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Duality between cost and density in optimal control 

Anders Rantzer and Sven Hedlund 
Department of Automatic Control, LTH, Lund University 

Box 118, S-22100 Lund, Sweden 
Email: ran tzer  a t  control. l t h .  se 

Abstroct A theorem on duality between cost func- 
tions and density functions in optimal control is de- 
rived using the Hahn-Banach theorem. The result 
puts focus on convexity aspects in control synthesis 
and the recent theory of almost global stability. In 
particular, it gives a new proof that existence of a 
density function is both necessary and sufficient for 
almost global stability in a nonlinear system. 
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1. Introduction 

The idea of duality between cost and flow has old 
roots. In fact, a non-linear problem of optimal trans- 
portation stated by G. Monge in 1781 was converted 
into convex optimization by [Kantorovich, 19421 and 
inspired much of the later developments in the the- 
ory of convex duality. See [Rachev and Riischendorf, 
19981. Kantorovich later received the Nobel price for 
related work in mathematical economics. 
The ideas were introduced in the context of optimal 
control by [Young, 19691 using the concept of gener- 
alized flow. For later work, see pinter, 19931. More 
recently, [Rantzer, 20011 introduced the concept of 
density function as a tool for verification of almost 
global stability in non-linear systems. The relation 
to duality theory was then briefly discussed. 
The new stability concept has a remarkable convex- 
ity property in the context of control synthesis. This 
was explored for numerical computations in [Rantzer 
and Parrilo, 20001 and for smooth transitions be- 
tween different nonlinear controllers in [Rantzer and 
Ceragioli, 20011. 
The purpose of the present paper is to establish the 
duality between cost functions and density functions 
in a more rigorous manner. The main result is 
stated and discussed in section 2. The next section 
is devoted to the proof. The construction of control 
law from density functions is described and the main 
duality argument is given. 
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2. Main  result 

Let f ;  E C'(R",R"), li E C(R",Rm) with l ,  2 0 for 
i = 1,. . . , M. Let T,X C R" be open bounded sets 
with C' boundary and C X. Introduce U as the 
set of all (UI, ..., U M )  E C1(X,RM) with U;(.) 2 0 
a n d u l ( x ) + . . . t u ~ ( x )  1 suchthatevery solution 
o f f  = C i u i ( x ) f i ( x )  starting-in X at t = 0 stays in 
X for all t > 0. Let the solution with x ( 0 )  = xo be 
denoted @"(xo, t ) .  Define 

V ( x )  = inf V,(x) 
"€'U 

The main theorem can now be stated as follows: 

THEOREM 1 
Consider X,  f i ,  li, U, @a and V' as above. Let li > 0 
outside r and l; = 0 inside. Define y E C(x) with 
y > 0. Then 

M .  

where inf is taken over pi E Cd(x) with p; > 0 in X 
and 

M 

7. ( f i ( x ) p i ( x ) )  > ~ ( x )  x E x \ i- (2) 
i=l  

Moreover, for all pi satisfylng the conditions above, 
U := (PI,. . . , p ~ ) / ( z ,  pi) is an element in U and 

U 

Before giving the proof in a later section, we make a 
few 
remarks. 
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Figure 1: The products produced in nodes 1-3 should be 
transported to  the consumer in node 0 while 
minimizing the transportation cost. 

The case of no control variable (M=U 
case, the value of the integral 

In this 

J ,  v(x)V*(x)dx (3) 

is interesting as a stability indicator. A finite value 
of the integral means that V'(r) = J r l ( x ( t ) ) d t  is 
finite for almost all x E X \ r. For all these initial 
states, the trajectory must approach r as t + CO. 

Hence, Theorem 1 proves existence of non-negative 
p E Ci(x) such that 

V .  ( ~ ( X ) P ( Z ) )  > ww > o z E x \ r 
Conversely, if such a p exists, then the theorem 
shows that (3) is finite and almost all trajectories 
eventually approach r. 

Control synthesis by convex optimization It 
should be noted that the minimization correspond- 
ing to the infimum expression in Theorem 1 is a 
problem of convex optimization. In fact, every multi- 
ple (P I , .  . . , p ~ )  that solves the divergence inequality 
not only gives an upper bound on the optimal value s, v(x)V*(x)dx, but also corresponds to a control 
law achieving this upper bound. This can be viewed 
as the reason behind the previously mentioned con- 
vexity property of density functions in control syn- 
thesis. 

Comparison to  a discrete transportation prob- 
lem It is natural to compare Theorem 1 to the 
standard linear programming solution to the discrete 
transportation problem illustrated in Figure 1. Such 
problems have been studied extensively since the 
1940's [Hitchcock, 1941; Ford and Fulkerson, 19621. 
Some product is produced with unit rate in each of 
the three nodes 1-3 and is consumed in node 0. The 
cost for shipping the product between node i and 
node j is given by the number l i j .  It is well known 
that the minimal total transportation cost can be 

found by solving a linear programming problem: 

Maximize 
subject to 

VI + v2 + v3 -3vo 
v3 - vi 5 131 

v3 - v2 5 132 

v2 - vo 5 120 
Note that there is one variable V, for each node and 
one inequality constraint for each path connecting 
two nodes. For every solution to the inequality 
constraints, the number V, - VO provides a lower 
bound on the cost for shipping products with unit 
rate from node i to node 0. The expression Vi + V2 + 
V3 - 3Vo therefore gives a lower bound on the total 
transportation cost. 
A dual LP problem can be stated as follows. 

Minimize 1 3 1 4 1  + 1 3 2 ~ 3 2  + h p z l +  ~ I O P I O  + 1 2 0 ~ 2 0  

subject to mi,. . . ,BO 2 0 

- 4 1  - Pzl +PI0 z 1 
- 4 2  + P z l  + p20 z 1 

&I + p32 2 1 

For each path connecting two nodes, the variable p,, 
can be interpreted as the transportation density from 
node i to node j. There is one constraint for each 
node stating that the total production in this node is 
at least as big as  the assigned value. 

3. From densities to control  law 

The following lemma is essential for Theorem 1: 

LEMMA 1 
Let X C R" be open. Given f E C ' ( X , R " ) ,  suppose 
that X is invariant to the dynamics f = f(x). Let 1 E 
C(X) be strictly positive outside i= and zero inside. 
Let p E Cj(X) be non-negative and (V.  ( f p ) ( x )  > 0 
for 3c E \ r. Define V*(x) = s," 1 (4(r,  t)) dt. Then 

U 

The proof of Lemma 1 uses a version of Liouville's 
theorem [Rantzer, 2001]: 

PROPOSITION 1 
Let f E C 1 ( X , R n )  and let p E C 1 ( X )  be integrable. 
For a measurable set 2, assume that &(Z) = 
{fir(x) I x E Z} is a subset of X for all r between 
0 and t .  Then 

U 
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Proof o f h m m a  1. Consider T > 0 and a piecewise 
constant Z(x) = xi l i ,yi(x),  where xi is the charac- 
teristic function of the set X; C X. Then 

In the limit as T + 03, this gives 

If the right hand expression is infinite, then also 
J l ( x ) p ( x ) d x  must be infinite, so the desired equal- 
ity holds. On the other hand, if the right hand ex- 
pression is finite, then the set #(Xi ,  -T) vanishes as 
T + 00, so the limit expression on the lek hand side 
is zero and the desired equality holds anyway. 
This finishes the proof for piecewise constant 1. The 

0 result follows by continuity for arbitrary 1. 
We are now ready for the proof of Theorem 1. 

Proofof Theorem I The equality (1) will be proved by 
separately deriving inequalities in the two opposite 
directions. First, the right hand side of (1) is proved 
to  be at least as big as the left hand side. This is 
done by explicit construction of a control law in 'U 
from density functions p; satisfying (2). The desired 
inequality then follows from Lemma 1. 

Let y' be the value of the infimum in (1). Define 
pi E Cd(r) ,  i = 1, .  . . , M such that (2) holds, pi > 0 
in X and 

Define U E C ' ( X )  and f E C1(X) according to 

= v ' f + V(l0gp) ' f 

log M t ) )  
d 

0 < (V ' f ) ( x ( t ) )  + 
By continuity of V . f on the compact set f f ,  there 
is a constant C such that V .  f ( x )  < C for x E X. 
Hence 

d -c < logp(x(t)) P(..(t)) > e-C'p(x(o)) 

This shows that the trajectory can not approach the 
boundary of X ,  where p = 0, but must stay in X for 
all t 2 0. Hence by Lemma 1 

The choice of E > 0 was arbitrary, so 

To complete the proof, it remains t o  prove inequality 
in the opposite direction as well. For this purpose, 
define two subsets of K = R x C ( l ) :  

pi E C,'(X), pi > o in x 
Kz ={(z ,h)  E K 122 0, h ( x )  > 0 for x E X \ r} 

We will next prove the following statements: 

I K1 contains no interior point of Kz. 
I1 There exists k' E K*, k' # 0 such that 

where K' is the dual space of K, i.e. K* = 
R x C ( a '  

I11 There exists a nonzero pair (a,@) where a 2 0 is 
a number and # 2 0 is a measure of bounded 
variation on x, vanishing inside r, such that 
(@,y )  >ay' and for i = 1,2 ,..., M 

al; + V#.  f ;  2 0 i n X  (5) 

The derivative V@ is interpreted in the sense 
of distributions. 
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The statement I is trivial once i t  is noted that (z, h)  E 
K2 is an interior point if and only if z > 0 and 
h(x) > 0 for x E x. 
The equivalence I e I I  holds because of the follow- 
ing separation property of convex sets [Luenberger, 
1969; Rudin, 19911: Let K be a normed vector space 
and denote its dual K*. Let K1 and K2 be convex 
sets in K such that KZ has interior points and K1 
contains no interior point of K2. Then there is a 
closed hyperplane separating K1 and Kz; i.e., there 
is a k* E K’, k* # 0 such that 

sup ( k l ,  K’) 5 inf (k2. k*),  
kiEKi kiGK2 

To show that IIoIII, let k* = (a,@) E K* = R x 
C(x)’. The space CQ)’ is the set of measures of 
bounded variation and support in x [Dunford and 
Schwartz, 1958, page 2621. Expand the right hand 
side of (4) to 

The right hand side is equal to  zero if and only if 
a and @ are both non-negative and q3 = 0 in r. 
Otherwise it is -w. 
The left hand side of (4) can be expanded to 

The secondequalityuses (V@. f ,p )  = - ( @ , V . ( f p ) )  
which holds by definition of distributional deriva- 

0 tives. This completes the proof. 
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= s u P { ~ ( - a l i - V @ . f i , p i ) } + a y * - ( @ , y )  

The supremum is taken Over Pi E cl(R”) with 
support in and p; > 0 in X. The value is equal to 
ay’ - (@, V )  if and only if (5) holds, otherwise it is 
+m. The statement I1 is thus equivalent to 111. 
Notice that if the pair (a.@) satisfies the conditions 
in I11 and a = 0, then (@, V )  > 0, so the conditions 
remain valid if a is replaced by a sufficiently small 
positive number. Hence a can always be assumed 
non-zero and be normalized to  one. 
Finally, let U E U be arbitrary and define f = xi f;ui 
and I = xi liui. Let p E C,’ (X)  be non-negative and 
such that (V’. ( f p ) ) ( x )  7 yl for x E T .  Then 

a i  

V&)(V’ ( f p ) ( r ) d x  = J ,  @)p(x)dx 

= ( l + v o . f , P ) + ( v @ . ( f p ) )  
2 (6, (fp)) 
2 ( A V )  2 Y* 
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