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Abstract— Coordinated navigation by two cooperating
sensor-equipped agents in a partially known static environment
is investigated. Each agent observes a local part of the otherwise
unknown environment and shares the gathered data with the
other agents. In general, dynamic programming techniques
suitably model the navigation problem, but are computationally
hard to solve. We propose a combined dynamic and linear pro-
gramming framework to circumvent the curse of dimensionality
and establish in the process a firm upper bound on the spatial
separation of a two-agent cluster navigating on a structured
arbitrarily large graph.

I. I NTRODUCTION

Groups of multiple cooperating autonomous agents have
attractive advantages over single-agent navigation. In par-
ticular, during mission execution agent clusters are more
robust than a single agent since failure of one agent does
not jeopardize the success of the mission in the former case.
Furthermore, agent groups can navigate in a more energy
efficient way using formation flight [8] and individual threat
exposure can be reduced using a cooperative navigation
scheme, as opposed to flying in a rigid formation. Appli-
cations of multi-agent cluster navigation include coordinated
navigation to a target, coordinated terrain exploration and
search and rescue operations. Commonly, the general en-
vironment structure is known, but local temporal obstacles
or deviations from the environment structure may appear in
random fashion. Therefore, each agent gathers local infor-
mation on the environment which is only known partiallya
priori , and shares this information with the other agents. The
agentscooperate, using each others information to execute
the mission as efficiently as possible.

In this paper, we focus on coordinated navigation towards
a target in a partially known environment (see Figure 1)
structured as an urban area, with a cluster of for example
Unmanned Aerial Vehicles, hereafter referred to as agents.
Street and avenue locations are knowna priori, as opposed
to threat or reward locations, of which ana priori probability
distribution is given. The requirement is that the agents
reach the target while minimizing the total agent threat
exposure or maximizing any type of reward associated with
traversing a particular zone. The agents use onboard sensors
to gather local information which is shared with the other
agents and is used to derive an optimal navigation policy.
Since buildings limit the agent observation zone, the local
information consists of the threat level or the reward in the
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Fig. 1. The mapping of an urban environment into a graph. Grey areas
denote buildings, the dots represent the nodes; at a node, each agentAl

can takes one of three decisions (diagonally up or down, or straight). The
orange area is the local information zone of agentAl at nodenij . Vertical
node arraySj denotes thejth stage. Not all links are shown.

streets straight ahead of each agent (see Figure 1). This type
of information zone is denotedtunnel vision.

In [6], we consider a cylindrically shaped graph. The
spatial invariance in circumferential direction reduces the
computational complexity significantly. There, we prove an
upper bound on the separation of a two-agent cluster under
an optimal policy usingdynamic programming(DP). In this
paper, we extend this work for an arbitrarily large plane
graph with a similar structure. The state space for the latter
environment is arbitrarily large, making it computationally
impossible to solve the associated dynamic program. Using
a combined dynamic andlinear programming(LP) formula-
tion, we show an upper bound on the agent separation, reduc-
ing the state space drastically while maintaining optimality.
This work forms the basis of a framework that promises to
solve larger multi-agent navigation problems optimally.

Many authors consider cooperative multi-agent navigation
problems in different settings. Some focus on experimental
aspects, integrating measurements from different cooperating
agents, using heuristic guidance algorithms [5], [7], [9]. On
the theoretical side [3] formulates the navigation problem as
a partially observable markov decision problem and solves
instances approximately. Furthermore, [4], [10] use a game-
theoretic approach to the problem formulating it in a pursuit-
evasion setting. Our work distinguishes itself by focusing
on finding properties of optimal policies to optimally solve
otherwise intractable multi-agent navigation problems.

The paper is organized as follows. Section II introduces



the notation and states the navigation problem at hand.
Section III formulates this problem as a DP and introduces
an alternative and tractable formulation based on a combined
DP-LP framework. Section IV proves the validity of the
latter approach and presents the main result,i.e. Lemma 1,
an upper bound on the spatial distribution of the agents.
Section V discusses these findings and the paper is concluded
in Section VI.

II. N OTATION AND PROBLEM FORMULATION

A. Notation

We grid the navigation terrain into sectors and represent
a sector by a node. This reduces the navigation problem
to a graph traversal problem. Associated with each node
is an overhead; e.g. if the node represents a particularly
inaccessible region, its overhead is high. Thecostof the link
from a noden1 to a noden2 is the sum of the traversal cost
from the region represented byn1 to the region represented
by n2, and the overhead ofn2. The structured transition graph
G considered (see Fig. 1) has an infinite number ofstages
Sj having an infinite number of nodes each. Each stage is a
vertical node line, the horizontal node lines are referred to
as lanes. The ith node on stageSj is denotednij and the
set of nodes{ni(·)} is denoted theith lane (i integer; choose
an arbitrary lane with index0). Given a two-agent cluster
on the stageSj , we choose the agent on the node with the
lowest index, say onnij , as the first agent and denote itA1.
Then, the other agent located on nodenkj , wherek ≥ i, is
referred to asA2 and theseparations betweenA1 andA2

is defined ass
.= k − i.

At a nodenij , the set of links whose costs are known
via sensory information an agent located onnij gathers, is
denoted itslocal information zone. For the remainder of this
paper, we use the local information zone that consists of the
straight ahead links(see Fig. 1),i.e. the link to ni,j+1 (cost
a, al) and the link fromni,j+1 to ni,j+2 (cost b, bl), where
l is the agent index (l ∈ {1, 2}). Note that thecross links,
i.e. the link to ni−1,j+1 and the link toni+1,j+1, are not
contained in the local information zone.

For a two-agent cluster, observationλ = {a1, b1, a2, b2}
denotes the set of link costs in the local information zones;
Λ denotes the set of all possible observations. At each stage,
every agent makes a decision: go straight ahead or go ahead
using one of the two cross links. The decision setU of
the cluster comprises all combinations of these three options
available to the individual agents.

B. Problem Statement

Let a cluster of two agents be stationed at stageS0

of graph G. Let the link costs be independent identically
distributed random variables. Let the agents have the link cost
information of the local information zones and communicate
the local information between each other instantaneously. Let
the cluster be restricted to always movetowardsa targett

located arbitrarily away from the starting position of the
agents. Then, find the navigation strategy for each agent so
that the expected discounted aggregate cost in reaching the
target is minimized.

III. DP AND LP FORMULATIONS

We now present a DP formulation for the problem. Since
the state space has infinite size, solving the DP numerically is
impossible. Hence, we present an alternative approach using
a combined DP-LP framework in Section III-B, shown to
hold under technical conditions in Section IV.

A. DP Formulation

Optimal navigation by a two-agent cluster onG can be
cast as a discounted cost, infinite-state, infinite horizon DP
problem as follows (see [1] for an in-depth treatment of DP
formulations). Letχ

.= (s, λ) denote the state of the cluster
at a certain stage. Let decisionu = (u1, u2), u ∈ U ; let
ul = −1, 0, 1 denote the cases where agentAl chooses the
cross link diagonally upwards, the link straight ahead and the
cross link diagonally downwards, respectively. Givenχ and
u, the cluster moves into a new statef(χ,u), wheref(·, ·)
is the state transition function. The incurred cost, denoted
g(χ,u), is the aggregate cost of the links traversed by the
agents to advance to the next stage. Policyµ is a mapping
µ : S → U whereS is the set of all possible statesχ. Then
the discounted cost to move infinitely towardst, starting from
stageS0 and stateχ0, using policyµ is given as

Jµ(χ0) = lim
N→∞

E

[
N∑

i=0

εig(χi, µ(χi))

]
,

where, for the remainder of this paper, the expectationE[·]
is taken over all unknown link costs andε is the discount
factor, 0 ≤ ε < 1. The cost functionJµ satisfies

Jµ(χ) = E [g(χ, µ(χ)) + εJµ(f(χ, µ(χ)))] .

The corresponding Bellman equation is

J∗(χ) = min
u∈U

E [g(χ,u) + εJ∗(f(χ,u))] , (1)

whereJ∗ is the optimal value function.

B. Combined LP-DP Formulation

First we describe a combined LP-DP approach for the
general two-agent navigation problem onG (see [2] for
an in-depth treatment of LP formulations). In particular,
we compute a value function using a simplified DP for
separationss ≤ σ and using a sequence of LPs for alls > σ,
whereσ needs to be determined. Then, we describe the LP
sequence fors > σ for a specific parameter set and finally
we give a standard form representation.



1) General Problem:Let the decision setUs(s) comprise
all combinations of the three options available to each agent
that lead tos′ ≤ s, where(·)′ denotes a shorthand notation
for the next stage value of(·). Let Js denotes the value
function for the problem where the agent separation is
artificially bounded bys. Then,Js(χ) is the solution of the
following Bellman equation:

Js(χ) = min
u∈Us(s)

E
[
g(χ,u) + εJs(f(χ,u))

]
, (2)

where Js(χ) is defined fors ≤ s and for λ ∈ Λ. The
corresponding optimal policyµs̄(χ) is then computed as:

µs̄(χ) = arg min
u∈U s̄(s)

E
[
g(χ,u) + εJ s̄(f(χ,u))

]
.

Let us assume there exists a separationσ̄ for which the
following property holds:

J σ̄(χ) = J σ̄+2(χ) for all χ = (s, λ), (3)

wheres ≤ σ̄.

In particular, underµσ̄+2(χ) and fors ≤ σ̄, the separation at
the next stages′ ≤ σ. This indicates but doesn’t show thatσ
is an upper bound of the agent separation under an optimal
policy. Let σ denote the smallest̄σ satisfying (3).

Next, we obtain an expression using LP for the value
function for s ≥ σ̄ + 1. In [1], an LP approach for solving
a DP is described:J∗ is the ’largest’J that satisfies the
following set of linear constraints:

J(χ) ≤ E[g(χ,u) + εJ(f(χ,u))],
for all χ ∈ S, andu ∈ U.

In particular,J∗ solves the LP of maximizing
∑

χ∈S J(χ)
subject to the above set of constraints. Letxs

λ denote the
LP variablesJ(χ), and letxs denote the vector ofxs

λ, for
all λ ∈ Λ. Let the decision setU comprise all decision
combinations whereby the agent separation strictly decreases
and the decision combination whereby the agents take the
straight ahead links, with costa1 anda2. Then, we consider
the following (smaller) set of LP constraints, fors ≥ σ + 1:

xs
λ ≤ E[g((s, λ),u) + εxs′

λ′ ],
for all χ ∈ S, andu ∈ U.

The resulting value function is valid under the premise that
the separation strictly decreases or both agents take the
straight ahead link, fors ≥ σ. Note that in all constraints
s′ ≤ s, which allows to decompose the LP into a sequence
of finite dimensional LPs. In particular, givenxs, for s ≤ α,
thenxα+1 is the solution of:

maximize
∑

λ

xα+1
λ (4)

subject to xα+1
λ ≤ E[g((α + 1, λ),u) + εxs′

λ′ ],
for all u ∈ U andλ ∈ Λ.

Given xs for s ≤ σ as solution of (2) withs̄ = σ, the
initializing LP for α = σ can be solved. Note thatxα−1

and xα only enter in the right hand side of the inequality
constraints of the LP solving forxα+1, assuring that the LP
sequence leads to the same solution as the LP solving forxs

for all s at once.

2) LP-formulation for particular parameter values:For
the remainder of this document, we assume thatε = 0.9 and
that the link costs are independently distributed over the set
of possible link costsL .= {0, 1}. Let p be the probability of
a 0 link cost. Since|L| = 2, there are 16 possibleλ’s, λi, i =
1, . . . , 16. Let ui(s) ∈ U be the LP-optimal decision for the
two-agent cluster at separations and withλ = λi. Numerical
solutions of the LP-sequence (4) forp = 0.5 indicate that
σ = 3 and that for alls ≥ 4, and for alli, decisionui(s) is
independent ofs. In Fig. 2ui is depicted for alli, indirectly
describing the optimal corner point, or optimalbasic feasible
solution (bfs) of each LP (4). Sincep can vary continuously
between0 and1, there existp andp, where0 ≤ p ≤ 0.5 ≤
p ≤ 1, so that forp ∈ [p, p] the bfs described in Fig. 2 is
optimal. Consequently, for eachs ≥ 4 and forp ∈ [p, p], the
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Fig. 2. Indirect description of the optimal bfs for each LP, suggested by
numerical simulation. The first column of each table half denotes indexi,
the second and third column depicts the information zone ofA1 and A2

respectively, whereby the gray dot denotes the agent position, and the fourth
and the fifth column denote the optimal agent decision suggested by the LP.

following set of 16 equations in 16 unknowns holds:

xs
λi

= E[g((s, λi),ui) + εxs′

λ′ ], for all i. (5)

From Fig. 2, it can be seen that for eachs ≥ 4, the set
of unknowns {xs

λi
} can be reduced to a smaller set of

independent unknowns,i.e. the set{xs
λ}, for λ ∈ Λr =

{λ1, λ2, λ3, λ6, λ7, λ11} since:

xs
λ2

= xs
λ5

,

xs
λ3

= xs
λ4

= xs
λ9

= xs
λ13

,

xs
λ7

= xs
λ8

= xs
λ10

= xs
λ14

,

xs
λ11

= xs
λ12

= xs
λ15

= xs
λ16

.

For example,xs
λ2

= xs
λ5

for symmetry reasons, whilexs
λ3

=
xs

λ4
since the locally incurred costg and the state at the next

stageχ′ are equal. Letl = p be the expected value of any
unknown link cost. Letxs

r denote the vector containingxs
λ



for λ ∈ Λr, ordered with increasing indexi. Then, (5) can
be written in the following matrix expression fors ≥ 4:

xs
r = C1xs−1

r + C2xs−2
r + D, (6)

where

C1 =


p4c 2p3rc 2p2rc p2r2c 2pr2c r2c
p4ε2 2p3rε2 2p2rε2 p2r2ε2 2pr2ε2 r2ε2

p3ε 2p2rε prε pr2ε r2ε 0
0 0 0 0 0 0
0 0 p2ε 0 prε pε
0 0 0 0 0 0



C2 =


p4d 2p3rd 2p2rd p2r2d 2pr2d r2d
0 0 0 0 0 0
0 0 0 0 0 0

p4ε2 2p3rε2 2p2rε2 p2r2ε2 2pr2ε2 r2ε2

0 0 0 0 0 0
p4ε 2p3rε 2p2rε p2r2ε 2pr2ε r2ε



D =



2ε2 l̄r
1−εp2

εl̄
l̄

2εl̄
l̄
2l̄

 ,

wherer = 1− p, c = 2ε3pr
1−εp2 andd = ε3r2

1−εp2 . Note thatC1,
C2, D ≥ 0, for all 0 ≤ ε < 1 and for all 0 ≤ p ≤ 1 and
hence for allp ≤ p ≤ p.

3) Standard form:We present the reduction of each LP (4)
to an equivalent LP in standard form, for the suggested
parameter values. Let̂xs denote the expected value of the
value function at separations, given no link cost information:

x̂s =
∑

λ∈Λr

P (λ)xs
λ, (7)

whereP (λ) denotes the sum of the occurrence probabilities
of λ and its symmetric instances inΛ. Similarly, x̂s

d denotes
the expected value of the value function at separations, given
a1 = d (d ∈ L):

x̂s
d =

∑
λ∈Λd

r

Pd(λ)xs
λ, (8)

where Λd
R denotes a subset ofΛr containing theλ’s with

a1 = d and wherePd(λ) denotes the sum of the occurrence
probabilities ofλd and its symmetries inΛd, subset ofΛ
containing theλ’s with a1 = d. Note that for symmetry
reasons, we need not distinguish between the cases where
respectivelya1 and a2 are known. Then, for alls ≥ 4,
and introducing slack variablesys ≥ 0, we transform the
inequality constraints into equality constraints leading to the
following standard form formulation:

maximize eT xs
r (9)

subject to A
(

xs
r

ys

)
= bs

xs
r,y

s ≥ 0,

where e =
(

1 1 · · · 1
)T

, A =
(

A′ I
)
, with I

the identity matrix of appropriate size andA′ only function
of parametersε and p, and where the elements ofbs are
affine functions ofx̂s−2, x̂s−1

0 , and x̂s−1
1 . Remark that only

bs depends on value functions at lower separations. Note
that the constraintxs

r ≥ 0 is redundant, but necessary for the
standard form formulation.

IV. M AIN RESULTS

Our main result,i.e. Lemma 1, shows that after con-
verging towards each other, the maximum agent separation
of a two-agent cluster navigating onG under an optimal
policy is bounded above by three. This is established in the
following lemma, using the combined LP-DP formulation
of Section III-B. In particular, letµ∗ denote the optimal
navigation policy for the two-agent cluster:

µ∗(χ) = arg min
u∈U

E[g(χ,u) + εJ∗(f(χ,u))].

Let {sk}, k = 0, . . . denote the agent separation at stageSk,
underµ∗. Note thats0 is the initial agent separation. LetSd,
d ≥ 0, be the first stage wheresk ≤ 3. Then:

Lemma 1:Given ε = 0.9, and p = 0.5 (uniformly
distributed link costs overL). Then, fork < d, the separation
sequence{sk} is such thatsk ≥ sk+1, where equality can
only hold foru = (0, 0) at Sk. Fork ≥ d, on the other hand,
the separation sequence{sk} satisfies:maxk{sk} ≤ 3.

Proof: Let J(χ) denote the following value function:
J(χ) = J3(χ), for s ≤ 3, andJ(χ) = xs

λ for s ≥ 4. Let µ
denote the policy corresponding toJ :

µ(χ) = arg min
u∈U

E[g(χ,u) + εJ(f(χ,u))].

Shortly, we establish thatJ(χ) satisfies the Bellman equa-
tion (1), implying J(χ) = J∗(χ) and policyµ(χ) = µ∗(χ).
It then follows (see Sec. III-B) thatµ∗(χ) corresponds to the
following policy: for s ≤ 3, µ∗(χ) = µ3(χ), and fors ≥ 4,
µ∗(χ) is the policy as described in Fig. 2. It can be seen that
policy µ∗(χ) leads to a separation trajectory{sk} that is such
that for sk ≤ 3 implies sk+1 ≤ 3. Furthermore,sk ≥ sk+1,
for sk ≥ 4, where equality can only hold foru = (0, 0) at
Sk. Thus, policyµ∗(χ) has the properties called for in the
lemma statement. It remains to be shown thatJ(χ) satisfies
the Bellman equation.

For this purpose, three properties ofJ(χ) need to be
established. First,J(χ), for s ≤ 3, satisfies the Bellman
equation. Second, it needs to be established that fors ≥ 4,
no information zone exists where a decision inU \ U is
preferable to a decision inU . Third, it needs to be established
that the bfs described in Fig. 2 is the optimal bfs for all LPs
corresponding to separationss ≥ 4. These three properties
are established as follows.

For ε = 0.9 and p = 0.5, the first property can easily
be verified numerically. Lemma A.1 establishes the second
property by demonstrating that for each decisionub ∈ U \U
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Fig. 3. The three instances where a decisionub ∈ U \ U (bold arrows)
is shown to be worse than a decisionud ∈ U (dashed arrows). The other
two decisionsub ∈ U \ U are symmetric cases.

(see Fig. 3,bold arrows), there is a preferable decisionud ∈
U (see Fig. 3,dashed arrows). For example, in the case in
Fig. 3 (i), ud is preferable toub if:

a1 + l̄ + εx̂s−1
b1

< a1 + l̄ + εx̂s+1
b1

,

wheres is the separation at the current stage. Lemma. A.1
implies that this condition is satisfied for alla1 and b1.
A similar reasoning holds for the cases is Fig. 3 (ii) and
Fig. 3 (iii).

The third property is established as follows. A sensitivity
analysis shows that for allbs, s ≥ 4, the same bfs is optimal.
Let Bs denote the optimal basis for the LP (9) corresponding
to separations. Note that(

xs
r

ys

)
= (Bs)−1bs.

Taking the limit fors →∞ of (6), we obtainx∞:

x∞r = (I− (C1 + C2))−1D.

Using (7) and (8), we can computêx∞, and x̂∞d , for all
d ∈ L. Further, vectorbs, for s ≥ 4, can be expanded as
follows:

bs = b0 + x̂s−1
0 b1 + x̂s−1

1 b2 + x̂s−2b3,

wherebv, v = 0, 1, 2, 3 are constant vectors. Letδs
(·) = x̂∞(·)−

x̂s
(·). From Lemma A.1 we know that the sequences{x̂2k

(·)}
and{x̂2k+1

(·) }, for k ≥ 2, converge monotonically increasing
to x̂∞(·). Therefore the following set containsb2k, k ≥ 3:

Γe = {b|b = b6 + θ1δ
5
0b1 + θ2δ

5
1b2 + θ3δ

4b3,

0 ≤ θ1, θ2, θ3 ≤ 1},

and similarly,Γo containsb2k+1, k ≥ 3:

Γo = {b|b = b7 + θ1δ
6
0b1 + θ2δ

6
1b2 + θ3δ

5b3,

0 ≤ θ1, θ2, θ3 ≤ 1}.

We can check numerically that the bfs is optimal for sep-
arationss ≤ 7. Optimality conditions (i.e. dual feasibility
conditions) are not affected by a change inbs. We therefore
only need to examine the primal feasibility conditions

(B6)−1(b2k) ≥ 0, and (10)

(B7)−1(b2k+1) ≥ 0, for k ≥ 3. (11)
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s ≥ 6. Then show that for allbs in the set of regions primal feasibility
conditions hold.
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Fig. 5. Simulation example. The black squares represent the agents:A1

moves to the north ofA2. The target is located arbitrarily far eastward. The
dashed line represents the grid, the squares denote the information zones.
Red (white) squares represent a link cost of one (zero).

Since allb2k ∈ Γe and allb2k+1 ∈ Γo, it suffices to check
(10) for all b ∈ Γe and (11) for all b ∈ Γo. This can
be verified numerically to hold by checking the conditions
for the eight corner points of each setΓ. Fig. 4 illustrates
the principle conceptually for a fictitious 2D example. This
concludes the proof.

V. D ISCUSSION

In practice, the agents only have limited local information.
The local information communicated by an agent is of
any navigational use to another agent only if it can reach
that zone. Indeed, Lemma 1 shows that the members of a
two-agent cluster, navigating optimally, remain within close
distance after reaching ’steady state’ (i.e. after converging).
It quantifies the intuition that only when the agents stay close
together can an agent exploit local information observed by
the other (see Fig. 5 for an example). Note that due to the
initial large separation the agents converge first after which
steady state cooperative behavior is reached. In addition,
Lemma 1 provides specifications on the communication
infrastructure which the members of a two-agent cluster
need. In particular, the upper-bound on maximum agent
separation in steady state is directly related to the maximum
communication power needed.



From a technical point of view, the method presented
in Sections III-B and IV provides a tractable solution to
an infinite state space problem. In particular, the two-agent
navigation on an infinite sized graphG can be modelled
suitably using DP. However, computing the optimal value
function using traditional numerical algorithms is impossible.
The maximum separation property,i.e. Lemma 1, implies
that it suffices to compute the optimal value function for
only finitely many separations, thereby avoiding the curse of
dimensionality. In particular, given an initial configuration
Cq at stageS0, we merely needJ∗ for separationss ≤ q.
For s ≤ 3, J∗ can be computed exactly solving a simple
DP problem (see (2) with̄s = 3); (6) yields J∗ for 4 ≤
s ≤ q recursively. Intuitively, increasing the number of
agents leads to more efficient task execution; on the other
hand, the computational complexity increases significantly.
It seems that forn agents to navigate efficiently, agent
subgroups need to remain within close distance as inferred
from Lemma 1. Therefore, similar approaches forn-agent
clusters can significantly reduce the computational complex-
ity and provide extensions to the spatial distribution results
obtained in this paper. The presented approach is the basic
framework to solve a wide range of multi-agent navigation
problems. Extensions involving more agents with different
information zones, time-varying irregular environments, and
asyncronously movement come to mind.

VI. CONCLUSION AND FUTURE DIRECTIONS

The problem of coordinated navigation by two cooperating
sensor-equipped agents in a partially known static environ-
ment is investigated. For a specific local information zone,
and under technical conditions, we establish in Lemma 1
that the spatial distribution of a two-agent cluster optimally
navigating on an arbitrarily large structured graph is upper-
bounded. The presented combined DP-LP approach is the
basic framework for the computation of optimal strategies
and spatial distribution results in more general cases of the
local information zone and forn-agent clusters (n ≥ 3).
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VIII. A PPENDIX

Lemma A.1:We have

xs
r ≤ xs+2

r ∀s ≥ 2 (A.1)

x̂s ≤ x̂s+2 ∀s ≥ 2 (A.2)

x̂s
d ≤ x̂s+2

d ∀d ∈ L, ∀s ≥ 2, (A.3)

where the variables are as defined in Section III.

Proof: We give a proof by induction. Letxs
r = J3(χ),

for 0 ≤ s ≤ 3. The initialization step,i.e. xs
r ≤ xs+2

r for
s = 2 and 3, can easily be checked numerically to hold.
The induction goes as follows. Givenxl−2

r ≤ xl
r, for l ≤ k.

From (6), we have

xk−1
r = C1xk−2

r + C2xk−3
r + D, and (A.4)

xk+1
r = C1xk

r + C2xk−1
r + D. (A.5)

Subtracting Eqs. (A.5) and (A.4), gives

xk+1
r − xk−1

r = C1(xk
r − xk−2

r ) +
C2(xk−1

r − xk−3
r ).

From the induction hypothesis we have

xk
r − xk−2

r ≥ 0, and

xk−1
r − xk−3

r ≥ 0,

and thus, sinceC1 ≥ 0 andC2 ≥ 0, we have that

xk−1
r ≤ xk+1

r .

The inequalities (A.2) and (A.3) follow from (A.1). Hence
the proof.
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