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Abstract

Decentralized control methods are appealing in coordination of multiple vehicles due to their low

demand for long-range communication and their robustness to single-point failures. An important

approach in decentralized multi-vehicle control involves artificial potentials or digital pheromones. In

this paper we explore a decentralized approach to path generation for a group of combat vehicles in

a battlefield scenario. The mission is to maneuver the vehicles to cover a target area. The vehicles

are required to maintain good overall area coverage, and avoid obstacles and threats during the

maneuvering. The gradient descent method is used, where each vehicle makes its moving decision

by minimizing a potential function that encodes information about its neighbours, obstacles, threats

and the target. We conduct analysis of vehicle behaviors by studying the vector field induced by the

potential function. Simulation has shown that this approach leads to interesting emergent behaviors,

and the behaviors can be varied by adjusting the weighting coefficients of different potential function

terms.

1 Introduction

Autonomous unmanned vehicles (AUVs) are receiving tremendous interest due to their potentially revo-

lutionizing applications in defense, transportation, weather forecast, and planetary exploration [1]. These

vehicles are often deployed in groups to perform complicated missions. Communication is often limited

in these applications due to the large number of vehicles involved, limited battery power, and constraints

imposed by environmental conditions or mission requirements. Hence a decentralized approach to co-
∗This research was supported by the Army Research Office under the ODDR&E MURI01 Program Grant No. DAAD19-

01-1-0465 to the Center for Networked Communicating Control Systems (through Boston University).

1



ordination and control of multi-vehicles is especially appealing. A decentralized method has another

advantage over a centralized one: it is more robust to the problem of single-point failure.

Inspired by the emergent behaviors demonstrated by swarms of bacteria, insects, and animals, control

methods which yield desired collective behaviors based on simple local interactions are of great interest

[2, 3, 4]. Artificial potentials or digital pheromones are typically involved in such methods for multi-

vehicle control, see e.g., [3, 5, 6, 4] and the references therein. The potential function method has been

used in various robotic applications [7]. The idea is to derive a force or other input (e.g.,velocity) from

some potential function which encodes relevant information about the environment and the mission.

In this paper we explore a decentralized approach to path generation for a group of combat vehicles

in a battlefield scenario using the potential function method. The mission is to maneuver the vehicles

to cover a target area. The vehicles are also expected to maintain good overall area coverage during the

maneuvering, and avoid obstacles and threats. At every time instant each vehicle evaluates its potential

function profile and decides its velocity based on the gradient descent method. The potential function

consists of several terms reflecting the objectives and the constraints. It is constructed in such a way

that only information about neighbouring vehicles, local information about dynamic threats, and some

static information (about stationary threats, targets) are involved.

We analyze vehicle formations at equilibria by taking the sum of potential functions of all vehicles

as a Lyapunov function candidate. We also study the behavior of a vehicle experiencing both attraction

from the target and repulsion from the obstacles by analyzing its vector field. Simulation is performed

in Matlab, and it shows that the decentralized approach leads to interesting emergent behaviors, and

the behaviors can be varied by adjusting the weighting coefficients of diffrent potential function terms.

The remainder of the paper is organized as follows. In Section 2 we describe the problem setup and

construct the potential functions. We perform analysis of vehicle behaviors in Section 3. Simulation

results are reported in Section 4. Section 5 concludes the paper.

2 Potential Functions

We study the kinematic planning problem for N vehicles moving on a (two dimensional) plane. Extension

to three dimensional space is straightforward, although the analysis will be more complicated. Each

vehicle is treated as a point. The coordinates of the i-th vehicle Vi is denoted as pi = (xi, yi), 1 ≤ i ≤ N .

The task for the vehicles is to move toward and then occupy a connected target area A ⊂ R
2. They

should avoid to crash into obstacles that are distributed in the battlefield. There are also threats, both
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stationary ones and moving ones, that endanger the vehicles if they are close. We assume that each

vehicle has the knowledge of locations of stationary threats, and it can detect a moving threat if the

threat is within the distance Rm.

The vehicles can talk to each other and exchange information about their positions and velocities if

they are within the neighbouring distance Rc. Let V(t) be the set of vehicles alive at t. For Vi ∈ V(t),

we define its neighbouring set

N (Vi)
�
= {Vj ∈ V(t) :‖ pi − pj ‖≤ Rc}.

If two or more vehicles get too close, there is a chance of collision. That also makes it easier for the

enemy fire to target the vehicles. Another disadvantage of being too close is that the overall coverage

area is small. On the other hand, if vehicles are too far apart, they lose contact. Therefore, there is an

optimal distance r0 < Rc between two vehicles.

From the above discussions, there are multiple objectives/constraints when a vehicle makes the

moving decision. To accomodate that we construct a potential function J̄ i
t for each vehicle Vi at time t,

where J̄ i
t consists of several terms, each term reflecting a goal or a constraint. To be specific,

J̄ i
t = λgJ

g(pi(t)) + λnJn(pi(t), {pj(t)}j �=i) + λoJ
o(pi(t)) + λsJ

s(pi(t)) + λmJm(pi(t), t), (1)

where Jg, Jn, Jo, Js, Jm are components of the potential function relating to the target, neighbouring

vehicles, obstacles, stationary threats, and moving threats, respectively, and λg, λn, λo, λs, and λm ≥ 0

are weighting coefficients. The velocity of the vehicle Vi is specified by

ṗi(t) = −∂J̄ i
t

∂pi
. (2)

We now describe in detail the components of the potential function.

• The target potential Jg. Denote ρ(p,A) = infa∈A ‖ p − a ‖, the distance from the point p to the

target area A. We then let

Jg(pi) = f g(ρ(pi, A)),

where f g(·) is a strictly increasing function, and f g(0) = 0. This guarantees that in the absence of

other objects, the vehicle will move toward the target. For analysis and simulation in this paper,

we choose f g(r) = r2.

• The neighbouring potential Jn. Since distance (as opposed to direction) is our concern here, we

let

Jn(pi(t), {pj(t)}j �=i) =
∑

j �=i:Vj∈N (Vi)

fn(‖ pi(t) − pj(t) ‖), (3)
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Figure 1: An example of the neighbouring potential function.

where fn : R
+ → R is a differentiable function that has the following properties: a) fn(r) ap-

proaches infinity as r → 0, and is strictly deceasing in [0, r0]; b) it is strictly increasing in [r0, Rc]

and dfn

dr (Rc) = 0. These properties enable two vehicles to keep the optimal distance in the absence

of other objects, and make the dynamics transition seamless when the neighbouring set of a vehicle

is changing. An example of such fn and its derivative is shown in Figure 1, where r0 = 2, Rc = 8.

• The obstacle potential Jo. An obstacle is a connected, closed set (could be a single point) that a

vehicle cannot enter. We assume that there are a finite number of obstacles {Oj}No
j=1. Then

Jo(pi) =
No∑
j=1

f o(ρ(pi, Oj)), (4)

where ρ(pi, Oj) is the distance from pi to the set Oj, and f o(·) : R
+ → R is a strictly decreasing

function and f o(r) → ∞ as r → 0. One example of f o is f o(r) = 1
r2 .

• The potential Js due to stationary threats. Stationary threats can be modeled similarly as ob-

stacles, so that vehicles will avoid to get close to them. Anisotropic threats (dangers that are

direction-dependent) can be taken care of using appropriate potential functions.

• The potential Jm due to moving threats. A moving threat is a moving point mass. The i-th vehicle

is able to see the moving threat Mj if ‖ pi − qj ‖≤ Rd, and is killed by Mj if ‖ pi − qj ‖≤ Re < Rd,

where qj denotes the position of Mj . Let Mi(t) be the set of moving threats in the i-th vehicles’s

detection range, then we let

Jm(pi, t) =
∑

j:Mj∈Mi(t)

fm(‖ pi − qj ‖), (5)

where the function fm : (Re,∞) → R is differentiable, strictly decreasing on (Re, Rd), constant on

(Rd,∞), and fm(r) → ∞ when r → Re. One can see that with this potential function, a vehicle
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tries to keep at least a distance Re from moving threats, and its vector field remains continuous

when moving threats enter or leave its detection range. A simple example for such fm(·) is

fm(r) =




1
(r−Re)2

if Re < r ≤ Re+Rd
2

16(r−Rd)2

(Rd−Re)3(Rd+Re)
− 8Re

(Rd−Re)3
if Re+Rd

2 ≤ r ≤ Rd

− 8Re
(Rd−Re)3

if r > Rd

3 Qualitative Analysis of Vehicle Behaviors

In this section, we analyze vehicle behaviors under the gradient descent method. In particular, we

analyze how vehicles settle down after they enter the target area, and study the behavior of a vehicle

when it experiences both attraction from the target and the repulsion from the obstacles.

3.1 Stability of equilibrium configurations

We first consider multi-vehicles inside the target area. We are interested in knowing whether the vehicles

will settle down for an equilibrium configuration under interactions, and if so, whether the equilibrium

configuration is stable. Here we assume that the only component of the potential function of each vehicle

is Jn.

Proposition 3.1 Let N be the number of vehicles.

1. For any N , the configuration of vehicles converges to an equilibrium under interactions.

2. For N = 2, the vehicles maintain a distance of r0 in the equilibrium configuration and the equilib-

rium is globally stable.

3. For N = 3, assuming that dfn

dr is strictly increasing in (0, r0], there are two possible equilibrium

configurations, equilateral triangular with spacing r0 (Figure 2 (a)), and collinear with equal spacing

r′ (Figure 2 (b)), where r0
2 < r′ < r0 and

dfn

dr
(r′) = −dfn

dr
(2r′). (6)

If dfn

dr is strictly increasing in [r0, 2r0], r′ is unique. The collinear configuration is unstable, while

the equilateral configuration is stable.
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Figure 2: Equilibrium configurations for N = 3.

Proof. 1. Define a candidate Lyapunov function

J({pi(t)}) =
1
2

N∑
i=1

Jn(pi(t), {pj(t)}j �=i).

It’s easy to verify that
dJ

dt
= −

N∑
i=1

‖ ∂Jn

∂pi
(pi, {pj}j �=i) ‖2 . (7)

Hence J is nonincreasing with t. Since J is lower bounded, dJ
dt → 0. This implies that ṗi(t) → 0, ∀i, and

hence the vehicles converge to an equilibrium configuration.

2. When N = 2, J(p1(t), p2(t)) = fn(‖ p1(t) − p2(t) ‖). Writing r12(t) =‖ p1(t) − p2(t) ‖, we have

dJ

dt
= −2(

dfn

dr
(r12(t))2.

Hence r12(t) → r0 as t → ∞, and it’s clear that this is a stable configuration (as long as ‖ p1(0)−p2(0) ‖<
Rc).

3. When N = 3,

J(p1(t), p2(t), p3(t)) = fn(r12(t)) + fn(r23(t)) + fn(r31(t)),

where rij(t) =‖ pi(t) − pj(t) ‖. Then dJ
dt =

− ‖ dfn

dr
(r12)r̂12 +

dfn

dr
(r31)r̂13) ‖2 − ‖ dfn

dr
(r12)r̂21 +

dfn

dr
(r23)r̂23) ‖2 − ‖ dfn

dr
(r31)r̂31 +

dfn

dr
(r23)r̂32) ‖2,

(8)

where r̂ij denotes the unit vector pointing from pj to pi. Eq. (8) implies J is strictly decreasing unless

either

• dfn

dr (r12) = dfn

dr (r23) = dfn

dr (r31) = 0, which corresponds to the equilateral triangular configuration

shown in Figure 2 (a), or

• r̂ij’s are parallel or antiparallel and, assuming p2 is between p1 and p3 (we do not lose generality

since three vehicles have symmetric roles), r12 = r23 = r′ for r′ ∈ ( r0
2 , r0) satisfying (6), which

corresponds to the collinear configuration in Figure 2(b).
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Figure 3: The setup of two obstacles and one target

The equilateral triangular configuration is stable. Indeed, for any perturbation with the corre-

sponding J ∈ (3fn(r0), 2fn(r′) + fn(2r′)), the system will come back to this configuration. The

collinear configuration is not unstable, since small perpendicular perturbation of the middle vehicle

leads to strict decrease of J and the system will converge to the equilateral triangular configuration.

�

Remark 3.1 We note that similar results appeared in [6] where the second order dynamics of point

masses was considered.

3.2 Vector field analysis

First we consider the scenario as shown in Figure 3. The target is located at the origin (0,0). There

are two (point) obstacles located symmetrically about the y axis with coordinates (−a,−b) and (a,−b),

respectively, where a, b > 0. The potential function in terms of (x, y) is taken to be

λg(x2 + y2) +
1

(x + a)2 + (y + b)2
+

1
(x − a)2 + (y + b)2

,

and the associated vector field is


ẋ(t) = 2(x+a)
[(x+a)2+(y+b)2]2 + 2(x−a)

[(x−a)2+(y+b)2]2 − 2λgx

ẏ(t) = 2(y+b)
[(x+a)2+(y+b)2]2 + 2(y+b)

[(x−a)2+(y+b)2]2 − 2λgy
. (9)

We consider a vehicle on the x axis, and study whether it will move toward the target under the

vector field (9) when y < 0 (the case y > 0 is simpler and can be studied similarly). Due to the symmetry,

ẋ = 0, so the real question is whether ẏ > 0. When x = 0,

ẏ =
4(y + b)

[(a2 + (y + b)2]2
− 2λgy. (10)
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y*1
y*

y*2

x

y

Target

Figure 4: Vector field on the x-axis for the case of two obstacles and one target.

Let ỹ = y + b. Obviously, if ỹ ≥ 0, ẏ > 0. In the following we study the case ỹ < 0, i.e., y < −b.

Proposition 3.2 There is a unique solution ỹ∗ ∈ (− a√
3
, 0) to

4ỹ3 − 3bỹ2 + a2b = 0. (11)

Let

λ∗
g =

2
(a2 + ỹ∗2)2

(1 − 4ỹ∗2

a2 + ỹ∗2
).

Let y∗ = ỹ∗ − b. Then

• If λg > λ∗, ẏ > 0, ∀y < −b;

• If λg = λ∗, ẏ > 0 for y ∈ (−∞,−b) except at y∗ where ẏ = 0;

• If λg < λ∗, there exist y∗1, y∗2 such that y∗2 < y∗ < y∗1, and



ẏ > 0, if y ∈ (−∞, y∗2)

ẏ < 0, if y ∈ (y∗2 , y∗1)

ẏ > 0, if y ∈ (y∗1 ,−b)

ẏ = 0, if y = y∗1 or y∗2

,

as illustrated in Figure 4. Furthermore, y∗1 (y∗2, resp.) increases (decreases, resp.) with λ and

y∗1 → −b, y∗2 → −∞ as λ → ∞.

Proof. Let

h(ỹ) =
4ỹ

(a2 + ỹ2)2
.
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Figure 5: Vector field analysis for the case of one obstacle and one target. (a) x-component; (b) y-

component; (c) total vector field.

Since
dh

dỹ
=

4(a2 − 3ỹ2)
(a2 + ỹ2)2

, (12)

h(ỹ) is strictly decreasing on (−∞,− a√
3
), and strictly increasing on (− a√

3
, 0). From (12), dh

dỹ is also

strictly increasing on (− a√
3
, 0). Graphical analysis reveals that there exists a unique λ∗

g, such that

the line l(ỹ) = 2λ∗
g(ỹ − b) is tangent to the curve h(ỹ) at a unique ỹ∗ ∈ (− a√

3
, 0). After algebraic

manipulations, one can show that ỹ∗ satisfies (11) and λ∗
g is defined by (3.2). The remaining claims of

the proposition follow from the graphical analysis. �

Next we investigate the motion of a vehicle in the presence of one target point (0,0) and one point

obstacle (0,−b). Here no constraint on the vehicle position is imposed except that we focus on the region

y < 0. The vector field is 


ẋ = 2x
[x2+(y+b)2]2

− 2λgx

ẏ = 2(y+b)
[x2+(y+b)2]2

− 2λgy
. (13)

We will discuss ẋ and ẏ separately. It’s easy to show that



ẋ > 0, if (x, y) ∈ {x < 0 : x2 + (y + b)2 > 1√
λg
} ∪ {x > 0 : x2 + (y + b)2 < 1√

λg
}

ẋ < 0, if (x, y) ∈ {x > 0 : x2 + (y + b)2 > 1√
λg
} ∪ {x < 0 : x2 + (y + b)2 < 1√

λg
}

ẋ = 0, if x = 0 or x2 + (y + b)2 = 1√
λg

,

as shown in Figure 5(a). We denote by C the circle with radius 1√
λg

centered at (0,−b).

For ẏ, it’s straightforward to verify

ẏ > 0 if x2 + (y + b)2 >
1√
λg

or y ≥ −b.

9



However, the analysis is much more involved when y < −b and (x, y) is inside the circle C. The technique

used in the proof of Proposition 3.2 turns out to be relevant here. Again let ỹ = y + b. Writing

hx(ỹ) =
2ỹ

[x2 + ỹ2]2
,

for fixed x, we have
dhx

dỹ
=

2(x2 − 3ỹ2)
(x2 + ỹ2)3

. (14)

From (14), we find that hx(ỹ) is strictly decreasing on (−∞,−
√

3
3 |x|) and strictly increasing on (−

√
3

3 |x|, 0)
with its derivative strictly increasing on (−

√
3

3 |x|, 0). Hence there exists a unique λx
g , such that the line

l(ỹ) = 2λx
g (ỹ − b) is tangent to the curve hx(ỹ) at a unique ỹx ∈ (−

√
3

3 |x|, 0). It’s easy to verify that ỹx

is a solution to

4ỹ3 − 3bỹ2 + bx2 = 0, (15)

and

λx
g =

b2

16((ỹx)2 − bỹx)3
. (16)

Lemma 3.1 Both ỹx and λx
g strictly decrease as |x| increases.

Proof. By the implicit function theorem, ỹx is a differentiable function of x2. Differentiating (15) with

respect to z = x2 leads to
dỹx

dz
=

−b

12(ỹx)2 + 6bỹx
< 0,

since ỹx < 0. From (16), λx
g also strictly decreases as |x| increases. �

From Lemma 3.1, for fixed λg > 0, there exists x̂λ > 0, such that



λx
g = λg if |x| = x̂λ

λx
g > λg if |x| < x̂λ

λx
g < λg if |x| > x̂λ

.

Similarly as in Proposition 3.2, we have

• if λg > λx
g (i.e., |x| > x̂λ), ẏ > 0, ∀y < −b;

• if λg = λx
g (i.e., |x| = x̂λ), ẏ > 0, ∀y ∈ (−∞,−b) except at yλ = ỹx̂λ − b where ẏ = 0;

• if λg < λx
g (i.e., |x| < x̂λ), there exist yx

1 and yx
2 such that yx

2 < ỹx − b < yx
1 ,and




ẏ > 0, if y ∈ (−∞, yx
2 )

ẏ < 0, if y ∈ (yx
2 , yx

1 )

ẏ > 0, if y ∈ (yx
1 ,−b)

ẏ = 0, if y = yx
1 or yx

2

.
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Lemma 3.2 x̂2
λ + (ỹx̂λ)2 < 1

λg
. When |x| < x̂λ, yx

1 (yx
2 , resp.) increases (decreases, resp.) as |x|

decreases, lim|x|→0 yx
1 = −b, and y0

2 + b > − 1√
λg

.

Proof. As is easy to verify, ẏ > 0 at (x, y) if x2 + (y + b)2 > 1
λg

. Since ẏ = 0 at (x̂λ, ỹx̂λ), the first claim

of the lemma holds.

Since for any ỹ < 0, hx1(ỹ) > hx2(ỹ) if |x1| > |x2|, graphical analysis reveals that yx
1 (yx

2 , resp.)

increases (decreases, resp.) as |x| decreases, and lim|x|→0 yx
1 = −b. Again, since ẏ > 0 at (x, y) if

x2 + (y + b)2 > 1
λg

, the point (0, y0
2) is inside the circle C, i.e., y0

2 + b > − 1√
λg

. �

Figure 5 (b) and (c) sketch the y-component of the vector field and the total vector field, respectively.

We can see that the only point where ẋ = ẏ = 0 is (0, y0
2). But this is an unstable equilibrium as one can

tell from Figure 5(c). We can also verify that the linearized system at (0, y0
2) has a positive eigenvalue.

4 Simulation Results

In this section we present some results of simulation performed in Matlab. As shown in Figure 6(a),

we have ten vehicles (the dots), two obstacles (the solid circles), one target (the dashed circle), and one

moving threat (represented by the cross). The moving threat is assumed to move around the target

with a constant angular velocity ω. We don’t assume any stationary threats in the simulation. The

velocity magnitude is bounded by 1. The Matlab function “fconmin” is called to solve the constrained

optimization problem for each vehicle at every time instant.

Figure 6 and Figure 7 show snapshots of the trajectories of the vehicles. The weighting constants

used in Figure 6 are λg = 50, λn = 5, λo = 105, λm = 104. The angular velocity of the moving threat is

ω = 10. We observe that due to the relatively high weight on obstacles, the vehicles take long paths to

avoid vehicles; however, if we change λo to 104, they take the shorter path passing the “potential valley”

between two obstacles (Figure 7).

Figure 8 shows the effects of λm. When λm = 104, vehicles can successfully enter the target area

(Figure 8 (a)), while they fail to do so when λm = 105 (Figure 8 (b)).

From the simulation results, we see that the decentralized approach based on potential functions

lead to some emergent behaviors of vehicles. In addition, we can modify the behaviors by appropriately

changing the weighting constants.
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Figure 6: Snapshots for the case λo = 105: (a) Initial positions; (b) Vehicles detouring to avoid obstacles.
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Figure 7: Snapshots for the case λo = 104: (a) Initial positions; (b) Vehicles passing the “potential

valley” between obstacles.
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Figure 8: Effect of the parameter λm: (a) λm = 104 (vehicles enter the target area); (b) λm = 105

(vehicles fail to enter the target area).

5 Conclusions

In this paper we have developed a decentralized approach to coordination and control of multi-vehicles

using potential functions. We designed potential function terms for different objectives or constraints. A

battlefield mission scenario was considered, where the vehicles were required to occupy a target area (or

point), avoid obstacles, evade threats, and maintain reasonable inter-vehicle distances. Preliminary anal-

ysis of vehicle behaviors was presented. Simulation was conducted and interesting emergent behaviors

were observed.

The most important advantage of this approach is simplicity since only local and static information

is needed in the path generation. It is also flexible and robust, which is of vital importance in complex,

dynamic environments such as the battlefields. The disadvantage is that the possibility of being trapped

in local minima exists, which has been a long time concern in the studies of the potential function method

[8]. Practically interactions between vehicles and dynamic changes in the environment may prevent a

vehicle from being trapped. Artificially introduced perturbation will also help to resolve this problem

[9].

Ongoing work includes analysis of vehicle behaviors in the presence of vehicle interactions as well as
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attractions/repulsions from other objects.
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