̂t+1|t)(13)
Pt+1|t+1 = Pt+1|t − γt+1Kt+1CPt+1|t. (14)

where Kt+1 = Pt+1|tC
′(CPt+1|tC

′ + R)−1 is the Kalman
gain matrix for the standard ARE. Note that performing this
limit corresponds exactly to propagating the previous state
when there is no observation update available at time t.
We also point out the main difference from the standard
Kalman filter formulation: Both x̂t+1|t+1 and Pt+1|t+1 are
now random variables, being a function of γt+1, which is
itself random.

Given the new formulation, we now study the Riccati equa-
tion of the state error covariance matrix in this generalized
setting and provide deterministic upper and lower bounds
on its expectation. We then characterize the convergence of
these upper and lower bounds, as a function of the arrival
probability λ.

III. CONVERGENCE CONDITIONS AND PHASE
TRANSITION

It is easy to verify that the modified Kalman filter in
Equations (10) and (14) can be rewritten as follows:

Pt+1 = APtA
′ +Q− γt+1APtC

′(CPtC
′ +R)−1CPtA

′,
(15)

where we use the simplified notation Pt = Pt|t−1. Since
the sequence {γt}∞0 is random, the modified Kalman filter
iteration is stochastic and cannot be determined off-line.
Therefore, only statistical properties can be deduced. In this
section we show the existence of a critical value λc for the
arrival probability of the observation, such that for λ > λc
the mean state covariance E[Pt] is bounded for all initial
conditions, and for λ ≤ λc the mean state covariance diverges
for some initial condition. We also find a lower bound λ,
and an upper bound λ, for the critical probability λc, i.e.,
λ ≤ λc ≤ λ. The lower bound is expressed in closed form,
the upper bound is the solution of a linear matrix inequality
(LMI). In some special cases the two bounds coincide, giving
a tight estimate. Finally, we present numerical algorithms
for computing a lower bound S̄ and an upper bound V̄ for
limt→∞ E[Pt], when it is bounded.

First, we define the modified algebraic Riccati equation
(MARE) for the Kalman filter with intermittent observations
as follows,

gλ(X) = AXA′+Q−λAXC ′(CXC ′+R)−1CXA′. (16)



Our results derive from two principal facts: the first is
that concavity of the modified algebraic Riccati equation
for our filter with intermittent observations allows use of
Jensen’s inequality to find an upper bound on the mean
state covariance; the second is that all the operators we
use to estimate upper and lower bounds are monotonically
increasing, therefore if a fixed point exists, it is also stable.

We formally state all main results in the form of theorems.
Omitted proofs appear in the Appendix. The first theorem
expresses convergence properties of the MARE.

Theorem 1. Consider the operator φ(K,X) = (1 −
λ)(AXA′ + Q) + λ(FXF ′ + V ), where F = A + KC,
V = Q + KRK ′. Suppose there exists a matrix K̃ and a
positive definite matrix P̃ such that

P̃ > 0 and P̃ > φ(K̃, P̃ )

Then,
(a) for any initial condition P0 ≥ 0, the MARE con-

verges, and the limit is independent of the initial con-
dition:

lim
t→∞

Pt = lim
t→∞

gtλ(P0) = P

(b) P is the unique positive semidefinite solution of the
MARE.

The next theorem states the existence of a phase transition.

Theorem 2. If (A,Q
1

2 ) is controllable, (A,C) is detectable,
and A is unstable, then there exists a λc ∈ [0, 1) such that

lim
t→∞

E[Pt] = +∞ for 0 ≤ λ ≤ λc and ∃P0 ≥ 0 (17)

E[Pt] ≤MP0
∀t for λc < λ ≤ 1 and ∀P0 ≥ 0 (18)

where MP0
> 0 depends on the initial condition P0 ≥ 0.

The next theorem gives upper and lower bounds for the
critical probability λc.

Theorem 3. Let

λ = arginfλ[∃Ŝ | Ŝ = (1 − λ)AŜA′ +Q] = 1 − 1

α2
(19)

λ = arginfλ[∃(K̂, X̂) | X̂ > φ(K̂, X̂)] (20)

where α = maxi |σi| and σi are the eigenvalues of A. Then

λ ≤ λc ≤ λ. (21)

Finally, the following theorem gives an estimate of the
limit of the mean covariance matrix E[Pt], when this is
bounded.

Theorem 4. Assume that (A,Q
1

2 ) is controllable, (A,C) is
detectable and λ > λ, where λ is defined in Theorem 4. Then

0 ≤ S̄ ≤ lim
t→∞

E[Pt] ≤ V̄ ∀ E[P0] ≥ 0 (22)

where S̄ = (1 − λ)AS̄A′ +Q and V̄ = gλ(V̄ ).

The previous theorems give lower and upper bounds for
both the critical probability λc and for the mean error covari-
ance E[Pt]. The lower bound λ is expressed in closed form.
We now present numerical algorithms for the computation of
the remaining bounds λ, S̄, V̄ .

The computation of the upper bound λ can be reformulated
as the iteration an LMI feasibility problem. To do so we need
the following theorem:

Theorem 5. If (A,Q
1

2 ) is controllable and (A,C) is de-
tectable,then the following statements are equivalent:

(a) ∃X̄ such that X̄ > gλ(X̄)
(b) ∃K̄, X̄ > 0 such that X̄ > φ(K̄, X̄)
(c) ∃Z̄ and 0 < Ȳ ≤ I such that





Y
√
λ(Y A+ ZC)

√
1 − λY A√

λ(A′Y + C ′Z ′) Y 0√
1 − λA′Y 0 Y



 > 0.

Proof: (a)=⇒(b) If X̄ > gλ(X̄) exists, then X̄ > 0
by Lemma 1(g). Let K̄ = KX̄ . Then X̄ > gλ(X̄) =
φ(K̄, X̄) which proves the statement. (b)=⇒(a) Clearly X̄ >
φ(K̄, X̄) ≥ gλ(X̄) which proves the statement. (b)⇐⇒(c)
Let F = A+KC, then:

X > (1 − λ)AXA′ + λFXF ′ +Q+ λKRK ′

is equivalent to
[

X − (1 − λ)AXA′
√
λF√

λF ′ X−1

]

> 0,

where we use the Schur complement decomposition and the
fact that X − (1 − λ)AXA′ ≥ λFXF ′ + Q + λKRK ′ ≥
Q > 0. Again using the Schur complement decomposition
on the first element of the matrix we obtain

Θ =





X
√
λF

√
1 − λA√

λF ′ X−1 0√
1 − λA′ 0 X−1



 > 0.

This is equivalent to

Λ =

"

X−1 0 0
0 I 0
0 0 I

#

Θ

"

X−1 0 0
0 I 0
0 0 I

#

> 0

=

2

4

X−1
√

λX−1F
√

1 − λX−1A√
λF ′X−1 X−1 0√

1 − λA′X−1 0 X−1

3

5 > 0.

Let us consider the following change of variable Y =
X−1 > 0 and Z = X−1K, then the previous LMI is
equivalent to:

Ψ(Y,K) =




Y
√
λ(Y A+ ZC)

√
1 − λY A√

λ(A′Y + C ′Z ′) Y 0√
1 − λA′Y 0 Y



 > 0.

Since Ψ(Y,K) is homegeneous, i.e. Ψ(αY, αK) =
αΨ(Y,K), then Y can be restricted to Y ≤ I , which
completes the theorem.

Combining theorems 3 and 5 we immediately have the
following corollary

Corollary 1. The upper bound λ is given by the solution
of the following optimization problem,

λ = argminλΨ(Y,Z) > 0, 0 ≤ Y ≤ I.

This is a quasi-convex optimization problem in the vari-
ables (λ, Y, Z) and the solution can be obtained by iterating
LMI feasibility problems and using bisection for the variable
λ.

The lower bound S̄ for the mean covariance matrix can
be easily obtained via standard Lyapunov equation solvers.
The upper bound V̄ can be found by iterating the MARE or



by solving an semidefinite programming (SDP) problem as
shown in the following.

Theorem 6. If λ > λ, then the matrix V̄ = gλ(V̄ ) is given
by:

(a) limt→∞ Vt = V̄ where V0 ≥ 0, Vt+1 = gλ(Vt)
(b)

argmaxV Trace(V )

subject to

[

AV A′ − V
√
λAV C ′√

λCV A′ CV C ′ +R

]

≥ 0, V ≥ 0

Proof: (a) It follows directly from Theorem 1(a).
(b) It can be obtained by using the Schur complement

decomposition on the equation V ≤ gλ(V ). Clearly the
solution V̄ = gλ(V̄ ) belongs to the feasible set of the
optimization problem. We now show that the solution of
the optimization problem is the fixed point of the MARE.
Suppose it is not, i.e. V̂ solves the optimization problem but
V̂ 6= gλ(V̂ ). Since V̂ is a feasible point of the optimization

problem, then V̂ < gλ(V̂ ) =
ˆ̂
V . However, this implies that

Trace(V̂ ) < Trace(
ˆ̂
V ), which contradicts the hypothesis

of optimality of matrix V̂ . Therefore V̂ = gλ(V̂ ) and this
concludes the theorem.

IV. SPECIAL CASES AND EXAMPLES

In this section we present some special cases in which
upper and lower bounds on the critical value λc coincide
and give some examples. From Theorem 1 it follows that
if there exists a K̃ such that F is the zero matrix, then the
convergence condition of the MARE is for λ > λc = 1 −
1/α2, where α = maxi |σi|, and σi are the eigenvalues of
A.

• C is invertible. In this case a choice of K = −AC−1

makes F = 0. Note that the scalar case also falls under
this category. Figure 1 shows a plot of the steady state of
the upper and lower bounds versus λ in the scalar case.
The discrete time LTI system used in this simulation is
A = −1.25, C = 1, and vt , wt with zero mean and
variance R = 2.5, Q = 1 respectively. For this system
we have λc = 0.36. The transition clearly appears in the
figure, where we see that the steady state value of both
upper and lower bound tends to infinity as λ approaches
λc. The dashed line shows the upper bound, the solid
line the lower bound, and the dash-dot line shows the
asymptote.

• A has a single unstable eigenvalue. In this case, regard-
less of the dimension of C (and as long as the couple
(A,C) is detectable), we can use Kalman decomposition
to bring to zero the unstable part of F and therefore to
obtain tight bounds. Figure 2 shows a plot for the system

A =

(

1.25 1 0
0 .9 7
0 0 .60

)

, C = ( 1 0 2 )

and vt, wt with zero mean and variance R = 2.5,
Q = 20 ∗ I3x3 respectively. Once again λc = 0.36.

In general F cannot always be made zero and we have
shown that while a lower bound on λc can be written in
closed form, an upper bound on λc can be obtained via
an LMI. Figure 3 shows an example where the upper and
lower bounds have different convergence conditions. The

system used for this simulation is A =

(

1.25 0
1 1.1

)

,
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Fig. 1. Phase Transition, scalar case. Trace(S) = S (dashed curve) and
Trace(V ) = V (solid curve)
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Fig. 2. Phase Transition, one unstable eigenvalue. Trace(S) (dashed curve)
and Trace(V ) (solid curve)

C = ( 1 1 )
and vt, wt with zero mean and variance R = 2.5, Q =
20 ∗ I2x2 respectively.

Finally, in Figure 4 we report the results from another
experiment, plotting the state estimation error of a system
at two similar values of λ, one below and one above the
critical value. We note a dramatic change in the error at
λc ≈ 0.125. The figure on the left shows the estimation error
with λ = 0.1. The figure on the right shows the estimation
error for the same system evolution with λ = 0.15. In the
first case the estimation error grows dramatically, making
it practically useless for control purposes. In the second
case, a small increase in λ reduces the estimation error by
approximately three orders of magnitude.

V. CONCLUSIONS

In this paper we have presented an analysis of Kalman
filtering in the setting of intermittent observations. We have
shown how the expected estimation error covariance depends



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15
x 10

4

S
∞
, V

∞

λ λ λ

Fig. 3. Phase Transition, general case. Trace(S) (dashed curve) and
Trace(V ) (solid curve)

0 100 200 300 400 500
−3

−2

−1

0

1

2

3
x 10

5

0 100 200 300 400 500
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

t
k

Estimation Error: λ = 0.15

t
k
 

Estimation Error: λ = 0.1

Fig. 4. Typical estimation error trace for λ below (left) and above (right)
the critical value for a single simulation run. Note the different scale of the
two y-axes.

on the tradeoff between loss probability and the system
dynamics. Such a result is useful to the system designer
who must assess the relationship between the dynamics of
the system whose state is to be estimated and the reliability
of the communication channel through which that system is
measured.

Our motivating application is a distributed sensor network
that collects observations and sends them to one or more
central units that are responsible for estimation and control.
For example, in a pursuit evasion game in which mobile
pursuers perform their control actions based on the current
estimate of the positions of both pursuers and evaders, the
sensing capability of each pursuer is generally limited, and an
embedded sensor network is essential for providing a larger

overall view of the terrain. The results that we have presented
here can aid the designer of the sensor network in the choice
of the number and disposition of the sensors.

This application also suggests a number of interesting
directions for further work. For example, although we have
assumed independent Bernoulli probabilities for the obser-
vation events, in the sensor network there will generally
be temporal and spatial sources of variability that lead to
correlations among these events. While it is possible to
compute posterior state estimates in such a setting, it would
be of interest to see if a priori bounds of the kind that we
have obtained here can be obtained in this case. Similarly, in
many situations there may be correlations between the states
and the observation events; for example, such correlations
will arise in the pursuit evasion game when the evaders
move near the boundaries of the sensor network. Finally, the
sensor network setting also suggests the use of smoothing
algorithms in addition to the filtering algorithms that have
been our focus here. In particular, we may be willing to
tolerate a small amount of additional delay to wait for the
arrival of a sensor measurement, if that measurement is
expected to provide a significant reduction in uncertainty.
Thus we would expect that the tradeoff that we have studied
here between loss probability and the system dynamics
should also be modulated in interesting ways by the delay
due to smoothing.
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VIII. APPENDIX A

In order to give complete proofs of our main theorems,
we need to prove some preliminary lemmas. The first one
displays some useful properties of the MARE.

Lemma 1. Let the operator

φ(K,X) = (1 − λ)(AXA′ +Q) + λ(FXF ′ + V ) (23)

where F = A + KC, V = Q + KRK ′. Assume X ∈
S = {S ∈ R

n×n|S ≥ 0}, R > 0, Q ≥ 0, and (A,Q
1

2 ) is
controllable. Then the following facts are true:

(a) With KX = −AXC ′ (CXC ′ +R)
−1, gλ(X) =

φ(KX , X)
(b) gλ(X) = minK φ(K,X) ≤ φ(K,X), ∀K
(c) If X ≤ Y , then gλ(X) ≤ gλ(Y )
(d) If λ1 ≤ λ2 then gλ1

(X) ≥ gλ2
(X)

(e) If α ∈ [0, 1], then gλ(αX + (1− α)Y ) ≥ αgλ(X) +
(1 − α)gλ(Y )

(f) gλ(X) ≥ (1 − λ)AXA′ +Q
(g) If X̄ ≥ gλ(X̄), then X̄ > 0
(h) If X is a random variable, then (1 − λ)AE[X]A′ +
Q ≤ E[gλ(X)] ≤ gλ(E[X])

Proof: (a) Define FX = A+KXC, and observe that

FXXC
′ +KXR = (A+KXC)XC ′ +KXR

= AXC ′ +KX(CXC ′ +R) = 0.

Next, we have

gλ(X) = (1 − λ)(AXA′ +Q) + λ[AXA′ +Q−
−AXC ′ (CXC ′ +R)

−1
CXA′]

= (1 − λ)(AXA′ +Q) +

+λ(AXA′ +Q+KXCXA
′)

= (1 − λ)(AXA′ +Q) + λ(FXXA
′ +Q)

= (1 − λ)(AXA′ +Q) + λ(FXXA
′ +Q) +

+λ(FXXC
′ +KXR)K ′

X

= φ(KX , X).

(b) Let ψ(K,X) = (A+KC)X(A+KC)′+KRK ′+Q.
Note that

argminKφ(K,X) = argminKFXF
′+V = argminKψ(X,K).

Since X,R ≥ 0, φ(K,X) is quadratic and convex in
the variable K, the minimizer can be found by solving
∂ψ(K,X)
∂K

= 0, which gives:

2(A + KC)XC
′ + 2KR = 0 =⇒ K = −AXC

′ `

CXC
′ + R

´−1
.

Since the minimizer correspond to KX defined above, the
result follows from fact (a).

(c) Note that φ(K,X) is affine in X . Suppose X ≤ Y .
Then

gλ(X) = φ(KX , X) ≤ φ(KY , X) ≤ φ(KY , Y ) = gλ(Y ).

This completes the proof.
(d) Note that AXC ′(CXC ′ +R)−1CXA ≥ 0. Then

gλ1
(X) = AXA′ +Q− λ1AXC

′(CXC ′ +R)−1CXA

≥ AXA′ +Q− λ2AXC
′(CXC ′ +R)−1CXA

= gλ2
(X)

(e) Let Z = αX + (1 − α)Y where α ∈ [0, 1]. Then we
have

gλ(Z) = φ(KZ , Z)
= α(A+KZ C)X(A+KZ C)′+

+(1 − α)(A+KZ C)Y (A+KZ C)′+
+(α+ 1 − α)(KZ R K ′

Z +Q)
= αφ(KZ , X) + (1 − α)φ(KZ , Y )
≥ αφ(KX , X) + (1 − α)φ(KY , Y )
= αgλ(X) + (1 − α)gλ(Y ).

(24)
(f) Note that FXXF ′

X ≥ 0 and KRK ′ ≥ 0 for all K and
X . Then

gλ1
(X) = φ(KX , X)

= (1 − λ)(AXA′ +Q) +

+λ(FXXF
′
X +KXRK

′
X +Q)

≥ (1 − λ)(AXA′ +Q) + λQ

= (1 − λ)AXA′ +Q.

(g) From fact (f) it follows that X̄ ≥ gλ1
(X̄) ≥ (1 −

λ)AX̄A′+Q. Let X̂ such that X̂ = (1−λ)AX̂A′+Q. Such
X̂ must clearly exist. Therefore X̄ − X̂ ≥ (1 − λ)A(X̄ −
X̂)A′ ≥ 0. Moreover the matrix X̂ solves the Lyapunov
equation X̂ = ÃX̂Ã′ + Q where Ã =

√
1 − λA. Since

(Ã,Q
1

2 ) is detectable, it follows that X̂ > 0 and so X̄ > 0,
which proves the result.

(h) Using fact (f) and linearity of expectation we have

E[gλ(X)] ≥ E[(1− λ)AXA′ +Q] = (1− λ)AE[X]A′ +Q,

. Fact (e) implies that the operator gλ() is concave, therefore
by Jensen’s Inequality we have E[gλ(X)] ≤ gλ(E[X]).

Lemma 2. Let Xt+1 = h(Xt) and Yt+1 = h(Yt). If h(X)
is a monotonically increasing function then:

X1 ≥ X0 ⇒ Xt+1 ≥ Xt, ∀t ≥ 0
X1 ≤ X0 ⇒ Xt+1 ≤ Xt, ∀t ≥ 0
X0 ≤ Y0 ⇒ Xt ≤ Yt, ∀t ≥ 0

Proof: This lemma can be readily proved by induction.
It is true for t = 0, since X1 ≥ X0 by definition. Now assume
that Xt+1 ≥ Xt, then Xt+2 = h(Xt+1) ≥ h(Xt+1) = Xt+1

because of monotonicity of h(·). The proof for the other two
cases is analogous.

It is important to note that while in the scalar case X ∈ R

either h(X) ≤ X or h(X) ≥ X; in the matrix case
X ∈ R

n×n, it is not generally true that either h(X) ≥ X
or h(X) ≤ X . This is the source of the major technical
difficulty for the proof of convergence of sequences in higher
dimensions. In this case convergence of a sequence {Xt}∞0



is obtained by finding two other sequences, {Yt}∞0 , {Zt}∞0
that bound Xt, i.e., Yt ≤ Xt ≤ Zt,∀t, and then by showing
that these two sequences converge to the same point.

The next two Lemmas show that when the MARE has a
solution P̄ , this solution is also stable, i.e., every sequence
based on the difference Riccati equation Pt+1 = gλ(Pt)
converges to P̄ for all initial positive semidefinite conditions
P ≥ 0.

Lemma 3. Define the linear operator

L(Y ) = (1 − λ)(AY A′) + λ(FY F ′)

Suppose there exists Y > 0 such that Y > L(Y ).
(a) For all W ≥ 0,

lim
k→∞

Lk(W ) = 0

(b) Let V ≥ 0 and consider the linear system

Yk+1 = L(Yk) + V initialized at Y0.

Then, the sequence Yk is bounded.

Proof: (a) First observe that 0 ≤ L(Y ) for all 0 ≤ Y .
Also, X ≤ Y implies L(X) ≤ L(Y ). Choose 0 ≤ r < 1
such that L(Y ) < rY . Choose 0 ≤ m such that W ≤ mY .
Then,

0 ≤ Lk(W ) ≤ mLk(Y ) < mrkY

The assertion follows when we take the limit r → ∞, on
noticing that 0 ≤ r < 1.

(b) The solution of the linear iteration is

Yk = Lk(Y0) +

k−1
∑

t=0

Lt(V )

≤
(

mY0
rk +

k−1
∑

t=0

mV r
t

)

Y

≤
(

mY0
rk +

mV

1 − r

)

Y

≤
(

mY0
+

mV

1 − r

)

Y ,

proving the claim.

Lemma 4. Consider the operator φ(K,X) defined in Equa-
tion (23). Suppose there exists a matrix K and a positive
definite matrix P such that

P > 0 and P > φ(K,P ).

Then, for any P0, the sequence Pt = gtλ(P0) is bounded, i.e.
there exists MP0

≥ 0 dependent of P0 such that

Pt ≤M for all t.

Proof: First define the matrices F = A + KC and
consider the linear operator

L(Y ) = (1 − λ)(AY A′) + λ(FY F
′
)

Observe that

P > φ(K,P ) = L(P ) +Q+KRK
′ ≥ L(P ).

Thus, L meets the condition of Lemma 3. Finally, using fact
(b) in Lemma 1 we have

Pt+1 = gλ(Pt) ≤ φ(K,Pt) = L(Pt) + V .

Using Lemma 3, we conclude that the sequence Pt is
bounded.

We are now ready to give proofs for Theorems 1-4.

A. Proof of Theorem 1

(a) We first show that the modified Riccati difference
equation initialized at Q0 = 0 converges. Let Qk = gkλ(0).
Note that 0 = Q0 ≤ Q1. It follows from Lemma 1(c) that

Q1 = gλ(Q0) ≤ gλ(Q1) = Q2.

A simple inductive argument establishes that

0 = Q0 ≤ Q1 ≤ Q2 ≤ · · · ≤MQ0
.

Here, we have used Lemma 4 to bound the trajectory. We
now have a monotone non-decreasing sequence of matrices
bounded above. It is a simple matter to show that the
sequence converges, i.e.

lim
k→∞

Qk = P .

Also, we see that P is a fixed point of the modified Riccati
iteration:

P = gλ(P ),

which establishes that it is a positive semidefinite solution
of the MARE.

Next, we show that the Riccati iteration initialized at R0 ≥
P also converges, and to the same limit P . First define the
matrices

K = −APC ′
(

CPC ′ +R
)−1

, F = A+KC

and consider the linear operator

L̂(Y ) = (1 − λ)(AY A′) + λ(FY F
′
).

Observe that

P = gλ(P ) = L(P ) +Q+KRK
′
> L̂(P ).

Thus, L̂ meets the condition of Lemma 3. Consequently, for
all Y ≥ 0,

lim
k→∞

L̂k(Y ) = 0.

Now suppose R0 ≥ P . Then,

R1 = gλ(R0) ≥ gλ(P ) = P .

A simple inductive argument establishes that

Rk ≥ P for all k.

Observe that

0 ≤ (Rk+1 − P ) = gλ(Rk) − gλ(P )

= φ(KRk
, Rk) − φ(KP , P )

≤ φ(KP , Rk) − φ(KP , P )

= (1 − λ)A(Rk − P )A′ +

+λFP (Rk − P )F ′
P

= L̂(Rk − P ).

Then, 0 ≤ limk→∞(Rk+1 − P ) ≤ 0, proving the claim.
We now establish that the Riccati iteration converges to

P for all initial conditions P0 ≥ 0. Define Q0 = 0 and



R0 = P0 + P . Consider three Riccati iterations, initialized
at Q0, P0, and R0. Note that

Q0 ≤ P0 ≤ R0.

It then follows from Lemma 2 that

Qk ≤ Pk ≤ Rk for all k.

We have already established that the Riccati equations Pk
and Rk converge to P . As a result, we have

P = lim
k→∞

Pk ≤ lim
k→∞

Qk ≤ lim
k→∞

Rk = P ,

proving the claim.
(b) Finally, we establish that the MARE has a unique

positive semidefinite solution. To this end, consider P̂ =
gλ(P̂ ) and the Riccati iteration initialized at P0 = P̂ . This
yields the constant sequence

P̂ , P̂ , · · ·
However, we have shown that every Riccati iteration con-
verges to P . Thus P = P̂ .

B. Proof of Theorem 2
First we note that the two cases expressed by the theorem

are indeed possible. If λ = 1 the modified Riccati difference
equation reduces to the standard Riccati difference equation,
which is known to converge to a fixed point, under the
theorem’s hypotheses. Hence, the covariance matrix is always
bounded in this case, for any initial condition P0 ≥ 0. If
λ = 0 then we reduce to open loop prediction, and if the
matrix A is unstable, then the covariance matrix diverges for
some initial condition P0 ≥ 0. Next, we show the existence
of a single point of transition between the two cases. Fix a
0 < λ1 ≤ 1 such that Eλ1

[Pt] is bounded for any initial
condition P0 ≥ 0. Then, for any λ2 ≥ λ1 Eλ2

[Pt] is also
bounded for all P0 ≥ 0. In fact we have

Eλ1
[Pt+1] = Eλ1

[APtA
′ +Q−

−γt+1APtC
′(CPtC

′ +R)−1CPtA]

= E[APtA
′ +Q−

−λ1APtC
′(CPtC

′ +R)−1CPtA]

= E[gλ1
(Pt)]

≥ E[gλ2
(Pt)]

= Eλ2
[Pt+1],

where we exploited fact (d) of Lemma 1 to write the above
inequality . We can now choose

λc = {inf λ∗ : λ > λ∗ ⇒ Eλ[Pt]is bounded, for all P0 ≥ 0},
completing the proof.

C. Proof of Theorem 3

Define the Lyapunov operator m(X) = ÃXÃ′ +Q where
Ã =

√
1 − λA. If (A,Q

1

2 ) is controllable, also (Ã,Q
1

2 ) is
controllable. Therefore, it is well known that Ŝ = m(Ŝ) has
a unique strictly positive definite solution Ŝ > 0 if and only
if maxi |σi(Ã)| < 1, i.e.

√
1 − λ maxi |σi(A)| < 1, from

which follows λ = 1 − 1
α2 .

Let us consider the difference equation St+1 =
m(St), S0 = 0. It is clear that S0 = 0 ≤ Q = S1. Since
the operator m() is monotonic increasing, by Lemma 2 it

follows that the sequence {St}∞0 is monotonically increasing,
i.e. St+1 ≥ St for all t. If λ < λ this sequence cannot
be bounded, otherwise it would converge to a finite matrix
S̄, and by continuity S̄ = m(S̄), which is not possible.
Therefore

lim
t→∞

St = ∞.

Let us consider now the mean covariance matrix E[Pt]
initialized at E[P0] ≥ 0. Clearly 0 = S0 ≤ E[P0]. Moreover
it is also true

St ≤ E[Pt] =⇒ St+1 = (1 − λ)AStA
′ +Q

≤ (1 − λ)AE[Pt]A
′ +Q

≤ E[gλ(Pt)]
= E[Pt+1],

where we used fact (h) from Lemma 1. By induction, it is
easy to show that

St ≤ E[Pt] ∀t, ∀E[P0] ≥ 0 =⇒ lim
t→∞

E[Pt] ≥ lim
t→∞

St = ∞.

This implies that for any initial condition E[Pt] is unbounded
for any λ < λ, therefore λ ≤ λc, which proves the first part
of the Theorem.

Now consider the sequence Vt+1 = gλ(Vt), V0 = E[P0] ≥
0. Clearly

E[Pt] ≤ Vt =⇒ E[Pt+1] = E[gλ(Pt)]
≤ gλ(E[Pt])
≤ gλ(Vt)
= Vt+1,

where we used facts (c) and (h) from Lemma 1. Then a
simple induction argument shows that Vt ≥ E[Pt] for all t.
Let us consider the case λ > λ, therefore there exists X̂
such that X̂ ≥ gλ(X̂). By Lemma 1(g) X̄ > 0, therefore all
hypotheses of Lemma 3 are satisfied, which implies that

E[Pt] ≤ Vt ≤MV0
∀t.

This shows that λc ≤ λ and concludes the proof of the
Theorem.

D. Proof of Theorem 4
Let us consider the sequences St+1 = (1 − λ)AStA

′ +
Q, S0 = 0 and Vt+1 = gλ(Vt), V0 = E[P0] ≥ 0. Using
the same induction arguments as in Theorem 3 it is easy to
show that

St ≤ E[Pt] ≤ Vt ∀t.
From Theorem 1 follows that limt→∞ Vt = V̄ , where V̄ =
gλ(V̄ ). As shown before the sequence St is monotonically
increasing. Also it is bounded since St ≤ Vt ≤M . Therefore
limt→∞ St = S̄, and by continuity S̄ = (1 − λ)AS̄A′ +Q,
which is a Lyapunov equation. Since

√
1 − λA is stable and

(A,Q
1

2 ) is controllable, then the solution of the Lyapunov
equation is strictly positive definite, i.e. S̄ > 0. Adding all
the results together we get

0 < S̄ = lim
t→∞

St ≤ lim
t→∞

E[Pt] ≤ lim
t→∞

Vt = V̄ ,

which concludes the proof.


