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Abstract—The classical Stefan problem is a linear one- satisfy
dimensional heat equation with a free boundary at one end,

modelling a column of liquid (e.g. water) in contact with an Up = Uy — Vg — pu?, V(z,t) € Dr
infinite strip of solid (ice). Given the fixed boundary conditions, u(0,t) = h(t) > 0, 0<t<T
the column temperature and free boundary motion can be w(z,0) = (z) >0, 0<z<y(0) (1)

uniquely determined. In the inverse problem, one specifies the N .
free boundary motion, say from one steady-state length to u(y(t),) =0, ua(y(t),t) = —y(t), 0<t < T
another, and seeks to determine the column temperature and where

fixed boundary conditions, or boundary control. This motion

planning problem is a simplified version of a crystal growth — . <
problem. In this paper, we consider motion planning of the free Dr={(z,t) : 0<z<ylt), 0<t<T}
boundary (Stefan) problem with a quadratic nonlinear reaction
term. The treatment here is a first step towards treating higher
order nonlinearities as observed in crystal growth furnaces. _ . .

Convergence of a series solution is proven and a detailed Br ={(0,1): 0<t<T} U {(z,0): 0 <z <y(0)}
parametric study on the series radius of convergence given. U {(y(t),t):0<t<T}=BrUB%UB:.
Moreover, we prove that the parametrization can indeed be

used for motion planning purposes; computation of the open As in [1], we refer toDr and Br as the parabolic interior and
loop motion planning is straightforward and we give simulation  parabolic boundary, respectively. Figure 2 gives a gragphic
results. 2-D representation of the interior and boundary.

The notationy(¢) is the time derivative ofy(¢) and v,

and the boundaries are denoted in order as

Keywords: Distributed parameter system, boundary control,

inverse Stefan problem, flatness. p > 0, T > 0. This model arises from a classical energy
balance. The equation,(y(t),t) = —y(t) expresses the
I. INTRODUCTION fact that all of the heat energy arriving at the liquid-solid

_ _ interface is utilized in the melting process. In the moded, t
In this paper we consider a free boundary problem for oz conductivity coefficient and a parameter equal éo th
nonlinear parabolic partial differential equation. In tparlar, product of the solid density and the latent heat of fusion are

we are concerned with the inverse problem, which means Weymajized to one. Of course it is possible to use different
know the behavior of the free boundaaypriori and would 5165 for these coefficients using changes of scales,for
like a solution, e.g. a convergent series, in order to det&m ;. 4., as described in [1, page 282].

what the trajectories of the system should be for steadg-sta
to steady-state boundary control.

The classical Stefan problem models a column of liquid 0
in contact at 0 degrees with an infinite strip of its solid
phase, as depicted in Figure 1. The problem is thoroughly
explored in [1] and a catalogue of various problems reducing

to problems of the Stefan type is given in [15]. We invesggat %% x=y(0)
/ vw

a modified Stefan problem that includes a diffusion term and
a nonlinear reaction term. This can be seen as a simple model
of a chemically reactive and heat diffusive liquid surroedd 0 \ X
by ice, as considered under a more general form in [3].

Define (x,t) — u(x,t) as the temperature in the liquid
andt — y(t) as the position of the liquid/solid interface,
given a positionz and timet. The functionsh(t) and(z)  Fig.2. Picture of parabolic interior and boundary for frezibdary problem
are the temperatures at the fixed end=f 0) and at initial
time (¢ = 0), respectively. The nonlinear Stefan problem is The inverseproblem and its solution are stated here as a
to determine au(x,t) andy(¢), given h(t) and v (z), that definition.
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Fig. 1. The system under consideration: liquid phase g@eehy a nonlinear heat equation with boundary control, inactrwith an infinite solid phase.

Definition 1: A solution of (1) for a known functiony € infinite liquid phase. We feel the work presented here can
C*[0,T], with all derivatives known, is a functiom = highlight some of the difficulties and challenges of probdem
u(zx,t) defined inDr U By such thatu,,, u; € C(Dr), wis that arise in motion planning for crystal growth models.
boun_ded, satisfies the_ cond@ons of (1) and C’(DT_U_BT). Il SERIESSOLUTIONS AND CONVERGENCE
The inverse problem is precisely a non-characteristic 8auc _
problem with Cauchy datau(y(t),t) = 0, u,(y(t),t) = - Outline
—5(t) [8]. Giveny(t) and a solution to the inverse problem,  In Section II-B we establish a lower bound on the radius
we have the initial profileyy(x) and the boundary control of convergence of a series solution, denatédthat depends
h(t), both of which must be non-negative according to (1).upon the physical constants of the mogdeindv. The radius

The flatness approach [5], [4] for partial differential equa”” @lso depends upoi/ and R, the Gevrey constants of the
tions are a means of solving inverse problems. The explidignction (). The definition of a Gevrey function is given
parametrization of the trajectories of the systems is thEPlicitly in Theorem 1 here (and also in [9]), from which
key to straightforward motion planning strategies that calt is clear that the associated constant¢ @nd R in this
incorporate optimization [12], [13]. case) characterize .the aggressiveness of the trajectofries

Recent work on these parametrization include [11], [10ﬁhe system. In Section II_-C we make use of several_lemmas
where approximate controllability of any initial conditido 0 construct a parar_netnc Ipwer bounds on the radius. The
steady state is explored. The series expansion technigees uboqnd can be_used In practice to guarantee convergence over
for heat equations have been used since the work of Gevr@y,g'ven domain.
while inverse problems have been addressed as early as BieSeries Solution
work by Hill [8]. Specifically, Hill gives a complete solutio
to the inverse Stefan problem with a linear heat equatien, i. -
Up = Uz - Repentl_y a nonlinear_ heat e_quation over a cons_tant u(z,t) = Z an_('t)[z — (] @)
spatial domain, with a quadratic reaction term, was exathine n:
by RquIph and Lynch [_11]' . For the solution (2) to satisfy

In this paper we combine the two issues: the free boundary
(Stefan) problem with a quadratic nonlinearity. Using the Up = Ugg — VUy — pu?, Y(2,t) € D,
work in [11] as a starting point, we prove convergence of
series solution. Then a parametric study on the seriesgadi
of convergence is carried out. Moreover, we prove that the n=2 9

< )an2k ag
k=0

Consider the series solution

n=0

ea,(t) coefficients must satisfy the recurrence equation

parametrization can indeed can be used for motion planning» = dn—2 — an—1y +van—1+p

purposes; computation of the open loop motion planning is K

straightforward. We also give brief simulation results. ®3)
The Stefan problem we consider is a first step towardsheren > 2, with ag = 0 (arising from theu(y(¢),t) = 0

a more complex problem for multidimensional reaction€ondition) anda; = —y (arising from the Stefan condition

diffusion systems investigated in [6], where three chemica-u,(y(t),t) = y(t)). These necessary conditions are also
species balance equations contain second order reactmufficient. From (3) it is clear that given(t), all the series
terms. Extension of our approach to a fourth order radiatiocoefficientsa,,(¢t) and therefore the temperatutg¢z, t) and
term, i.e. the Stefan-Boltzmann condition, is a subject fopoundary condition&(¢) and«(x) are uniquely determined.
future work. A model with this condition arises in crystal By majorizing the series in (2), we will prove that this
growth furnaces, where a solid phase is surrounded by aolution converges absolutely. We now state the first of two
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main theorems in the paper. The proof makes use of twbhe third term in (6) is majorized as
lemmas stated in the appendix.

Theorem 1:Given thaty € C*°[0,T] is Gevrey of order

l
—Dfor1<a<?2ie. l m
(a—1)for1<a<2ie Z() Hy +1’
m=0 m
dM,R >0 such that Lo/ M2A2 (] Cm— I)1emle
1 AL S Z ( )Rl+nm2Rm( +Tzn _,rn]_)la)l 2
‘yHU(t)‘ < Mo, ¥I=0,12,..% € [0.1], !
_ MA" (I +n)* | MR nl*!
the radius of convergence of the series has as a lower bound RiAn=t - plaml A (I+n)e
the unigue positive roof = n* of the polynomial
o= 7 Z ( ) l+n—m—1)%ml*
m=0
pM 1 9 v+ M
~1=0. (4
( 2>n +(R>n-+< 5 )7 0. (4)
Proof: By induction onn, we prove that for alh = Using Lemma 2 and Lemma 3, we can bound the term
0,1,2,..., the coefficients satisfy the bound
l
MAr—T (l—l—n)‘“ <l) l4+n— Y P
0 ()] € Fre s Y1=0. 1,2 . (5) mzo m) (T m=Dlml® <
l [0
-1 +1
for someA > 0. The coefficientug = 0 satisfies (5) trivially [Z ( ) (l+n—m-— 1)!m!] = [(n)n#} ,
and we examine = 1 as the base case, since the recurrence Lm= '
is defined forn > 2. Namely, fora; = —y,
resulting in
Wl _ | a1 e M ,
)] = [y )| < M < 7 e+,

l t=m)| |, (m+1)| < MA™1 (I+n)*[MR
and the last inequality is strict when> 0. By inductive > m ‘an—l Hy ’ = RAn—1 pla—t | Anl"
hypothesis, we assume now that (5) holds for all= m=0
0,1,...,n — 1 and prove that it must also hold far= n.
Taking an absolute value aridime derivatives of (3), after The fourth (nonlinear) term in (6) is majorized as

the triangle inequality we have
n—2
k

n—2

bmwn‘ Py

Ap o
k=0r

MN

G H (I=r)

l
l —m
| <o+ 3 () oo
m=0

3 |l
| <

NN e <p'“<n2>(z>x
r —r <
o2 3 () (el 22
) M2A™4 (n 41—k — 2)1°(1 + k — r)l®
The first two terms in (6) can be majorized using (5) as RiAn—4 (n—k —2)la-lfla—l
MA™ Y (I +n)le

(l+1) MA™3 (l+n-1)« — Rin-1 pla-1l
Un-2"| = Rlin=2 (n —2)le—l pMR3 nlo—t 712_:2 n—2 1

_ MA™ (14 )1 [ R (n(n— 1)) A e 2\ k) (k-2 Tpe]

T Rl pla=l | A2 ([4p)e ’ ! - @

" l
n—2 _ 1)1 — Lk —92) —r)!
Va(l),l‘,l/]wlA (I+n-1) X {Z(r>(n+r E—2)1(1+k 7“)} ],

n Rl+n—2 (Tl— 1)!04—1 r=0

 MA™ (14 )l _1/5 no—1 }

RiAn=1 plo=l [" A (I +n) where the last inequality makes use of Lemma 3. Using
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Lemma 2 we have
"2‘22 n—2 1 y
k (n—Fk—2)la-1fle—1
k=0
{ l

= (oer ok}

B n—2 n—29 1 y
- k) (n—k—2)le—Tkla-1

ikz!(n — k=2l (n+1-1) }“

(n—1)!

3l T

k=0
— (n—1)(n—2)! {%}a _ %
resulting in
() () e o

k=0 r=0

nle—l

MA L (I +n)® [pMR? nl*=! (n+1-—1)°
- RHn-1 { A3 (I+n)l* (n—1)led ]
 MA (I +n) [pMR® [ n \®

: e () |

Rl+n71 n!afl AS n

Collecting the terms f%r (6) and noticing that far > 1,
[>0,anda > 0, [ < 1 holds, we have

n
n+l

MA1 (1 4 n)lo
— RlJrnfl n!afl
R (n—1)~71
[ﬁ n

a®

n

(v+ M)R
An

pMR3
A3 n |’

The terms in the square brackets are bounded using
(n—1)>"1

(n—1)'
max =
n>2, a€ll,2] n n

<1
(n>2) ~

With these bounds, we have

MA™! (I + )l
— Rl+n71

(Y s (1) oo (2

Given (M, R, p, v), the parameted is chosen such that

(Y o0 (5) o (2

af)

n!ozfl

=1 ()

implying that (5) is proven by induction. Using (5) and the
Cauchy-Hadamard Formulathe radius of convergence is
given by

1 MAn-1
> | lim |[———
limsup,,_, |an/nl|1/" n—oo | RMI
A 1/n R
= 1. — | — = —.
oo A {MR] A

Denoting this lower bound on the radius of convergence as
n = R/A and substituting into (7) yields (4). Existence and
uniqueness of the positive ropt= n* are now proven. Given
(M, R, v, p) > 0, define the positive, analytic and strictly
increasing functiom — f(n) as

f(n) = (%) 7+ (%) n°+ (H;M> n. (8)

The positive root)* of the equationf(n*) —1 = 0 exists and

is unique since f(-) —1)(n) is analytic and strictly increases

from —1 to +o00 asn grows from0 to +oo. ]
Remark 1:We give here analytic expressions of the first

five coefficients of the series (2) so one can see how the

successive derivatives gf appear through recurrence (3)

ar = —y
ag = —y(v +79)
as = —jj+ i — vy

ag = —§(2v+9) — 9" + vy’ + (V° +20)9% — 1%y
a5 = =y = 307§ + 57 — 2wy + 4pj°
+ (4 +2v(v? +4p)) 97 + (vi® — vy
C. Parameterizations of Radius of Convergence

This section is concerned with a parametric lower bound
onn*. The bound is achieved using the following lemma.

Lemma 1: For all a, b, ¢ strictly positive real parameters,
the unique positive roo4® of

a? + b +en—1=0
is lower bounded by

—c+ /2 +4(a/c+b) 9
2(a/c+0b ©

Proof: The functionn — an® +bn? + cn— 1 is analytic
and strictly increases from1 to 400 asn grows from0 to
+o0. Definehy (n) = an® +bn?, ha(n) = 1 —cn. The graphs
of hy and hy intersect at)®. Sinceh; > 0 on |0, +oo| it is
clear thatn® < 1/c.

On]0,1/c[ it is easy to check that;(n) < (a/c + b)n?.
On this intervalh, is a strictly increasing function while
ho is strictly decreasing. Lefy be the unique positive root
of (a/c+b)n? = 1 — cn and we get that, (7)) < ha(7),
yielding /) < °. Finally

—c+
>

2+ 4(a/c+Db)
2(a/c+0b)
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B noted that ag" gets largen* tends to2/v and so does its
Whena = pM/2,b=1/R andc = (v + M)/2, it is clear lower bounds).
that n° corresponds te;*. We now give the main analytic
result of the paper regarding convergence of the propose u(x,t) temperature
solution, making use of the last lower bound. '
Theorem 2:Given v,p > 0 and assuming thay <

C>0,T] is Gevrey of ordef(law — 1) for 1 < o < 2, i.e. 0.02
i
IM, R>0 such that ‘y(l“)(t)' <Mp 0.015
vi=0,1, 2, .., the radius of convergence of the series (1. / AR
(2) is greater thanm as given by formula (10) /llll%%%"’él‘,ﬁ\&‘\{s‘\“ \%&
This result can be complemented with tighter bounds for thi 0.005| II"("I’I[IIIII“;\%‘{\%& §§\\\‘\§\\:\\
special case whep is large andv is small (see [2]). i \“\‘\\R*s‘ ‘s}\‘

D. Numerical Simulations 100 T

Assume one wants to grow the liquid column from an
initial length 1.0 with uniform zero temperature to a final
length 2.0 with uniform zero temperature. This problem is t 00
challenging since the actuation is at the fixed boundary, a
surface opposite to the melting interface. As such, the -open
loop control must compensate for both the energy loss due tdi9- 4. Temperature profile for transition from column lengttp12.
melting at the interface and due to the diffusion and reactio
terms. The derivation of the Gevrey constants fgrabove and

For practical purposes of course the series solution (2) fgore simulation results are detailed in [2].
truncated for implementation. For steady-state to stesiale
column growth, the interface motiof(t) is defined as

I1l. CONCLUSIONS ANDFUTURE WORK
In this paper, we have considered boundary control of a

L+ AL if 7 >T, simplified model of crystal growth. The problem includes two
y(r)=q L+ALg(r/T) i T>7>0, technical difficulties: the moving boundary and a quadratic
L if 7 <0, reaction term. When combined, these issues make con-
where vergence substantially more difficult to study. We derived
£(r) conservative results that can indeed be used in practice, as
g(7) = W’ 7€ [0,1], shown in the simulation section. The solution we propose
must be used with caution or a physical requirement of the
and model, namely non-negativity of the temperature in theitiqu
. phase, may not be satisfied. It has been shown in [2] that
f(r)= { e ih7>0, this physical requirement is asymptotically satisfied as th
0 if 7 <0. transient time from one stead-state to another becomes. larg
The functiony defines a smooth transition fromto L+ AL An issue for future work is the study of approximate
in liquid column length, with Gevrey constants foj equal  stabilizability of the model studied in this paper. Reptagi
to the zero initial conditionu(z,0) = 0 by an arbitrary initial
ALe? T condition u(x,0) = (x), is it still possible to steer the
M= T—\/ﬂ’ =1 system (at least approximately) to zero in finite time, i.e.
. . . u(z, T) = 0?
We take the first 10 terms to approximate the soluti@n, ¢). Usually, such a result arises from a projection of the

Steady-state to steady-state simulations are considered a jnjtial condition onto the formal series expression (refer

is easy to verify;) = 0. Figure 4 shows the temperaturety [10]). Straightforward conditions are thus available fo

- . . . s 2n)!
AL = 2.0. The analytic bound in (10) yield§ = 2.0619 the fact that the set of polynomiais”, n € N is dense in

which guarantees convergence over the desired domain. RRE set ofL? functions. In a simple manner, the conditions

this case, we numerically computed = 2.2506, showing o1t in specified values for all the derivatives ipft the
the relative conservatism of (10) quantitatively. It is te b

initial time 0.
1The function chosen above is based upon an unpublished work o In our C".’lse the series expansion !S much d”'ferent: Due
Francois Malrait done aEcole des Mines (see [2]) to the moving boundary and the nonlinear effect, no simple
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0= 4(pRMiU+M) (=R +M)? + VE2(v + M)T + 16(pM (v + M) + R(v + M)?)) (10)

Fig. 3. Bound for Theorem 2.
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APPENDIX: TECHNICAL LEMMAS
Lemma 2:

[e3

k=0 - \k=0 . 412]
Proof: The proof is an easy extension of that for th
casecy, =1, Vk =0,1,...,1, given in [7]. [ |

[1] J. R. Cannon. The one-dimensional heat equatjo
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