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Abstract— The classical Stefan problem is a linear one-
dimensional heat equation with a free boundary at one end,
modelling a column of liquid (e.g. water) in contact with an
infinite strip of solid (ice). Given the fixed boundary conditions,
the column temperature and free boundary motion can be
uniquely determined. In the inverse problem, one specifies the
free boundary motion, say from one steady-state length to
another, and seeks to determine the column temperature and
fixed boundary conditions, or boundary control. This motion
planning problem is a simplified version of a crystal growth
problem. In this paper, we consider motion planning of the free
boundary (Stefan) problem with a quadratic nonlinear reaction
term. The treatment here is a first step towards treating higher
order nonlinearities as observed in crystal growth furnaces.
Convergence of a series solution is proven and a detailed
parametric study on the series radius of convergence given.
Moreover, we prove that the parametrization can indeed be
used for motion planning purposes; computation of the open
loop motion planning is straightforward and we give simulation
results.

Keywords: Distributed parameter system, boundary control,
inverse Stefan problem, flatness.

I. I NTRODUCTION

In this paper we consider a free boundary problem for a
nonlinear parabolic partial differential equation. In particular,
we are concerned with the inverse problem, which means we
know the behavior of the free boundarya priori and would
like a solution, e.g. a convergent series, in order to determine
what the trajectories of the system should be for steady-state
to steady-state boundary control.

The classical Stefan problem models a column of liquid
in contact at 0 degrees with an infinite strip of its solid
phase, as depicted in Figure 1. The problem is thoroughly
explored in [1] and a catalogue of various problems reducing
to problems of the Stefan type is given in [15]. We investigate
a modified Stefan problem that includes a diffusion term and
a nonlinear reaction term. This can be seen as a simple model
of a chemically reactive and heat diffusive liquid surrounded
by ice, as considered under a more general form in [3].

Define (x, t) 7→ u(x, t) as the temperature in the liquid
and t 7→ y(t) as the position of the liquid/solid interface,
given a positionx and timet. The functionsh(t) andψ(x)
are the temperatures at the fixed end (x = 0) and at initial
time (t = 0), respectively. The nonlinear Stefan problem is
to determine au(x, t) and y(t), given h(t) and ψ(x), that

satisfy

ut = uxx − νux − ρu2, ∀(x, t) ∈ DT

u(0, t) = h(t) ≥ 0, 0 < t ≤ T
u(x, 0) = ψ(x) ≥ 0, 0 ≤ x ≤ y(0)
u(y(t), t) = 0, ux(y(t), t) = −ẏ(t), 0 < t ≤ T















(1)

where

DT ≡ {(x, t) : 0 < x < y(t), 0 < t ≤ T}

and the boundaries are denoted in order as

BT ≡{(0, t) : 0 < t ≤ T} ∪ {(x, 0) : 0 ≤ x ≤ y(0)}
∪ {(y(t), t) : 0 < t ≤ T} ≡ B1

T ∪B2
T ∪B3

T .

As in [1], we refer toDT andBT as the parabolic interior and
parabolic boundary, respectively. Figure 2 gives a graphical
2-D representation of the interior and boundary.

The notationẏ(t) is the time derivative ofy(t) and ν,
ρ ≥ 0, T > 0. This model arises from a classical energy
balance. The equationux(y(t), t) = −ẏ(t) expresses the
fact that all of the heat energy arriving at the liquid-solid
interface is utilized in the melting process. In the model, the
thermal conductivity coefficient and a parameter equal to the
product of the solid density and the latent heat of fusion are
normalized to one. Of course it is possible to use different
values for these coefficients using changes of scales forx, t
andu, as described in [1, page 282].
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Fig. 2. Picture of parabolic interior and boundary for free boundary problem

The inverseproblem and its solution are stated here as a
definition.
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Fig. 1. The system under consideration: liquid phase governed by a nonlinear heat equation with boundary control, in contact with an infinite solid phase.

Definition 1: A solution of (1) for a known functiony ∈
C∞[0, T ], with all derivatives known, is a functionu =
u(x, t) defined inDT ∪BT such thatuxx, ut ∈ C(DT ), u is
bounded, satisfies the conditions of (1) andu ∈ C(DT ∪BT ).
The inverse problem is precisely a non-characteristic Cauchy
problem with Cauchy data:u(y(t), t) = 0, ux(y(t), t) =
−ẏ(t) [8]. Giveny(t) and a solutionu to the inverse problem,
we have the initial profileψ(x) and the boundary control
h(t), both of which must be non-negative according to (1).

The flatness approach [5], [4] for partial differential equa-
tions are a means of solving inverse problems. The explicit
parametrization of the trajectories of the systems is the
key to straightforward motion planning strategies that can
incorporate optimization [12], [13].

Recent work on these parametrization include [11], [10]
where approximate controllability of any initial condition to
steady state is explored. The series expansion techniques used
for heat equations have been used since the work of Gevrey,
while inverse problems have been addressed as early as the
work by Hill [8]. Specifically, Hill gives a complete solution
to the inverse Stefan problem with a linear heat equation, i.e.
ut = uxx. Recently a nonlinear heat equation over a constant
spatial domain, with a quadratic reaction term, was examined
by Rudolph and Lynch [11].

In this paper we combine the two issues: the free boundary
(Stefan) problem with a quadratic nonlinearity. Using the
work in [11] as a starting point, we prove convergence of a
series solution. Then a parametric study on the series radius
of convergence is carried out. Moreover, we prove that the
parametrization can indeed can be used for motion planning
purposes; computation of the open loop motion planning is
straightforward. We also give brief simulation results.

The Stefan problem we consider is a first step towards
a more complex problem for multidimensional reaction-
diffusion systems investigated in [6], where three chemical
species balance equations contain second order reaction
terms. Extension of our approach to a fourth order radiation
term, i.e. the Stefan-Boltzmann condition, is a subject for
future work. A model with this condition arises in crystal
growth furnaces, where a solid phase is surrounded by an

infinite liquid phase. We feel the work presented here can
highlight some of the difficulties and challenges of problems
that arise in motion planning for crystal growth models.

II. SERIESSOLUTIONS AND CONVERGENCE

A. Outline

In Section II-B we establish a lower bound on the radius
of convergence of a series solution, denotedη∗, that depends
upon the physical constants of the modelρ andν. The radius
η∗ also depends uponM andR, the Gevrey constants of the
function ẏ(t). The definition of a Gevrey function is given
implicitly in Theorem 1 here (and also in [9]), from which
it is clear that the associated constants (M and R in this
case) characterize the aggressiveness of the trajectoriesof
the system. In Section II-C we make use of several lemmas
to construct a parametric lower bounds on the radius. The
bound can be used in practice to guarantee convergence over
a given domain.

B. Series Solution

Consider the series solution

u(x, t) =

∞
∑

n=0

an(t)

n!
[x− y(t)]n. (2)

For the solution (2) to satisfy

ut = uxx − νux − ρu2, ∀(x, t) ∈ DT ,

the an(t) coefficients must satisfy the recurrence equation

an = ȧn−2 − an−1ẏ + νan−1 + ρ

n−2
∑

k=0

(

n− 2

k

)

an−2−k ak

(3)

wheren ≥ 2, with a0 = 0 (arising from theu(y(t), t) = 0
condition) anda1 = −ẏ (arising from the Stefan condition
−ux(y(t), t) = ẏ(t)). These necessary conditions are also
sufficient. From (3) it is clear that giveny(t), all the series
coefficientsan(t) and therefore the temperatureu(x, t) and
boundary conditionsh(t) andψ(x) are uniquely determined.

By majorizing the series in (2), we will prove that this
solution converges absolutely. We now state the first of two



main theorems in the paper. The proof makes use of two
lemmas stated in the appendix.

Theorem 1:Given thatẏ ∈ C∞[0, T ] is Gevrey of order
(α− 1) for 1 ≤ α ≤ 2, i.e.

∃M,R > 0 such that
∣

∣

∣
y(l+1)(t)

∣

∣

∣
≤M

l!α

Rl
, ∀ l = 0, 1, 2, ...,∀t ∈ [0, T ],

the radius of convergence of the series has as a lower bound
the unique positive rootη = η∗ of the polynomial

(

ρM

2

)

η3 +

(

1

R

)

η2 +

(

ν +M

2

)

η − 1 = 0. (4)

Proof: By induction onn, we prove that for alln =
0, 1, 2, ..., the coefficients satisfy the bound

∣

∣

∣
a(l)

n (t)
∣

∣

∣
≤ MAn−1

Rl+n−1

(l + n)!α

n!α−1
, ∀ l = 0, 1, 2, ... (5)

for someA > 0. The coefficienta0 = 0 satisfies (5) trivially
and we examinen = 1 as the base case, since the recurrence
is defined forn ≥ 2. Namely, fora1 = −ẏ,

∣

∣

∣
a
(l)
1 (t)

∣

∣

∣
=
∣

∣

∣
y(l+1)(t)

∣

∣

∣
≤M

l!α

Rl
≤ M

Rl
l!α(l + 1)α,

and the last inequality is strict whenl > 0. By inductive
hypothesis, we assume now that (5) holds for alli =
0, 1, ..., n − 1 and prove that it must also hold fori = n.
Taking an absolute value andl time derivatives of (3), after
the triangle inequality we have

∣

∣

∣
a(l)

n

∣

∣

∣
≤
∣

∣

∣
a
(l+1)
n−2

∣

∣

∣
+ ν

∣

∣

∣
a
(l)
n−1

∣

∣

∣
+

l
∑

m=0

(

l

m

)

∣

∣

∣
a
(l−m)
n−1

∣

∣

∣

∣

∣

∣
y(m+1)

∣

∣

∣

+ ρ

n−2
∑

k=0

l
∑

r=0

(

n− 2

k

)(

l

r

)

∣

∣

∣
a
(r)
n−2−k

∣

∣

∣

∣

∣

∣
a
(l−r)
k

∣

∣

∣
.

(6)
The first two terms in (6) can be majorized using (5) as

∣

∣

∣
a
(l+1)
n−2

∣

∣

∣
≤ MAn−3

Rl+n−2

(l + n− 1)!α

(n− 2)!α−1

=
MAn−1

Rl+n−1

(l + n)!α

n!α−1

[

R

A2

(n(n− 1))α−1

(l + n)α

]

,

ν
∣

∣

∣
a
(l)
n−1

∣

∣

∣
≤ ν

MAn−2

Rl+n−2

(l + n− 1)!α

(n− 1)!α−1

=
MAn−1

Rl+n−1

(l + n)!α

n!α−1

[

ν
R

A

nα−1

(l + n)α

]

.

The third term in (6) is majorized as

l
∑

m=0

(

l

m

)

∣

∣

∣
a
(l−m)
n−1

∣

∣

∣

∣

∣

∣
y(m+1)

∣

∣

∣

≤
l
∑

m=0

(

l

m

)

M2An−2

Rl+n−m−2Rm

(l + n−m− 1)!αm!α

(n− 1)!α−1

=
MAn−1

Rl+n−1

(l + n)!α

n!α−1

[

MR

A

n!α−1

(l + n)!α
×

1

(n− 1)!α−1

l
∑

m=0

(

l

m

)

(l + n−m− 1)!αm!α

]

.

Using Lemma 2 and Lemma 3, we can bound the term

l
∑

m=0

(

l

m

)

(l + n−m− 1)!αm!α ≤
[

l
∑

m=0

(

l

m

)

(l + n−m− 1)!m!

]α

=

[

(n− 1)!(n+ l)!

n!

]α

,

resulting in

l
∑

m=0

(

l

m

)

∣

∣

∣
a
(l−m)
n−1

∣

∣

∣

∣

∣

∣
y(m+1)

∣

∣

∣
≤ MAn−1

Rl+n−1

(l + n)!α

n!α−1

[

MR

A n

]

.

The fourth (nonlinear) term in (6) is majorized as

ρ

n−2
∑

k=0

l
∑

r=0

(

n− 2

k

)(

l

r

)

∣

∣

∣
a
(r)
n−2−k

∣

∣

∣

∣

∣

∣
a
(l−r)
k

∣

∣

∣

≤ ρ
n−2
∑

k=0

l
∑

r=0

(

n− 2

k

)(

l

r

)

×

M2An−4

Rl+n−4

(n+ r − k − 2)!α(l + k − r)!α

(n− k − 2)!α−1k!α−1

≤ MAn−1

Rl+n−1

(l + n)!α

n!α−1
×

[

ρMR3

A3

n!α−1

(l + n)!α

n−2
∑

k=0

(

n− 2

k

)

1

(n− k − 2)!α−1k!α−1

×
{

l
∑

r=0

(

l

r

)

(n+ r − k − 2)!(l + k − r)!

}α ]

,

where the last inequality makes use of Lemma 3. Using



Lemma 2 we have

n−2
∑

k=0

(

n− 2

k

)

1

(n− k − 2)!α−1k!α−1
×

{

l
∑

r=0

(

l

r

)

(n+ r − k − 2)!(l + k − r)!

}α

=

n−2
∑

k=0

(

n− 2

k

)

1

(n− k − 2)!α−1k!α−1
×

{

k!(n− k − 2)!(n+ l − 1)!

(n− 1)!

}α

=

n−2
∑

k=0

(

n− 2

k

)

(n− k − 2)! k!

{

(n+ l − 1)!

(n− 1)!

}α

=

n−2
∑

k=0

(n− 2)!

{

(n+ l − 1)!

(n− 1)!

}α

= (n− 1)(n− 2)!

{

(n+ l − 1)!

(n− 1)!

}α

=
(n+ l − 1)!α

(n− 1)!α−1
,

resulting in

ρ

n−2
∑

k=0

l
∑

r=0

(

n− 2

k

)(

l

r

)

∣

∣

∣
a
(r)
n−2−k

∣

∣

∣

∣

∣

∣
a
(l−r)
k

∣

∣

∣

≤ MAn−1

Rl+n−1

(l + n)!α

n!α−1

[

ρMR3

A3

n!α−1

(l + n)!α
(n+ l − 1)!α

(n− 1)!α−1

]

=
MAn−1

Rl+n−1

(l + n)!α

n!α−1

[

ρMR3

A3 n

(

n

n+ l

)α]

.

Collecting the terms for (6) and noticing that forn ≥ 1,

l ≥ 0, andα ≥ 0,
[

n
n+l

]α

≤ 1 holds, we have

∣

∣

∣
a(l)

n

∣

∣

∣
≤MAn−1

Rl+n−1

(l + n)!α

n!α−1
×

[

R

A2

(n− 1)α−1

n
+

(ν +M)R

A n
+
ρMR3

A3 n

]

.

The terms in the square brackets are bounded using

max
n≥2, α∈[1,2]

(n− 1)α−1

n
=

(n− 1)1

n

∣

∣

∣

(n≥2)
≤ 1.

With these bounds, we have

∣

∣

∣
a(l)

n

∣

∣

∣
≤MAn−1

Rl+n−1

(l + n)!α

n!α−1
[

1

R

(

R

A

)2

+
(ν +M)

2

(

R

A

)

+
ρM

2

(

R

A

)3
]

.

Given (M, R, ρ, ν), the parameterA is chosen such that
[

1

R

(

R

A

)2

+
(ν +M)

2

(

R

A

)

+
ρM

2

(

R

A

)3
]

= 1, (7)

implying that (5) is proven by induction. Using (5) and the
Cauchy-Hadamard Formula, the radius of convergence is
given by

1

lim supn→∞ |an/n!|1/n
≥
[

lim
n→∞

∣

∣

∣

∣

MAn−1

Rn−1

∣

∣

∣

∣

1/n
]−1

= lim
n→∞

R

A

[

A

MR

]1/n

=
R

A
.

Denoting this lower bound on the radius of convergence as
η ≡ R/A and substituting into (7) yields (4). Existence and
uniqueness of the positive rootη = η∗ are now proven. Given
(M, R, ν, ρ) > 0, define the positive, analytic and strictly
increasing functionη 7→ f(η) as

f(η) =

(

ρM

2

)

η3 +

(

1

R

)

η2 +

(

ν +M

2

)

η. (8)

The positive rootη∗ of the equationf(η∗)−1 = 0 exists and
is unique since(f(·)−1)(η) is analytic and strictly increases
from −1 to +∞ asη grows from0 to +∞.

Remark 1:We give here analytic expressions of the first
five coefficients of the series (2) so one can see how the
successive derivatives ofy appear through recurrence (3)

a1 = −ẏ
a2 = −ẏ(ν + ẏ)

a3 = −ÿ + ẏ3 − ν2ẏ

a4 = −ÿ(2ν + ẏ) − ẏ4 + νẏ3 + (ν2 + 2ρ)ẏ2 − ν3ẏ

a5 = −y(3) − 3ν2ÿ + ẏ5 − 2νẏ4 + 4ρẏ3

+
(

4ÿ + 2ν(ν2 + 4ρ)
)

ẏ2 + (νÿ2 − ν4)ẏ.

C. Parameterizations of Radius of Convergence

This section is concerned with a parametric lower bound
on η∗. The bound is achieved using the following lemma.

Lemma 1: For all a, b, c strictly positive real parameters,
the unique positive rootη0 of

aη3 + bη2 + cη − 1 = 0

is lower bounded by

−c+
√

c2 + 4(a/c+ b)

2(a/c+ b)
. (9)

Proof: The functionη 7→ aη3 +bη2 +cη−1 is analytic
and strictly increases from−1 to +∞ asη grows from0 to
+∞. Defineh1(η) = aη3 +bη2, h2(η) = 1−cη. The graphs
of h1 andh2 intersect atη0. Sinceh1 > 0 on ]0,+∞[ it is
clear thatη0 < 1/c.

On ]0, 1/c[ it is easy to check thath1(η) < (a/c + b)η2.
On this intervalh1 is a strictly increasing function while
h2 is strictly decreasing. Let̂η be the unique positive root
of (a/c + b)η2 = 1 − cη and we get thath1(η̂) < h2(η̂),
yielding η̂ < η0. Finally

η0 >
−c+

√

c2 + 4(a/c+ b)

2(a/c+ b)
.



Whena = ρM/2, b = 1/R and c = (ν +M)/2, it is clear
that η0 corresponds toη∗. We now give the main analytic
result of the paper regarding convergence of the proposed
solution, making use of the last lower bound.

Theorem 2:Given ν, ρ > 0 and assuming thaṫy ∈
C∞[0, T ] is Gevrey of order(α− 1) for 1 ≤ α ≤ 2, i.e.

∃M, R > 0 such that
∣

∣

∣
y(l+1)(t)

∣

∣

∣
≤M

l!α

Rl

∀ l = 0, 1, 2, ..., the radius of convergence of the series
(2) is greater than̂η as given by formula (10)
This result can be complemented with tighter bounds for the
special case whenρ is large andν is small (see [2]).

D. Numerical Simulations

Assume one wants to grow the liquid column from an
initial length 1.0 with uniform zero temperature to a final
length 2.0 with uniform zero temperature. This problem is
challenging since the actuation is at the fixed boundary, a
surface opposite to the melting interface. As such, the open-
loop control must compensate for both the energy loss due to
melting at the interface and due to the diffusion and reaction
terms.

For practical purposes of course the series solution (2) is
truncated for implementation. For steady-state to steady-state
column growth, the interface motiony(t) is defined as

y(τ) =







L+ ∆L if τ ≥ T,
L+ ∆Lg(τ/T ) if T > τ > 0,
L if τ ≤ 0,

where

g(τ) =
f(τ)

f(τ) + f(1 − τ)
, τ ∈ [0, 1],

and

f(τ) =

{

e−
1

τ if τ > 0,
0 if τ ≤ 0.

The functiony defines a smooth transition fromL to L+∆L
in liquid column length1, with Gevrey constants foṙy equal
to

M =
∆Le2

T
√

2π
, R =

T

4
.

We take the first 10 terms to approximate the solutionu(x, t).
Steady-state to steady-state simulations are considered and it
is easy to verifyψ ≡ 0. Figure 4 shows the temperature
profile for T = 100, ρ = 1.2, ν = 0.5, L = 1.0, andL +
∆L = 2.0. The analytic bound in (10) yieldŝη = 2.0619
which guarantees convergence over the desired domain. For
this case, we numerically computedη∗ = 2.2506, showing
the relative conservatism of (10) quantitatively. It is to be

1The function chosen above is based upon an unpublished work of
François Malrait done at́Ecole des Mines (see [2])

noted that asT gets largeη∗ tends to2/ν and so does its
lower boundη̂.

0

1

2

0

50

100
0

0.005

0.01

0.015

0.02

x

u(x,t) temperature

t

Fig. 4. Temperature profile for transition from column length 1to 2.

The derivation of the Gevrey constants forẏ above and
more simulation results are detailed in [2].

III. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have considered boundary control of a
simplified model of crystal growth. The problem includes two
technical difficulties: the moving boundary and a quadratic
reaction term. When combined, these issues make con-
vergence substantially more difficult to study. We derived
conservative results that can indeed be used in practice, as
shown in the simulation section. The solution we propose
must be used with caution or a physical requirement of the
model, namely non-negativity of the temperature in the liquid
phase, may not be satisfied. It has been shown in [2] that
this physical requirement is asymptotically satisfied as the
transient time from one stead-state to another becomes large.

An issue for future work is the study of approximate
stabilizability of the model studied in this paper. Replacing
the zero initial conditionu(x, 0) = 0 by an arbitrary initial
condition u(x, 0) = ψ(x), is it still possible to steer the
system (at least approximately) to zero in finite time, i.e.
u(x, T ) ≈ 0?

Usually, such a result arises from a projection of the
initial condition onto the formal series expression (refer
to [10]). Straightforward conditions are thus available for
formal series of the formu(x, t) =

∑∞

i=0 y
(n)(t) x2n

(2n)! using
the fact that the set of polynomialsx2n, n ∈ N is dense in
the set ofL2 functions. In a simple manner, the conditions
result in specified values for all the derivatives ofy at the
initial time 0.

In our case the series expansion is much different. Due
to the moving boundary and the nonlinear effect, no simple



η̂ =
1

4(ρRM + ν +M)

(

−R(ν +M)2 +
√

R2(ν +M)4 + 16(ρMR2(ν +M) +R(ν +M)2)
)

(10)

Fig. 3. Bound for Theorem 2.

identification between the(ai) coefficients and the deriva-
tives of y can be achieved. Moreover, both even and odd
polynomials appear for most derivatives ofy, ruling out
classical density results, e.g. Müntz-Szasz theorem [16]. All
this makes the situation more convoluted and difficult to
handle. This point is currently under investigation.

APPENDIX: TECHNICAL LEMMAS

Lemma 2:

i!j!(i+ j + l + 1)!

(i+ j + 1)!
=

l
∑

r=0

(

l

r

)

(j + r)!(i+ l − r)!

for i, j, l ≥ 0.
Proof: This result directly follows from the Chu-

Vandermonde identity [14]. Details can be found in [2].
Lemma 3:For α, ck ≥ 1 andbk ≥ 0, k = 0, 1, ..., l,

l
∑

k=0

ck(bk)α ≤
(

l
∑

k=0

ckbk

)α

, l ≥ 0.

Proof: The proof is an easy extension of that for the
caseck = 1, ∀k = 0, 1, ..., l, given in [7].
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