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Abstract—Minimal dimension dynamic covers play an im- Turning such an approach into an efficient and numerically
portant role in solving the structural synthesis problems of reliable algorithm is not straightforward. A first difficulty
minimum order functional observers or fault detectors, or in \ynen performing the computations in [17] (see also [4]), is
computing minimal order inverses or minimal degree solu- th dt d th t tri ¢ ial ical
tions of rational equations. We propose numerically reliable e nee . ore UF:P'_ e sysiem ma rlqes 0 a;peua canonica
algorithms to compute two basic types of minimal dimension form which exhibits the structural information necessary
dynamic covers for a linear system. The proposed approach is to solve the problem. However, this canonical form can
based on a special controllability staircase condensed form of only be computed by using non-orthogonal transformations
a structured pair (A, [Bi, Bs]), which can be computed using o jted from a special basis selection procedure and is based

exclusively orthogonal similarity transformations. Using such a on rank decisions involving successive powersAof This
condensed form minimal dimension covers and corresponding ISI Involving su Ve pow :

feedback/feedforward matrices can be easily computed. The approach is basically equivalent to test controllability by
overall algorithm has a low computational complexity and is checking the rank of the explicitly constructed controllability
provably numerically reliable. matrix, which is known to be a notoriously ill-conditioned

I. INTRODUCTION computational problem [7]. The second aspect is the possibly

. - h ional high computational complexity. Although the basis selection
Our main motivation to address the computational asqqrithms can be turned into reliable numerical compu-

pects of determining minimal dimension dynamic covers I85tions using, for example, the technique for the calculus

the following concrete problem encountered ir_l the deSigvr\‘/ith subspaces proposed in [5], the resulting algorithm has
of least order fault detectors [14], [13]: for given Proper, \vorst-case computational complexity 6{n?), wheren

ra.ltlonall matrlcelegA) and XQ,O‘) with the same row is the order of A. This high complexity is the result of
dimensions, determine appropriate propefA) such that o neeq to accumulate and apply at each reduction step
X1(AN)Y(A) + X5(A) has the least possible McMillan de- o orihogonal transformations performed at one step (e.g.,
gree. Let(A, [B, By}, C, [Dy, D,]) be a minimal state-space o |eft and right orthogonal transformations to compute
realization of[ X, (A) X2(A)] satisfying singular value decompositions). Thus it appears that there
[X1(A) X3(A)] = C(M\ — A)~'[By By] + [ Dy D] is no satisfactory algorithm to compute minimal dynamic
covers and the associated feedback/feedforward matrices.
It was shown in [6] that under certain conditions (i.e., |n this paper we propose a numerically reliable and compu-
maximally observable realization), determining the approgtionally efficient approach to compute a feedback mafrix
priate Y'(\) can be recast as a problem to compute a stajghd a possibly nonzero feedforward matfixto achieve the
feedback matrix” and a feedforward matrié to achieve the desired cancellation of maximum number of uncontrollable
cancellation of a maximum number of uncontrollable pole§o|es in (1). We solve the problems of determining b#th
of the transfer-function matrix and G or only F' which lead to cancellation of maximum
RO\) = Cr(M — Ap)~'Bg + Dg ) number of uncontrollable poles. Solving these prqblem§ _in-
volves to compute bases for subspaces representing minimal
whereAp := A+ B1F, B = BiG+ By, Cr = C+ D F, dimension dynamic covers @¥pe IlandType | respectively
and Dg = DG + D-. Different instances of this problem (see [4]). The main computational ingredient in these compu-
appear in solving various structural synthesis problems, as ftations is bringing the system matrices into special condensed
example, the design of minimum order functional observerf®orms which exhibit the structural information necessary to
[4], determining minimal order inverses [1] or computatiorsolve the problem. For the matrices in these condensed forms
of minimal degree solutions of rational equations [6]. In althe computation of appropriaté and G is a simple, almost
these cases, the proposed solution procedures reformultteial task.
these problems as minimum dynamic cover problems, which The algorithm to compute the condensed form has two
can be solved using the "standard” method of [17] relying ostages: (1) an orthogonal reduction of the structured pair
subspace manipulation techniques employed in the geometfid, [B,, B2]) to a special controllability staircase form;
theory of linear systems [16]. and (2) a non-orthogonal transformation to zero addition-



ally a minimum number of elements followed by specialStage I: Special Controllability Staircase Algorithm
row/column block permutations. The orthogonal reduction Setj = 1, r = 0, k = 2, 1% = my, X = my, AO =
part is based on employing techniques similar to that usedA B(O) B, B(O) By, Z =1I,.

in the controllability staircase form algorithms for standard

systems [9], [8]. This part involves many rank decmong Cc()r?%ute the Orttholn al matri, to compress the matrix
which can be computed by using reliable techniques (e.g., e R to a full row rank matrix

singular values based rank evaluations). The non-orthogonal

part of the reduction does not involve any rank computations ()
; : ; T n(i—1) Ap_1k-3 | 1y

and is performed to allow an easy computation of appropriate Ul B = [ 0 ] )

feedback/feedforward matrices. The overall algorithm has a 1) P1

low computational complexity and is provably numerically v’

reliable.

In the last part we also address shortly the solutioR- ComputeU{ BY " and partition it in the form
of minimum cover problems with stability constraints. In
the case the minimum cover problem with stabilization is 4 )
solvable, we propose a reliable computational solution to this UlTBéj_l) — { k—1,k—2 } Y

o - : : ()
problem by exploiting the existing parametric freedom in the Xl py’
cover determination problem. yéj_ )
Il. COMPUTATION OF TYPE Il MINIMAL 4. Compute the orthogonal matri%, to compress the matrix

DYNAMIC COVERS X e R(nfr V(J))Xl/é‘]

The computational problem which we solve is the follow-
ing: given the pair(4, B) with A € R"*", B € R™™,

to a full row rank matrix

(7)
and B partitioned asB = [B; By] with B; € R"*™, Ul'X = { Ap k-2 } V%)
By € R™™2, determine the matrice” and G such 0 ps
that the pair(A + B, F, BiG + B;) has maximal number uéj_l)

of uncontrollable eigenvalues. This problem is essennally , _ .
equivalent [6] to compute a subspagéaving least possible 5. Compute diagl, U )UT AU~D U, diag(I,Uz) and parti-

dimension satisfying tion it in the form
(A+BF)YV c V ,
spanB1G + Bs) C V Ap-1k-1 Ar—1k  Ak—1k+1 ij,)
If we denoteB; = spanB; andB, = spanB,, then the above A’“véfjgl A’@.’; A’fv’ﬁl Véjl)
conditions can be rewritten also as conditions definifiye By By A(j' oY)
Il dynamic cover [2], [4] ) ) p§
AV c V4B (2) 6.Compute fori=1,...,k—2
B, C V+ B
The computation of the minimal dynamic covers relies A g1 Urdiag(l, Us) := [Ai(’k)—l A(l)k Ai,kzr,l)]
on the reduction of the paifA, [B1, B2]) to a particular v vy ps
condensed form, for which the solution of the proble . .
P .2 — zdiagL,, Uy) diag I, ., Us).
1

is simple. This reduction is performed in two stages. Th

first stage is an orthogonal reduction which representsg,. . . V(J) + ,/(J) if p(y) — 0 then? = j andExit 1.

particular instance of the controllability staircase procedure (J) G ) o

of [9], [8] applied to the paif A, [By, Bs)). This procedure 9-If i7" + a7 =0thenk —k -2, =7 —1, Exit 2;

can be seen as an orthogonal variant of the basis selectlorfalse jeJ+1L ke k+2 andgo to Step 2.

approach of [4] and therefore will be useful to construc@t the end of this algorithmd = Z”AZ and B = 27 B

both Type Il and Type | minimal covers. In the second have the following form

stage, additional zero blocks are generated in the reduced

matrices using non-orthogonal transformations and by _ A« , N B ,

applying appropriate feedback and feedforward matrices.A = [ O( A ] B = [ OC }

From the resulting overall transformation matrix, a basis , n_cr

for the minimum dynamic cover can be easily obtained. In

what follows we present in detail these two stages. where the pair(A., B.) has only controllable eigenvalues,
and A; contains the uncontrollable eigenvalues 4f The

b

n—r n—r



pair (A., B.) is in the special staircase form with With the computedﬁ and G we achieved that

(A1 1 Ay olAn Avs- - A s Avse s Avse ] Ao O
O ApolAoi Asg-- Agop—o Az -1 Az e 0 (2)’0
O O |As1 A3y Az g9 As0—1 As e B.1B..G+B _
[BelAc]=| O 0|0 Agp- Aspe—s Aspeioy s o1 Pe1lr ¥ o2 O O
| O O |0 O ---Aypap oAz 20-1A202¢] L O O]

() 5, G-1) [Ay O -~ O Ajpq O
where A2j71’2j73 € R ™M and Agj’gjfz S ’

NN . . Agy Agg - Azrn Anpr1 Agae
R" *"2 are full row rank matrices foj = 1,...,¢. _ o As; O --- O As00 1 O
To compute a Type Il minimal cover, in the second Ac+BciFe= | o 4, .. i,

_ _ < Agoro Agoe1 Ago
reduction stage we use non-orthogonal upper triangular )

transformation matrice§’ = diag(U,, I,,_..), respectively, o : : :
to annihilate a minimum set of blocks if.. AssumelU, has L O O -+ Azpor—2 Azp20-1 Ase20 |

a supra-diagonal block structure identical to that4ef The  where the elements with bars have been modified in Stage
following procedure performs the second reduction stage

by exploiting the full row rank of submatriceds,—1 2,3 Consider now the permutation matrix defined by
to zero the blocksds;_1,25, for j =k —1,k,..., ¢ in row _ -
2k — 1 of A,. O II/;I) o) 9] 0
Stage Il: Special reduction for Type Il Covers : : g : : :
SetU = I. . o 0|10 Lw| O
for k=¢0,0-1,...,2 P= Iv{” o]0 O % ©)
for j=k—1,k,....0 : : N : :
ComputelUsy,_3 2, such that O O |-|lw O [9)
@) o |---| O O | I,

Aok—1,25—3U2k—3,2; + Aog—1,2; =0 ~
2b1,2k-302k-3,2) F A2k-1,2) If we defineV = ZUP and F = [ F. O]V !, then overall

Fori=1,2,...,2k — 1 compute we achieved that

Ajoj — Aioj + Aiok—3Usi—3.2; VBG4 By) =

Q QB

Fori=2j—2,...,2¢ compute

Al * *
—1 _ o
Aop—3,i — Aop—3,; — Usi—3,2;A2ji VTI(A+BIF)V = O Ay = )
0O 0 A;
end where
end AQ,O Z2,2 52,4 T EQ,%
At the end of Stage IlI, the upper triangular matfi . . O | Ay2 Asa Au o
contains the accumulated non-orthogonal transfgrmatior{sBl A ] = : . . _ :
performed in the reduction. Let, := U7 'A.U., andB. = O O O. A : A '
[Be1 Be2] := U; " B. be the system matrices resulted at the 26,26-2 226,26
end of Stage Il. Define also the feedback maffixc R™**" — _ _
partitioned column-wise compatibly witH. A Aug Ar2e-1
i As1 Asgs . As 201
2 = . . . .

F. =[O Fy - Fy_5 0 Fy) : . . :
O O Ay 1203 Asp 190
where F5; are chosen such that; _1F5; + A; 25 = 0 for 12t=8 %u 1’2f !
j=1,...,L. Choose alsd such thatd; G + A, = 0. It follows by inspection that the paifA;, B) is con-
These choices are always possible sidge ; has full row trollable. Thus, by the above choice df and G, we
rank. mader:1 ufl) eigenvalues ofA 4+ B, F' uncontrollable via



Let A, := U;'A.U, andB. = [ B,y Bes]:= U, B, be
the system matrices resulted at the end of Stage Il. Define
also the feedback matrik, € R™*" partitioned column-
wise compatibly withA,

B>G + By, additionally to then — r uncontrollable original
eigenvalues. The first, = S>'_ 14" columnsV; of V

satisfy

AVy = V1A, — ByFVi, By =ViB; — B,G

F.=[FLOF; - OFy_0]

and thus, according to (2), spargpe Il dynamic cover of
dimensionn,. for the pair(A, [ By Bz ]). The following result
can be shown using the results of [4]:

Theorem 1:The Type Il dynamic coverV = spanV; has
minimum dimension.

where Fy;_; are such thatds gFrj—1 + Az 25—1 = 0 for
j=1,...,¢.
Consider now the permutation matrix defined by

Lo O -] 0 0| 0]
I11. COMPUTATION OF TYPE | MINIMAL 1
DYNAMIC COVERS : : : : :
The computational problem which we solve in this section 0 0 Iui“ 0 ’
is the following: given the paif4, B) with 4 € R"*", Pr=1 0 1o 0O ) @
B € R"™™, and B partitioned asB = [B; Bs] with _ : _ _ _
By € R™™, By, € R™"™2, determine the matrixt : : : : :
such that the paifA + ByF, B;) has maximal number 0 0 % Iu;“ %
of uncontrollable eigenvalues. This problem is essentially L O @) 0 O | I |

equivalent [17] to compute a subspa¢daving least possible
dimension satisfying

(A+ByF)Y C V

If we defineV = ZUP andF = [F, O]V, then overall
we achieved that

By
spanB
panfy <V Vi =| 0
These conditions can be rewritten also as conditions defining o)
a Type I minimum dynamic cover [2], [4] .
Ap % *
4y c V+B @) VAL BFRW=| 0 4, « |,
B <V 0 0 A
To compute Type | covers, we perform first the Stage \I/vhere
orthogonal reduction on the paf, [B;, Bs2]), as done in L o
the previous section. However, at Stage Il the non-orthogonal A 1A Aigs A1
reduction annihilates a different set of blocks . The S 1 O |Asz:1 Asgs Az 201
following procedure performs the second reduction stage bL/B1 Al = : N . :
exploiting the full row rank of submatriceds, 22 to zero O O 0 A A '
the blocksAsg 251, for j = k,k+1,...,¢ in row 2k of 26-1,26=3 F26-1,26-1
A.. _ _ _
. ) Asp Aoy Az 20
Stage II: Special reduction for Type | Covers 5 Ao Aus Ay o0
SetU = I. =1 , :
fork=¢,0-1,...,2 0 O Agora Aspar

for j =k k+1,...,¢

It follows by inspection that the paitA;, B;) is control-
ComputelUsi—_2.2;—1 such that y p paitA,, By)

lable. Thus, by the above choice 6F we madeY"!_, v
eigenvalues ofd + Bs F' uncontrollable viaB;, additionally
to the n — r uncontrollable original eigenvalues. The first

ne =0, " columnsV; of V satisfy

B, =ViB

Asp ok—2Usp—2.9j—1 + Aog2j—1 =0
For:=1,2,...,2k compute
Ajoj1 — Aioj—1+ Aiok—2Usp—2.2j-1 AV, = Vid, — B{FV,

Fori=2j —3,...,2t compute and thus span aype | dynamic cover of dimension, for

the pair (A, [ B2 B;]). The following result can be shown
using the results of [4]:

Theorem 2:The Type | dynamic covery = spanV; has
minimum dimension.

Aop_oi — Aop—2i — Usp—22j—1A2j_1:
end
end



IV. NUMERICAL ASPECTS matrix (3). The matrices of this pair have the form

The key reduction of system matrices to the special - EO gu
controllability form can be performed by using exclusively P'B = 021 52
orthogonal similarity transformations. It can be shown that o 0
the computed condensed matricdsand B are exact for
matrices which are nearby to the original matricesnd B, Ay A A | o
respectively. Thus this part of the reductionngmerically e Agy  Agy Ags | %
backward stable In implementing the algorithm, the row PTAP = O Auy Awa | %
compressions are usually performed using rank revealing 0 52 033 ‘ A,

QR-factorizations with column pivoting [3]. To make rank

determinations even more reliable, QR-decompositions anthere the pair(A;;, Bi2) is controllable, andB,; and

singular value decompositions can be combined (see [9]).has full row rank. Note that the Stage Il special reduction
The rank revealing QR-decomposition is performed bychieves basically to zero the bloek;, while the feedback

employing Householder transformations, and these transfanatrix F' and feedforward matrixz achieve additionally to

mations are immediately applied t8, A and Z, without Zzero Ay; and By, respectively, by exploiting the full rank

accumulating them inJ; and U,. Thus, the reduction is property of By;.

essentially the same as that required to compute the HessenConsider the transformation matrix

berg form of the matrix4, which amounts to about/3n3 I O Olo

floating-point operations (flops). Note that for solving the X I Olo
problem (1), the accumulation df is not even necessary, T= O O I|o
since all right transformations can be directly appliedto O O O ‘ T

The computations at Stage Il to determine a basis for . ) ) ~
the minimal dynamic cover and the computation of feadpartltloned in accordance with the structure Bf AP. It
back/feedforward matrices involve the solution of manyfollows that

generally overdetermined, linear equations. For the compu- O B

tation of the basis for), we can estimate the condition T-1pTH Bo1  DBao

numbers of the overall transformation matrix by computing - 9] 9]

[VIZ = ||U||%. If this norm is relatively small (e.g., 0 O

[V|I% < 10000) then practically there is no danger for a _ _ _ _
significant loss of accuracy due to nonorthogonal reduction. A+ ApX A A | o«
Note that it is very important to compute these condition -1 p7 1pp Az Az Ags | x
numbers, since large values of them provide a clear hint Az X Azg Aszsz | *
of possibleaccuracy losses. In practice, it suffices to look @) (@) (@) \ Ag

ﬁttthebltar.gest magljnlttuqis of slemtla:ntsggfused attStt.age fWhere we denoted with bars the changed quantities. If we
0 obtain equivalent information. =or the computation Ol.p, 5456y guch thatd3, X = 0, we can preserve the structure
the feedback/feedforward matrices, condition numbers f

Y the original pair(PT AP, PTB). Thus, definingV as

solving the underlying equations can be also easily estimated. _ ZUPT, we can compute the feedback and feedforward
For the Stage Il reduction, a simple operation count irchatricesF e{ndG exactly as before

possible by assuming all blockisx 1 and this amounts to With T chosen as above, the resultig is Ay + ApX

aboutn® /4 flops. and we can try to exploit this parametric freedom to move
the eigenvalues ofd,; to stable locations. The following
V. MINIMUM COVERS WITH STABILIZATION straightforward computations are necessary for this purpose:
1) Compute X with orthonormal columns such that
In some applications it is important to achieve simultane- ~ spanXy is the right nullspace ofis,.
ously that the resulting feedback is stabilizing. For a Type Il 2) ComputeF’ to place a maximum number of eigenval-
cover, this amounts to determidé G andV such that the ues of A;; + A;p Xy F into the stability domailC™.
resulting A; has all eigenvalues in an appropriate stability 3) Define X = Xy F.
domainC™. This goal can not always be achieved, but it isAll steps of this algorithms can be performed using nu-
always possible to move a maximum number of eigenvalueserically reliable computations. The computation.Xf; is
in this domain. To show how this is possible, consider thetraightforward, sinceds, is part of a staircase form. Thus,
matrix pair(P* AP, PT B), whereA and B are the resulting no further rank determination is necessary a¥ig results
matrices at the end of Stage Il amef is the permutation from an RQ-like decomposition afiz, which exploits the
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