Strongly stable algorithm for computing periodic system zeros
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Abstract—We propose a computationally efficient and nu- [14], leads in general to rectangular descriptor matriegs
merically reliable algorithm to compute the finite zeros of a as well. Time-varying input and output vector dimensions
linear discrete-time periodic system. The zeros are defined in occur when evaluating zeros of particular system as those

terms of the transfer-function matrix corresponding to an equiv- L lqorithm t luate the t fer-functi
alent lifted time-invariant state-space system. The proposed appearing in an aigorithm to evaluate the transfer-runction

method relies on structure preserving manipulations of the Matrix of a periodic system [17]. Finally, the development of

associated system pencil to extract successively lower complexity general algorithms able to address the case of time-varying

subpencils which contains the finite zeros of the periodic dimensions, is one of the requirements formulated for a

system. The new algorithm uses exclusively structure preserving satisfactorynumerical algorithm for periodic systems [18].

orthogonal transformations and for the overall computation of s . .

zeros the strong numerical stability can be proved. The c_leflnltlon of ZerPS of a per|qd|c descriptor system
can be introduced starting from two input-output equivalent

I. INTRODUCTION time-invariant lifted reformulations [11], [8]. While the direct
We consider the problem of computing zeros of periodiapplication of the numerically stable methods of [4], [12]
time-varying descriptor systems of the form to these representations is certainly possible, the resulting
algorithms are completely inappropriate. Provided A&l
1) are identity matrices (i.e., we have a standard periodic
yk) = Cua(k)+ Dulky O ) ( P

system), constructing explicitly the lifted representation of
where the matrices, € R¥+1x"k+1 A, € R¥++1*"  [11] involves forming products of up té& matrices. Thus,
By, € Rv+1xme (Cy € RPeX™: - Dy € RPEX™*x gre periodic applying the algorithm of [4] to this lifted system can lead
with period K > 1. For solvability of these equations we will to severe numerical difficulties. When applying the method
assume that the dimensions4f and E, fulfil the condition of [12] to the large order lifted descriptor representation of
Z,f:l v = Zle ng. [8], the computational complexity for large order systems or
A general, efficient and numerically reliable algorithm tolarge periods is very high. Assuming constant dimensions
compute the zeros of such a system represents a univergal = n; = n, such an algorithm has a complexity of
analysis tool of periodic systems. Besides characterizing(K3n?), instead of an expected complexity 6f(Kn?)
when the system is minimum-phase or not, the zeros préer a satisfactory algorithm [18].
vide practically information on all structural properties of a Specific requirements for satisfactory numerical algorithms
system. For instance, reachability/stabilizability and obsenfer periodic systems have been formulated in [18]. Besides
ability/detectability can be easily studied by computing théow computational complexity, the numerical stability of
zeros of particular periodic systems without outputs or inputsilgorithms is a main requirement. A first general method to
respectively. Even the poles of a periodic system can be seeompute the zeros of periodic systems, belonging to the fam-
as a particular type of zeros for a system with no inputs anty of fast, structure exploiting algorithms, has been proposed
no outputs. in [19]. This algorithm relies exclusively on using orthogonal
For the computation of zeros it is important to considetransformations and it can be shown that it is numerically
the more general case of time-varying dimensions. Since tlséable in the following restricted sense: the computed zeros
transmission zeros of a standard system are defined in terinsthe presence of roundoff errors are exact for a slightly
of a minimal realization, a similar definition is appropriateperturbed lifted system pencil. However, by performing row
also for the zeros of a periodic system (see for examplompressions of the system pencil which destroy its cyclic
[10]). However, the minimal realization theory of standardstructure, this algorithm is natrongly numerically stable.
periodic systems (i.efy = I, ,) revealed (see for example This means that it is not possible to demonstrate for it that
[3], [5]) that minimal order (i.e., reachable and observablethe computed zeros are exact for an original system with
state-space realizations of periodic systems have, in genemlightly perturbed system matrices.
time-varying state dimensions. It follows immediately that In this paper we propose a numerical approach to compute
the minimal realization of a periodic descriptor system comthe finite zeros of the periodic system (1) which meets the
puted, for example, via a forward-backward decompositiorequirements formulated in [18] for a satisfactory numerical



algorithm regarding generality, speed and accuracy. Thessuming the square pencil (3) is regular (i.e.(ﬂg?t—sz)
proposed method relies on structure preserving manipulatioissnot identically 0), the TFM of the stacked lifted system is
of the associated system pencil to extract successively lower P S\ 1 S s
complexity subpencils which contains the finite zeros of the Wi(2) = Hy/ (2L — Fy)) Gy + Jj; (4)
periodic sys_tem. The new algorithm uses exclusively strucynq the associated system pencil is defined as

ture preserving orthogonal transformations and for the overall

computation of zeros the strong numerical stability can be Ss(z) _ { Fg —zL7 G} } (5)
proved. Besides the finite zeros, the reduction algorithm also k HY I ]

provides information to deduce the infinite zeros structure Bhich both depend on the sampling tinie Obviously
well as the complete Kronecker structure of the lifted syste () = Wi(2) and the TFMs at two successive values

pencil. For this reason, the proposed new algorithm can %?kgare related by the following relation [6]
seen as a generalization of the method of [12].

Notation. For a K-periodic matrixX; € R##+1%"+ we Wi (2) = 0 Ip_p, Wi(2) (- .
use alternatively thecript notation M T L, 0 k Infem, O '
Xy = diag (X, Xet1, -, Xt ), It follows from this relation that poles and zeros of the TFMs

for different sampling time, can only differ at = 0 and

z = oo. The normal ranl of the TFM W} (z) (i.e., the rank
over rationals) is the number of non-zero diagonal elements
én the Smith-McMillan form of Wy (z).

" In order to define poles and zeros of the periodic system
1), we need the minimality of the system and of the
tr_ealization (2). This is equivalent to the notion of reachability
and observability at finite and infinite eigenvalues of the

To simplify the notation for the case = 1, we drop the pencil (5), as introduced in [20]. If we assume that the system

index used for the sampling time in the system matrices arga) is minimal in that sense (this implies time-varying state
dimensions Imensions and rectangular descriptor matrices) then we have

the following definitions of poles, zeros and minimal indices
Il. ZEROS AND POLES OF PERIODIC SYSTEMS  of the TFM (4) based on the system matrix (5) of the stacked
We define the zeros and poles of the periodic system (1lifted system (2).
using thetransfer-function matrix(TFM) corresponding to  Definition 1: The transmission zeros of the TFM(z)
the associatedtacked lifted representatiof8]. This lifting  of the minimal order periodic systett€y, Ak, By, Ck, Di)
technique uses the input-output behavior of the system ovare the invariant zeros of the associated system pencil (5).
time intervals of lengthK, rather then 1. For a given Definition 2: The left and right minimal indices
sampling timek, the corresponding input-, output- and stateef the TFM Wj(z) of the minimal periodic system

which associates the block-diagonal matfix to the cyclic
matrix sequenceX;, i = k,...,k + K—1 starting at time
momentk. We will use the notatiomy, := {ng, ..., nk+x1}

to denote the time-varying dimensions of periodic matrice
By using the script notation, the periodic system (1) will be
alternatively denoted by the quintupl€y, Ay, By, Ck, Di). (
The dimensional information on state-, input- and outpu
vectors of this system is provided by the trigies, my, px).

vectors (&, Ak, By, Cr, D) are those of the associated system
ug(h) = [WT(k+hK) --uT(k+hK+ K1) pencil (5).
yo(h) = [T (k+hK)---yT(k+hK + K —1)]" Defi_nition 3: The poles of the TFMV(z) of the minimal
22(h) = [T(k+hK)---2T(k+hK +K —1)]7 periodic system(&y, Ag, B, Cr, Di) are the zeros of the

_ _ K K associated pole penclly — zL; defined in (3).
have dimension$\/ = "," ,mi, P =3, pr and N = o o
S°K_ | ny, respectively. The lifted system has a time-invariant The above definitions of zeros and poles of a periodic
descriptor system representation of the form system are consistent with definitions based on the lifting
s g s 5 s g technique introduced in [11] applicable to systems with
Ly zk(h; = stxig(h) + Ggug(h) (2) Ex square and invertible. In this case, the transfer-function
yi (h) HiJai (h) + Jyuy () matrices of the two lifted systems are the same, thus the
wherer = By, HkS = Cp, ,]]f =D, and corresponding definitions of poles and zeros coincide.
A B0 ... o From the definition of zeros follows that the transmission
k k zeros of the periodic system (1) (finite and infinite) are those
0 : values ofz where the rank of the lifted system mat$¥ ()

FS— L5 = . R 0 drops below its normal rank + L. The "infinite zeros” and
' T T kRS their multiplicities can be defined in terms of the "infinite

0] Ak —Eryk_o eigenvalues” of the penciby (2) (see the relationship be-

|—2Ej 51 O -+ O Apix_1 | tween the null zeros oV, (1/\) and the Kronecker form of

(3)  S¢(2) [20]). To each Jordan block of sizeat the eigenvalue



oo corresponds an elementary divisadt—! in the Smith-
McMillan form of S¢(1/)). Because of this difference of
one for the structure at infinity, the simple eigenvaluescat
of the pencilFy — 2 L3 (at mostN—rankE}. k1) play no
role when counting the infinite zeros.

1. COMPUTATIONAL APPROACH

In this section we propose an efficient computational

approach to determine the zeros of #tacked lifted system
(2) atk = 1. The zeros for other time momerits=2,..., K

that
A1 A2 | B
Uc|O [ Ax|Be | [Ve]O] ’;[@’1’112(’&’1’2”3’@’
O\I Ck‘Dk O\I = k,21 1 Ak,22 | Dk,2
Cik1 i Cra | Dg
Er1110|0
[Uk0:| |:EkO:| |:Vk+10] _ 777](3)’71},;_,0, &
olrfiofoll o Ir =510
where Ej, 1, € R+ X741 for k = 1,..., K, are square,

can be computed in a similar manner by just permuting theon-singular matrices. The compression of eagho a non-

order of the underlying matrices.

singular Ey, 11 can be done by computing a full orthogonal

Instead ofS®(z) in (5), we consider an equivalent pencil decompositior/y Ex. V.11 = diag(Ex 11, O) using either the

S(z) with permuted block rows and columns

S1 -y O 0
(@) Se =T @)
S(z) = : : (6)

0 Sk Tk

—ZTK O 0 SK

where fork =1,..., K

| Ar By | Ex O

sk._[ck D} Tk._[ " O]

singular-value decomposition (SVD) or a rank-revealing QR-
decomposition followed by an RQ-decomposition. In both
cases, we can assume that eakh results upper triangular.

If we construct the new system matrices

Er=FEy11, Ar=Ar11, Br=[Ar12 Bi1]
— Ap 21 — Akoo B
Cp=| A2 | p,=| :

k [ Cr1 k Cro2 Dy

then the pencilsS(z) and the transformed pendl(z) corre-
sponding to the reduced matrices have the same Kronecker-
canonical form, thus we have the following straightforward

To reduce this pencil by preserving its structure, we willesult.

use orthogonal transformations of the form

Sk = QuSkZr, Th = QrTkZi (7)

which corresponds to apply t6(z) from left and right, the
block-diagonal matrice® and Z, respectively.

The proposed algorithm to compute zeros can be applieﬁ

to compute the system poles as well by defining
Sk = Ak, Tk = Ek.
In a similar way, with

SkZ:[Ak Bk], TkSZ[Ek O]

.

the zeros algorithm can be used to computeitipeit decou-
pling zerosandoutput decoupling zerpsespectively [7]. We

or
Ay

Sk = [ .

| 5[]

0

Theorem 1:The original system &, A, B,C,D) and the
mission zeros, left and right minimal indices.
Note that in general the "compressed system” has time-
varying dimensions not only for the state vector but also for
the input and output vectors, even when the original system
s constant input and output dimensions.

B. Isolation of the finite part

In the second step we isolate a periodic descriptor system
(Em¢, Am¢, B¢, C"¢, D™¢) where£™ and D¢ are square in-
vertible matrices. Once reduced to this form, the transmission
zeros of the system are the characteristic multipliers of
the periodic pair(€7¢, A™ — Br(D™)~1C"). It will be
shown later that the characteristic multipliers can be obtained
without invertingD"e.

The goal of the reduction in this step is to isolate a regular
part of the transformed pendil(z) which contains the finite
zeros. For this purpose we redefine the dimensions:=

also discuss some computational enhancements which arise — 7% + Mk, Pk = Vi1 — Tet1 + pr and ng = 7.

in the case of standard periodic systems (ifg,,= I,,, )

For convenience, we will also reuse the original notation by

The algorithm we propose has three main steps, which wedefining(€, A, B,C, D) := (£, A,B,C, D).

discuss in the subsequent three subsections.

A. Computation of the compressed system

The isolation of the part containing the finite zeros is done
in two steps. In the first step, we isolate a part which corre-
sponds to a periodic descriptor systééi, A", B",C",D"),

In the first step we reduce the problem to an equivaleN¢here & is square invertible and>" is full row rank.
one, but for square and non-singular periodic descriptdihis is performed by employing the following procedure
matrices. Let/ and ) be orthogonal periodic matrices suchgeneralizing the Algorithm S-REDUCE of [12]:



Algorithm PS-REDUCE The PS-REDUCE algorithm determines implicitly the nor-

input (£, .4, B8,C,D,n, m, p), mal rank of the TFMW (z). If px is the rank defect of the
output (€7, A", B",C", D", n*, m", p¥). original descriptor matrix£ i, then the normal rank of the
step—i TFM Wi (z) is
1. For eachk :(}), ..., K, compress the rows ab;, with L= sz - Pk
orthogonalX, and transfornCy;
Cia | Dep | X T o | D At the end of PS-REDUCE algorithm we obtain globally the
Cra| O |7 7k [ Ci | Dr ], reduced matrice$), andTj, in (7) in the form

where Dkl e Ree—)¥mi has full row rank and _
CMGRT X”’C, if T,f,”:Oforkzl,...,K, then S =

go to exit—1
2. For eachk = 1,. -, I, compress th? columns @fx > where eacts] has full column rank and the leading nonzero
with orthogonaIVk SUCh thatCy.2V," =[O Craz),  rows of 77 form a full row rank matrix. The overall reduced
with Ci 20 € RT xpg? full column rank; system pencil can be put, after obvious row and column
3. For eachk = ,K, determine orthogonal/,”  Permutations, in the form
such thatUk EkaJrl is upper triangular; transform the . S7(2) *
system and partition as: S(z) = { O  S(2) } ’
U, ‘ o [ Ay | By } v, | o ] with S%(z) (z = r or 7) of the form
) C D
0 | X, k| D O | I, Sg -1¢ O - O
Ak Ak | Br 0O S8 -T¢ .. 0
_ | A2 | Agoo | Bi,2 S§7(z) = : :
e Onaz | Dea 0 St1 —Tha
O [ Cra| O —2T% O o S
i i E ' B —
U B, - [;811;,12] ’ where fork =1,..., K
o Sr._[A;; B;} Tr._[E:; 0]
where 4y, 95 € RA < S /A v/ R o O]
4, SetA, = A ,E,Z—E , B =B ,C = 7 7 7 7
AL ; il kBk ) fotle ol Tk Ao 41@;&671 T A@;z,z A&;m
[ Ck:11 ] k Dk:1 ~ O Ay 1o 0 Apes Apen
5. Updateny, := ny — #;(;), pr = pr — (T} o H(J)ﬂ) for Sk = : 3 R _
k=1,..., K. O o) e AT, AT,
6. f np=0fork=1,..., K, then go toexit—2 [0) 0] 0] AT
7. 10f ,uk_) =0for k= 1 ., K, then go toexit—1 _ _ _
8. i:=1i+ 1 go tostep—i o Eroer Eg;w E&m
. 10) o) ... ET ET
exit—=1 commentull rank matrixD” found. B kie,2 k;e,1
(7, A", B,C",D") == (£, A,B,C,D); Ty =1 : : SR :
n' :=n; m* :=m; p* :=p. 0 0 @ Eyog
exit—2 commentSystem has no finite zeros. 0 0 0 0

Remark. The compression of;, » to a full column rank where/ is the number of steps performed in the Algorithm

) .

matrix can be done simultaneously with maintainidy ~FS-REPUCE, AEz)z ()RT’“ ") s full column rank and
upper triangular by using an algorithm similar to that of [151E,H .1 € R S is full row rank. The subpencils
for standard descriptor systems. Details for achieving this a¢(z) and S7(z) have the same structure as the original
given in the next section. Obvious simplifications arise whesystem pencilS(z). S™(z) contains the finite zeros of the
E, = 1. In this case, it possible to devise PS-REDUCHeriodic system and the information on the right Kronecker
such that the reduced is also the identity matrix. This structure (e.g., right nullspace) 6fz). The trailing subpen-
amounts to reduc€’;, » by performing Lyapunov similarity cil S7(z), has full column rank for all finite values af, an

transformations, thus ensuring tHé,ﬁ D= Vk(fl thus contains information on the orders of infinite zeros and



the left Kronecker structure (e.g., left nullspace) $fz). [2], [9] can be employed for this purpose. For time-varying

These facts can be proven similarly as done in [13] fodimensions the extended periodic Schur form based reduction

standard systems. This leads to the following result. [16] can be applied to thez£+1 X n£ periodic matrices
Theorem 2:The orders of the infinite elementary divisorS(Ef)—lAJk", k = 1,...,K. This is always possible, since

of S™(z) are equal to the orders of the infinite zeros of th@]c is non-singular (and also upper triangular). However, a
system(£, A, B,C, D). _ strongly numerically stable approach must avoid any inver-
A dual algorithm to PS-REDUCE can be devised tasion, and therefore we can easily extend the approach of [16]

compute a reduced systef@©, A, B°,C¢, D), whereE¢ is o compute two periodic transformation matridés and V;,
square invertible and* is full column rank. In this case, sych that

the overall reduced system pencil can be put, after row and Al Al
k11 k12

column permutations, in the form Al = U, Al v, = i ,
— 0 o
s [ 5%) o« h22 8)
5(2) = 0O S%>2) = f El{ 11 EI{ 12
Ek = UkEk Viyr = d Ef’ s
where bothS¢(z) and S°(z) have the same structure as k.22

S(z). This tirr?eS;(z) contains the finite and left Kronecker where { |, Ef |, € R2" 2" for nf = ming{n{}, Af ,,, €
structure, whileS¢(z), having full row rank for all finitez, ooyt nd iyt —nt

. e e . . R(nk+1 n )X(nk n ) Ef = R(nk+1 n )X(nk+1 n ) for
contains the infinite and right Kronecker structure. k,227

By performing these two algorithms successively, we get —. 1,...,K. Moreover, one of matrices in the leading

finally (£7°, A, Bre.C™*. D). the reduced system with position, sayA;(’u, is in fHessenberg formd] |, for k =
both £7¢ and D square invertible matrices. Overall we canl ---» K—1, B, and By ,, for k = 1..., K are upper
then show the following resul. triangular, andA;, 22 for k = 1..., K are upper trapezoidal.
Theorem 3:The system(€,.A, B,C, D) and the reduced Thus, the pait&{;, Af,) is in a generalized periodic Hessen-
system(£7¢, A™¢, Bre,C"¢, D) have the same finite trans- berg form as required by the application of the periodic QZ-
mission zeros. algorithm. By applying this algorithm we computg finite
As already mentioned, the finite zeros can be comeros representing the so-calledre set of zeros, which are
puted as the characteristic multipliers of the periodic paiffdependent of the time momeht Additionally, there are
(Ere, Are — Bre(Dre)=1cre), where £7¢ is invertible. To alson] — nf null zeros, whose number varies according to
avoid the inversion ofP™, it is possible to deflate a part the chosen time momernt
of simple infinite (non-dynamic) eigenvalues by performing IV. NUMERICAL ASPECTS
a final compression of the system matrices. To do that, we
determinel}, for k = 1,..., K by compressing the columns
of [C;¢ Dj¢] to [O D-,’;] and transforming the reduced
system matrices as

For the reduction of(z) we employed exclusively struc-
ture preserving orthogonal transformations of the form (7).
Thus it possible to prove that the computed finite zeros are
exact for slightly perturbed initial matriceSy, T, which

A}; % Are  Bre satisfy -
o|pl |~ { cre Die } Ve, [X = X[ <ex|X]l, X =5kTs

where, in each caseyx is a modest multiple of the relative

f rc
{4.7% g } = { E(§ g } Vit machine precision, . It follows that the proposed algorithm
is strongly backward stable.

This reduction can be always performed such that the result-Regarding the computational complexity of the proposed
ing non-singularE,{ are upper triangular (see [1, pp. 33-34]).2lgorithm, we note that all reductions are perform&d

By this final reduction we succeeded to isolate the reguldimes on low order matrices, thus the overall computational
part S7(z) of the system pencilS(z) which contains the complexity is proportional withK. To estimate the worst-
finite transmission zeros. This part has the same structuf@se computational complexity, we assume constant dimen-
as the original system pencil, thus we can freely associa®onsn, m and p for state-, input- and output vectors, re-
this pencil to a periodic eigenvalue problem defined by théPectively, andt, are invertible. The "system compression”
periodic pair(£7,.A7). The characteristic multipliers of this Performed by using either SVD-based or rank-revealing QR-

pair are the finite transmission zeros of the periodic systerfiécomposition based reductions requi@ekn?) floating
point operations (flops). The compressions Bf, £ =

C. Computation of the finite zeros 1,...,K can be done by computing successivéy rank-
The third step of zeros computations consists in solving thevealing QR-decompositions p& m matrices and applying

periodic eigenvalue problem for the resulting periodic paithe transformation to @ x n sub-block. This reduction step,

(&f, A7). For constant dimension, the periodic QZ-algorithmalthough performed more than once, has a computational




complexity of O(K (n + p)pn). A worst-case computational

[4]

complexity of O(Kn?) is also guaranteed for the last steps,
to compute the finite zeros via the extended QZ-algorithm.

The only critical computation is to maintain efficiently the

[5]

upper triangular form ofE) at successive steps of the
PS-REDUCE algorithm. Note that by just computing.

(i) (i)

such thatU, " ExV, ., is upper triangular is an operation of

complexity O(n?). This would make the overall worst-case

[6]

complexity to maintaink,, upper triangular fok =1,..., K
to becomeO(Kn*). To avoid this, we can perform the com-

pression ofC}, » with V,:') and restoring the upper-triangular

[7]

form of Ek_lv,j” simultaneously, by employing Givens
rotations. The technique is entirely similar to that proposed
in [15] and also employed in [12]. Overall, this requires to [8]
perform the reduction for values @fin a reverse order, for
k=K,K—1,...,1. Using this approach, this computation

has per iteration step a complexity at mostKk nn?), where

(9]

7 is small compared ta. Thus, the overall complexity of the
compression-restoring algorithm @&(Kn?). Summing up,

the computation of finite zeros has a worst-case complexify0]
which can be bounded bY K (p + n)(m + n)n, which
corresponds to what is expected for a satisfactory algorithm
for periodic systems [18].

[11]
V. CONCLUSION

In this paper we developed a strongly numerically bacll12
ward stable algorithm to compute the finite zeros of ]
stacked system matrix of a periodic system. This algorithm

can

finite decoupling zeros of the system matrix and provide

be applied to find the finite zeros, finite poles an 3]

information to determine the orders of infinite zeros as well
as the left and right nullspace structures of the corresponding
lifted transfer function. These last aspects will be address f
in a separate paper. The algorithm works for matrices i 4]
varying dimension, and preserves the block cyclic structure
of the corresponding lifted system pencil. This leads to tWEas
main benefits: 1) a satisfactory worst-case computation ]
complexity, which is linear in the perioff’ and cubic in the
maximum dimension of the blocks; and 2) strong numerica®!
stability achieved by employing exclusively structure pre-
serving orthogonal transformations. According to [18], this

algorithm is well-suited for robust software implementations

[1]

[2]

3]

[17]
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