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Abstract— Coordinated navigation by two cooperating
sensor-equipped agents in a partially known static environment
is investigated. Each agent observes a local part of the otherwise
unknown environment and shares the gathered data with the
other agents. In general, dynamic programming techniques
suitably model the navigation problem, but are computationally i e
hard to solve. We propose a combined dynamic and linear pro-
gramming framework to circumvent the curse of dimensionality

and establish in the process a firm upper bound on the spatial i+1 .
separation of a two-agent cluster navigating on a structured S. S S.
arbitrarily large graph. j j*+1 i+2

[. INTRODUCTION Fig. 1. The mapping of an urban environment into a graph. Grey areas

Groups of multiple cooperating autonomous agents ha\ygnote buildings, the dots represent the nodes; at a node, eachgent
can takes one of three decisions (diagonally up or down, or straight). The

?ttraCtive a:dvant?-g?s over siqgle-agent navigation. In pajrange area is the local information zone of agdptat noden; ;. Vertical
thUlar, durlng mission execution agent clusters are morde arrays; denotes theth stage. Not all links are shown.

robust than a single agent since failure of one agent does
not jeopardize the success of the mission in the former case.
Furthermore, agent groups can navigate in a more energireets straight ahead of each agent (see Figure 1). This type
efficient way using formation flight [8] and individual threat of information zone is denotetinnel vision
exposure can be reduced using a cooperative navigationin [6], we consider a cylindrically shaped graph. The
scheme, as opposed to flying in a rigid formation. Applispatial invariance in circumferential direction reduces the
cations of multi-agent cluster navigation include coordinatedomputational complexity significantly. There, we prove an
navigation to a target, coordinated terrain exploration andpper bound on the separation of a two-agent cluster under
search and rescue operations. Commonly, the general @m optimal policy usinglynamic programmingDP). In this
vironment structure is known, but local temporal obstaclegaper, we extend this work for an arbitrarily large plane
or deviations from the environment structure may appear igraph with a similar structure. The state space for the latter
random fashion. Therefore, each agent gathers local infagnvironment is arbitrarily large, making it computationally
mation on the environment which is only known partiadly impossible to solve the associated dynamic program. Using
priori, and shares this information with the other agents. Tha combined dynamic anlchear programming(LP) formula-
agentscooperate using each others information to executdion, we show an upper bound on the agent separation, reduc-
the mission as efficiently as possible. ing the state space drastically while maintaining optimality.
In this paper, we focus on coordinated navigation towardhis work forms the basis of a framework that promises to
a target in a partially known environment (see Figure 13olve larger multi-agent navigation problems optimally.
structured as an urban area, with a cluster of for example Many authors consider cooperative multi-agent navigation
Unmanned Aerial Vehicles, hereafter referred to as agenizoblems in different settings. Some focus on experimental
Street and avenue locations are knosvpriori, as opposed aspects, integrating measurements from different cooperating
to threat or reward locations, of which arpriori probability —agents, using heuristic guidance algorithms [5], [7], [9]. On
distribution is given. The requirement is that the agentthe theoretical side [3] formulates the navigation problem as
reach the target while minimizing the total agent thread partially observable markov decision problem and solves
exposure or maximizing any type of reward associated witinstances approximately. Furthermore, [4], [10] use a game-
traversing a particular zone. The agents use onboard sensthsoretic approach to the problem formulating it in a pursuit-
to gather local information which is shared with the otheevasion setting. Our work distinguishes itself by focusing
agents and is used to derive an optimal navigation policgn finding properties of optimal policies to optimally solve
Since buildings limit the agent observation zone, the localtherwise intractable multi-agent navigation problems.
information consists of the threat level or the reward in the The paper is organized as follows. Section Il introduces



the notation and states the navigation problem at hanlibcated arbitrarily away from the starting position of the
Section IIl formulates this problem as a DP and introduceagents. Then, find the navigation strategy for each agent so
an alternative and tractable formulation based on a combinéuhat the expected discounted aggregate cost in reaching the
DP-LP framework. Section IV proves the validity of thetarget is minimized.

latter approach and presents the main resgtLemma 1,

an upper bound on the spatial distribution of the agents. I1l. DP AND LP FORMULATIONS

Section V discusses these findings and the paper is conclude

. : %e now present a DP formulation for the problem. Since
in Section VI.

the state space has infinite size, solving the DP numerically is
I1. NOTATION AND PROBLEM EORMULATION impossible. Hence, we present an alternative approach using
A. Notation a combined DP-LP framework in Section IlI-B, shown to

hold under technical conditions in Section IV.
We grid the navigation terrain into sectors and represent
a sector by a node. This reduces the navigation probleA DP Formulation
Fo a graph traversal. problem. Associated with eaph node Optimal navigation by a two-agent cluster ghcan be
is an overhead e.g. if the node represents a particularly.

: ; S S . cast as a discounted cost, infinite-state, infinite horizon DP
inaccessible region, its over'head is high. Tlstof the link problem as follows (see [1] for an in-depth treatment of DP
from a nOder_“ to a noden; is the sum of the traversal cost formulations). Lety = (s, A) denote the state of the cluster
from the region represented by to the region re_p_resented at a certain stage. Let decisian — (u1,us), u € U; let

by ns, and the overhead of;. The structured transition graph

) ) L u; = —1,0,1 denote the cases where agehtchooses the
g conslldered.(s.e(_—:‘ Fig. 1) has an infinite numbesiges ._cross link diagonally upwards, the link straight ahead and the
S; having an infinite number of nodes each. Each stage is

. . . ) cPoss link diagonall downwards, respectively. Giverand
vertical node line, the horizontal node lines are referred to g y P y. Sve

. , the cluster moves into a new st ,u), wheref(-,-
aslanes The ith node on stage; is denotedn;; and the hy e, w) /()

t of nod is denoted theth | it -~ ch is the state transition function. The incurred cost, denoted
setot no eqni) } IS denoted theth fane ¢ integer; choose g(x,u), is the aggregate cost of the links traversed by the
an arbitrary lane with index). Given a two-agent cluster

. agents to advance to the next stage. Policis a mappin
on the stages;, we choose the agent on the node with theg g licks bping

. ) ! i : & — U whereS is the set of all possible statgs Then
lowest index, say om;, as the first agent and de”"t‘?“'?- the discounted cost to move infinitely towargstarting from
Then, the other agent located on nadg, wherek > i, is

referred to asd, and theseparations betweenA; and A, stageSy and statex,, using policyy. is given as
is defined ass = k — i. N

At a noden;, the set of links whose costs are known Ju(xo) = lim E ZElQ(XhM(Xi))] ,
via sensory information an agent located w5 gathers, is i=0
denoted itdocal information zoneFor the remainder of this
paper, we use the local information zone that consists of t
straight ahead linkgsee Fig. 1),.e. the link ton; ;41 (cost
a, a;) and the link fromn; ;1 t0 n; ;1o (COstd, b;), where

where, for the remainder of this paper, the expectafig
'€ taken over all unknown link costs andis the discount
factor,0 < ¢ < 1. The cost function/,, satisfies

.l is the agent indexi(e {1,2}). N'ote that thecross links Ju(x) = E g0 1(x)) + eJu (£ 10)))] -
i.e. the link to n;_; ;41 and the link ton;, 41, are not
contained in the local information zone. The corresponding Bellman equation is
For a two-agent cluster, observation= {a,b1,az, b2}
denotes the set of link costs in the local information zones; /" (x) = min E{g(x,u) +eJ"(f(x, )], 1)

A denotes the set of all possible observations. At each stage,

every agent makes a decision: go straight ahead or go aha¥gere J* is the optimal value function.

using one of the two cross links. The decision §gtof . .

the cluster comprises all combinations of these three optiofls C0mMbined LP-DP Formulation

available to the individual agents. First we describe a combined LP-DP approach for the

general two-agent navigation problem @h (see [2] for

an in-depth treatment of LP formulations). In particular,
Let a cluster of two agents be stationed at st#je e compute a value function using a simplified DP for

of graph G. Let the link costs be independent identicallyseparations < ¢ and using a sequence of LPs for att o,

distributed random variables. Let the agents have the link coghere s needs to be determined. Then, we describe the LP
information of the local information zones and Communicatgequence fow > o for a Specific parameter set and f|na||y

the local information between each other instantaneously. L@fe give a standard form representation.
the cluster be restricted to always mowevardsa targett

B. Problem Statement



1) General ProblemLet the decision set/*(s) comprise

Given x® for s < ¢ as solution of (2) withs = o, the

all combinations of the three options available to each ageimtitializing LP for « = ¢ can be solved. Note that®~!
that lead tos’ < 35, where(-)’ denotes a shorthand notationand x* only enter in the right hand side of the inequality

for the next stage value of). Let J° denotes the value
function for the problem where the agent separation
artificially bounded bys. Then, J*(x) is the solution of the
following Bellman equation:

S ()= min B [a(x, w) + e (f(x, w)]

@)

where J*() is defined fors < 5 and for A € A. The
corresponding optimal policy®(x) is then computed as:

min E [g(x,u) + 5J§(f(x,1l))] .

5 = ar
1 (x) g uin

Let us assume there exists a separatiorior which the
following property holds:

Jo(x) = J7T2(x) for all x = (s, \),
wheres < 7.

®)

In particular, undep® 2 () and fors < &, the separation at

constraints of the LP solving fat®*!, assuring that the LP
isequence leads to the same solution as the LP solving*for
for all s at once.

2) LP-formulation for particular parameter values-or
the remainder of this document, we assume that0.9 and

that the link costs are independently distributed over the set

of possible link coste = {0,1}. Let p be the probability of
a0 link cost. SincgL| = 2, there are 16 possiblEs, \;, i =
1,...,16. Letu;(s) € U be the LP-optimal decision for the
two-agent cluster at separatisrand withA = \;. Numerical
solutions of the LP-sequence (4) fpr= 0.5 indicate that
o = 3 and that for alls > 4, and for alli, decisionu,(s) is
independent of. In Fig. 2u; is depicted for all, indirectly
describing the optimal corner point, or optintesic feasible
solution (bfs) of each LP (4). Sincg can vary continuously
between0 and 1, there existp andp, where0 < p < 0.5 <

p < 1, so that forp € [p,p] the bfs described in Fig. 2 is

the next stage’ < o. This indicates but doesn't show that ©Ptimal. Consequently, for each> 4 and forp € [p, 7], the
is an upper bound of the agent separation under an optimal

policy. Let o denote the smallest satisfying (3). N
Next, we obtain an expression using LP for the value | osos oo fiol ot | onrn | —
function for s > & + 1. In [1], an LP approach for solving 3] X x| > [ 7 |1t xheix [ b [ |~
a DP is describedJ* is the ’largest’ J that satisfies the B ot B B P IROmsomon Koo Bl et
following set of linear constraints: 6 > [T [ —> [ [1a] e [ XD [~ [ —
7] <O [t | — | 7 [15]] e [t [~ [ 7
J(x) < Elg(x,u) +eJ(f(x,u))], B X [ | — [ 7 18] i [ [ | 7

forall x €S, andu e U. Fig. 2. Indirect description of the optimal bfs for each LP, suggested by

numerical simulation. The first column of each table half denotes iddex
the second and third column depicts the information zonelpfand A»
respectively, whereby the gray dot denotes the agent position, and the fourth
and the fifth column denote the optimal agent decision suggested by the LP.

In particular, J* solves the LP of maximizing _, . s J(x)

subject to the above set of constraints. kgt denote the
LP variablesJ(x), and letx® denote the vector of3, for
all A < A Let the decision sel/ comprise a!l decision following set of 16 equations in 16 unknowns holds:
combinations whereby the agent separation strictly decreases
and the decision combination whereby the agents take the
straight ahead links, with cost; anda,. Then, we consider
the following (smaller) set of LP constraints, fer> o + 1:

z5. = Elg((s,\), ;) + ex$], for all i. (5)

From Fig. 2, it can be seen that for eagh> 4, the set
of unknowns {z3 } can be reduced to a smaller set of
independent unknowns,e. the set{z3}, for A € A, =
{)\1,)\2, )\3,)\&)\7,)\11} since:

25 < Elg((s,\),u) + ex],
forall y € S, andu € U.

The resulting value function is valid under the premise that 3, = a3,

the separation strictly decreases or both agents take the A
straight ahead link, fos > o. Note that in all constraints xjﬁ - 124 - mjg - IAsw’
s’ < s, which allows to decompose the LP into a sequence Trr = Txg TTxo = Tapw
of finite dimensional LPs. In particular, givetf, for s < a, Y, = IX, =T, =T,

thenx®t! is the solution of:

. at1
maximize ) a5 ) For examplews, = o3, for symmetry reasons, while;, —
A x5 since the locally incurred cogtand the state at the next
bi a+1 A s A4 =
subjectto  z{" < Elg((a+ 1,A),u) + ez}, stagey’ are equal. Lef = p be the expected value of any

forallue U and X € A. unknown link cost. Letx; denote the vector containingg



for A € A,, ordered with increasing index Then, (5) can wheree = (1 1 --- 1 )T, A= (A TI) withI
be written in the following matrix expression fer> 4: the identity matrix of appropriate size agd only function
of parameters and p, and where the elements &° are

s _ s—1 s—2
X, = Cx " 4+ Cox "+ D, ©)  affine functions ofi*~2, -1, and#:~!. Remark that only
where b® depends on value functions at lower separations. Note
pic  2Pre  2pPre  pPrlc  2pric  ric that the constraink; > 0 is redundant, but necessary for the
p*e?  2pPre?  2p%re?  p?re? 2prie?  r2e? standard form formulation.
3 2 2 2
_ pe  2p°re pre pree ree 0
C, = 0 0 0 0 0 0 IV. MAIN RESULTS
0 0 ple 0 pre pe Our main result,i.e. Lemma 1, shows that after con-
0 0 0 0 0 0 verging towards each other, the maximum agent separation
p*d  2%rd  2p%rd  p?rid  2prid  rid of a two-agent cluster navigating of under an optimal
0 0 0 0 0 0 policy is bounded above by three. This is established in the
C, = 4052 ) 3()T€2 ) %62 2:’252 ) 7?252 r2052 following lemma, using the combined LP-DP formulation
pO pO pO p 0 po 0 of Section IlI-B. In particular, lety* denote the optimal
P uPre  Pre  pPre  2prle 1’ navigation policy for the two-agent cluster:
— 1" (x) = argmin E[g(x, ) +eJ*(f (x, ).
1 eZp uclU
&
_ I Let{sx}, k= 0,... denote the agent separation at st&age
2el ’ underp*. Note thatsg is the initial agent separation. L&Y,
L d > 0, be the first stage wherg, < 3. Then:
2l
Lemma 1:Given ¢ = 0.9, and p = 0.5 (uniformly

wherer =1 —p, c = 2% andd = 15;3;;2- Note thatCy, distributed link costs ovef). Then, fork < d, the separation
Cy, D >0, forall0 <e<1landforall0<p<1and sequences;} is such thats; > s;.1, where equality can
hence for allp < p <p. only hold foru = (0, 0) at Si. Fork > d, on the other hand,

. i ) satisfies: <3
3) Standard form:We present the reduction of each LP (4)the separation sequene, } satisfiesmax; {si} < 3

to an equivalent LP in standard form, for the suggested Proog: Let J(x) denote the following value function:
parameter values. Let* denote the expected value of the/(x) = J°(x), for s <3, and J(x) = =3 for s > 4. Let
value function at separation given no link cost information: denote the policy corresponding o

=Y PV @) p(x) = argmin Elg(x, u) +eJ (f(x, w))].

A
ACA Shortly, we establish thaf(y) satisfies the Bellman equa-

where P()\) denotes the sum of the occurrence probabilitieion (1), implying J(x) = J*(x) and policyu(x) = p*(x).

of A and its symmetric instances i Similarly, ;; denotes It then follows (see Sec. Ill-B) that*() corresponds to the

the expected value of the value function at separatigiven  following policy: for s < 3, u*(x) = u3(x), and fors > 4,

ar =d (d € L): w*(x) is the policy as described in Fig. 2. It can be seen that
s s policy u*(x) leads to a separation trajectafy; } that is such
Lq = Z Pa(A)z3, ®) that for s, )g 3 implies s;4+1 < 3. Further%ori,sk > Sk+1,

v for s > 4, where equality can only hold fon = (0,0) at

where A% denotes a subset af, containing the\'s with  Si. Thus, policyu*(x) has the properties called for in the

ay = d and whereP,()\) denotes the sum of the occurrencdemma statement. It remains to be shown thay) satisfies

probabilities of \; and its symmetries im¢, subset ofA  the Bellman equation.

containing the\'s with a; = d. Note that for symmetry  For this purpose, three properties dfy) need to be

reasons, we need not distinguish between the cases wheggablished. First/(y), for s < 3, satisfies the Bellman

respectivelya; and a, are known. Then, for alls > 4, equation. Second, it needs to be established that for4,

and introducing slack variableg® > 0, we transform the no information zone exists where a decision lin\ Uis

inequality constraints into equality constraints leading to thereferable to a decision iti. Third, it needs to be established

following standard form formulation: that the bfs described in Fig. 2 is the optimal bfs for all LPs

corresponding to separatioss> 4. These three properties

- T s
maximize e X, (®)  are established as follows.
subject to A XE ) —b* For €= 0.9 anQp = 0.5, the first propgrty can easily
Yy be verified numerically. Lemma A.1 establishes the second
x,,y° >0, property by demonstrating that for each decisigne U\ U
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Fig. 3. The three instances where a decisignc U \ U (bold arrows)

is shown to be worse than a decisiog € U (dashed arrows). The other Fig. 4. Conceptual illustration of establishing that suggested bfs remains
two decisionsu, € U \ U are symmetric cases. optimal for all s > 6. Identify a set of regiong™ that containb® for all
s > 6. Then show that for alb® in the set of regions primal feasibility
conditions hold.

(see Fig. 3bold arrows), there is a preferable decisiop €
U (see Fig. 3dashed arrows). For example, in the case in
Fig. 3 (i), ug is preferable tau, if:
ap + 1+ si‘bl‘l <a +1+ sﬁijl,

where s is the separation at the current stage. Lemma. A.1
implies that this condition is satisfied for all; and b,.
A similar reasoning holds for the cases is Fig. 3 (ii) and
Fig. 3 (iii).

The third property is established as follows. A sensitivity
analysis shows that for ai*, s > 4, the same bfs is optimal.

Let B® denote the optimal basis for the LP (9) corresponding F T e T
to separatiors. Note that
x5 Fig. 5. Simulation example. The black squares represent the agénts:
A = (BS)*le_ moves to the north ofi>. The target is located arbitrarily far eastward. The
Yy dashed line represents the grid, the squares denote the information zones.

Taking the limit fors — oo of (6), we obtainx>: Red (white) squares represent a link cost of one (zero).

XSO = (I - (Cl + Cz))ilD.
. . Since allb?* € I'® and allb?**! € I, it suffices to check
Using (7) and (8), we can compute™, and i3, for all 10y tor a1, € T and (11) for allb € T°. This can

d € L. Further, vectob®, for s > 4, can be expanded as be verified numerically to hold by checking the conditions

follows: for the eight corner points of each st Fig. 4 illustrates
b® = by + @g—lbl + 25 by + 25 2bg, the principle conceptually for a fictitious 2D example. This
| h f.
whereb,,, v = 0, 1,2, 3 are constant vectors. Lég,) = ;%E’gf concludes the proo "
(.- Fr2(I)€m1 Lemma A.1 we know that the sequenc{é%’;} V. DISCUSSION
A + . . .
anq (@)} for k> 2, converge monoto_nlczlly INCréasing | practice, the agents only have limited local information.
to (5. Therefore the following set contains™, & > 3: The local information communicated by an agent is of
¢ = {b|b = bS + 6183b + 020°by + 035 bs, any navigational use to another agent only if it can reach

that zone. Indeed, Lemma 1 shows that the members of a
0<61,02,05 <1}, two-agent cluster, navigating optimally, remain within close
and similarly,['® containsb?**!, k > 3: distance after reaching 'steady state’ (i.e. after converging).
It quantifies the intuition that only when the agents stay close
o __ . 6 6 5
I = {blb = b’ + 13pb1 + #20,b2 + 357D, together can an agent exploit local information observed by
0< 01,602,035 <1} the other (see Fig. 5 for an example). Note that due to the
We can check numerically that the bfs is optimal for Sepi_nitial large separation the agents converge first after which
arationss < 7. Optimality conditions i(e. dual feasibility ~Stéady state cooperative behavior is reached. In addition,
conditions) are not affected by a changebin We therefore Lemma 1 provides specifications on the communication

only need to examine the primal feasibility conditions infrastructure .which the members of a two—agent cluster
1ok need. In particular, the upper-bound on maximum agent
B (b™) > 0, and (10) separation in steady state is directly related to the maximum

(B")"Y(b**t1) > o0, for k> 3. (11) communication power needed.



From a technical point of view, the method presented Proof: We give a proof by induction. Lets = J3(y),
in Sections 11I-B and 1V provides a tractable solution tofor 0 < s < 3. The initialization stepj.e. x3 < x5*2 for
an infinite state space problem. In particular, the two-agent = 2 and 3, can easily be checked numerically to hold.
navigation on an infinite sized graph can be modelled The induction goes as follows. Giveqd—2 < x., for | < k.
suitably using DP. However, computing the optimal valué-rom (6), we have
function u_sing traditiona_l numerical_algorithms isimpos_sible. XU = CxF 24 CoxP P 4D, and  (A4)
The maximum separation propertfye. Lemma 1, implies bt A P
that it suffices to compute the optimal value function for . = Cix; +Cox;m +D. (A-5)
only finitely many separations, thereby avoiding the curse @ubtracting Egs. (A.5) and (A.4), gives
dimensionality. In particular, given an initial configuration kol b1 & k2
C, at stageS,, we merely need/* for separationss < gq. X, % =0l T +
q geso, y p =4q k—1 k—3
For s < 3, J* can be computed exactly solving a simple Co(x, " —x,77).
DP problem (see (2) witts = 3); (6) yields J* for 4 <  From the induction hypothesis we have
s < g recursively. Intuitively, increasing the number of 2
agents leads to more efficient task execution; on the other T > 0, and
hand, the computational complexity increases significantly. X >0,
It seems that forn agents to navigate efficiently, agentg,q thus, since; > 0 andC,, > 0, we have that
subgroups need to remain within close distance as inferred B B
from Lemma 1. Therefore, similar approaches feagent
clusters can significantly reduce the computational complex- The inequalities (A.2) and (A.3) follow from (A.1). Hence
ity and provide extensions to the spatial distribution resultthe proof.
obtained in this paper. The presented approach is the basic
framework to solve a wide range of multi-agent navigation
problems. Extensions involving more agents with different[1] D. Bertsekas. Dynamic Programming and Optimal
information zones, time-varying irregular environments, and  Control Athena Scientific, Belmont, MA, 1995.
asyncronously movement come to mind. [2] D. Bertsimas and J. TsitsiklisIntroduction to Linear
Optimization Athena Scientific, Belmont, MA, 1997.
[3] D. Blei and L. Kaelbling. Shortest paths in a dynamic
The problem of coordinated navigation by two cooperating  uncertain domain. IWJCAI Workshop on Adaptive Spa-
sensor-equipped agents in a partially known static environ-  tial Representations of Dynamic Environmerit§99.
ment is investigated. For a specific local information zone,[4] J. Hespanha, H. Kim, and S. Sastry. Multiple-agent
and under technical conditions, we establish in Lemma 1  probabilistic pursuit-evasion games. IEEE CDG
that the spatial distribution of a two-agent cluster optimally December 1999.
navigating on an arbitrarily large structured graph is upper{5] M. Jun, A. Chaudhry, and R. D’Andrea. The navigation
bounded. The presented combined DP-LP approach is the of autonomous vehicles in uncertain dynamic environ-
basic framework for the computation of optimal strategies  ments: A case study. IEEEE CDG 2002.
and spatial distribution results in more general cases of thgs] J. De Mot, V. Kulkarni, S. Gentry, and E. Feron. Spatial
local information zone and for-agent clustersr( > 3). distribution results for efficient multi-agent navigation.
In IEEE CDC 2002.

. . ) i F?] G. Oriolo, G. Ulivi, and M. Vendittelli. Real-time
This research is supported in part by Cooperative Contro map building and navigation for autonomous robots
of Distributed Autonomous Vehicles in Adversarial Envi- in unknown environments. IMEEE Transactions on

ronments, 0205-G-CB222, University of California and by Systems, Man and Cybernetics, Part ®lume 28-3,
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