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Abstract— We propose a computationally efficient and nu-
merically reliable algorithm to compute the finite zeros of a
linear discrete-time periodic system. The zeros are defined in
terms of the transfer-function matrix corresponding to an equiv-
alent lifted time-invariant state-space system. The proposed
method relies on structure preserving manipulations of the
associated system pencil to extract successively lower complexity
subpencils which contains the finite zeros of the periodic
system. The new algorithm uses exclusively structure preserving
orthogonal transformations and for the overall computation of
zeros the strong numerical stability can be proved.

I. INTRODUCTION

We consider the problem of computing zeros of periodic
time-varying descriptor systems of the form

Ekx(k + 1) = Akx(k) + Bku(k)
y(k) = Ckx(k) + Dku(k) (1)

where the matricesEk ∈ Rνk+1×nk+1 , Ak ∈ Rνk+1×nk ,
Bk ∈ Rνk+1×mk , Ck ∈ Rpk×nk , Dk ∈ Rpk×mk are periodic
with periodK ≥ 1. For solvability of these equations we will
assume that the dimensions ofAk andEk fulfil the condition∑K

k=1 νk =
∑K

k=1 nk.
A general, efficient and numerically reliable algorithm to

compute the zeros of such a system represents a universal
analysis tool of periodic systems. Besides characterizing
when the system is minimum-phase or not, the zeros pro-
vide practically information on all structural properties of a
system. For instance, reachability/stabilizability and observ-
ability/detectability can be easily studied by computing the
zeros of particular periodic systems without outputs or inputs,
respectively. Even the poles of a periodic system can be seen
as a particular type of zeros for a system with no inputs and
no outputs.

For the computation of zeros it is important to consider
the more general case of time-varying dimensions. Since the
transmission zeros of a standard system are defined in terms
of a minimal realization, a similar definition is appropriate
also for the zeros of a periodic system (see for example
[10]). However, the minimal realization theory of standard
periodic systems (i.e.,Ek = Ink+1) revealed (see for example
[3], [5]) that minimal order (i.e., reachable and observable)
state-space realizations of periodic systems have, in general,
time-varying state dimensions. It follows immediately that
the minimal realization of a periodic descriptor system com-
puted, for example, via a forward-backward decomposition

[14], leads in general to rectangular descriptor matricesEk

as well. Time-varying input and output vector dimensions
occur when evaluating zeros of particular system as those
appearing in an algorithm to evaluate the transfer-function
matrix of a periodic system [17]. Finally, the development of
general algorithms able to address the case of time-varying
dimensions, is one of the requirements formulated for a
satisfactorynumerical algorithm for periodic systems [18].

The definition of zeros of a periodic descriptor system
can be introduced starting from two input-output equivalent
time-invariant lifted reformulations [11], [8]. While the direct
application of the numerically stable methods of [4], [12]
to these representations is certainly possible, the resulting
algorithms are completely inappropriate. Provided allEk

are identity matrices (i.e., we have a standard periodic
system), constructing explicitly the lifted representation of
[11] involves forming products of up toK matrices. Thus,
applying the algorithm of [4] to this lifted system can lead
to severe numerical difficulties. When applying the method
of [12] to the large order lifted descriptor representation of
[8], the computational complexity for large order systems or
large periods is very high. Assuming constant dimensions
µi = ni = n, such an algorithm has a complexity of
O(K3n3), instead of an expected complexity ofO(Kn3)
for a satisfactory algorithm [18].

Specific requirements for satisfactory numerical algorithms
for periodic systems have been formulated in [18]. Besides
low computational complexity, the numerical stability of
algorithms is a main requirement. A first general method to
compute the zeros of periodic systems, belonging to the fam-
ily of fast, structure exploiting algorithms, has been proposed
in [19]. This algorithm relies exclusively on using orthogonal
transformations and it can be shown that it is numerically
stable in the following restricted sense: the computed zeros
in the presence of roundoff errors are exact for a slightly
perturbed lifted system pencil. However, by performing row
compressions of the system pencil which destroy its cyclic
structure, this algorithm is notstrongly numerically stable.
This means that it is not possible to demonstrate for it that
the computed zeros are exact for an original system with
slightly perturbed system matrices.

In this paper we propose a numerical approach to compute
the finite zeros of the periodic system (1) which meets the
requirements formulated in [18] for a satisfactory numerical



algorithm regarding generality, speed and accuracy. The
proposed method relies on structure preserving manipulations
of the associated system pencil to extract successively lower
complexity subpencils which contains the finite zeros of the
periodic system. The new algorithm uses exclusively struc-
ture preserving orthogonal transformations and for the overall
computation of zeros the strong numerical stability can be
proved. Besides the finite zeros, the reduction algorithm also
provides information to deduce the infinite zeros structure as
well as the complete Kronecker structure of the lifted system
pencil. For this reason, the proposed new algorithm can be
seen as a generalization of the method of [12].

Notation. For a K-periodic matrixXi ∈ Rµk+1×nk we
use alternatively thescript notation

Xk := diag (Xk, Xk+1, . . . , Xk+K−1),

which associates the block-diagonal matrixXk to the cyclic
matrix sequenceXi, i = k, . . . , k + K−1 starting at time
momentk. We will use the notationnk := {nk, . . . , nk+K−1}
to denote the time-varying dimensions of periodic matrices.
By using the script notation, the periodic system (1) will be
alternatively denoted by the quintuple(Ek,Ak,Bk, Ck,Dk).
The dimensional information on state-, input- and output-
vectors of this system is provided by the triple(nk,mk,pk).
To simplify the notation for the casek = 1, we drop the
index used for the sampling time in the system matrices and
dimensions.

II. ZEROS AND POLES OF PERIODIC SYSTEMS

We define the zeros and poles of the periodic system (1),
using thetransfer-function matrix(TFM) corresponding to
the associatedstacked lifted representation[8]. This lifting
technique uses the input-output behavior of the system over
time intervals of lengthK, rather then 1. For a given
sampling timek, the corresponding input-, output- and state-
vectors

uS
k (h) = [uT (k + hK) · · ·uT (k + hK + K − 1)]T

yS
k (h) = [yT (k + hK) · · · yT (k + hK + K − 1)]T

xS
k (h) = [xT (k + hK) · · ·xT (k + hK + K − 1)]T

have dimensionsM =
∑K

k=1 mk, P =
∑K

k=1 pk and N =∑K
k=1 nk, respectively. The lifted system has a time-invariant

descriptor system representation of the form

LS
k xS

k (h + 1) = FS
k xS

k (h) + GS
k uS

k (h)
yS

k (h) = HS
k xS

k (h) + JS
k uS

k (h) (2)

whereGS
k = Bk, HS

k = Ck, JS
k = Dk, and

FS
k − zLS

k =




Ak −Ek O · · · O

O
.. .

. . .
. . .

...
...

.. .
. . .−Ek+K−3 O

O
. . . Ak+K−2 −Ek+K−2

−zEk+K−1 O · · · O Ak+K−1




(3)

Assuming the square pencil (3) is regular (i.e. det(FS
k −zLS

k )
is not identically 0), the TFM of the stacked lifted system is

Wk(z) = HS
k (zLS

k − FS
k )−1GS

k + JS
k (4)

and the associated system pencil is defined as

SS
k (z) =

[
FS

k − zLS
k GS

k

HS
k JS

k

]
, (5)

which both depend on the sampling timek. Obviously
Wk+K(z) = Wk(z) and the TFMs at two successive values
of k are related by the following relation [6]

Wk+1(z) =
[

0 IP−pk

zIpk
0

]
Wk(z)

[
0 z−1Imk

IM−mk
0

]
.

It follows from this relation that poles and zeros of the TFMs
for different sampling time, can only differ atz = 0 and
z = ∞. The normal rankL of the TFMWk(z) (i.e., the rank
over rationals) is the number of non-zero diagonal elements
in the Smith-McMillan form ofWk(z).

In order to define poles and zeros of the periodic system
(1), we need the minimality of the system and of the
realization (2). This is equivalent to the notion of reachability
and observability at finite and infinite eigenvalues of the
pencil (5), as introduced in [20]. If we assume that the system
(1) is minimal in that sense (this implies time-varying state
dimensions and rectangular descriptor matrices) then we have
the following definitions of poles, zeros and minimal indices
of the TFM (4) based on the system matrix (5) of the stacked
lifted system (2).

Definition 1: The transmission zeros of the TFMWk(z)
of the minimal order periodic system(Ek,Ak,Bk, Ck,Dk)
are the invariant zeros of the associated system pencil (5).

Definition 2: The left and right minimal indices
of the TFM Wk(z) of the minimal periodic system
(Ek,Ak,Bk, Ck,Dk) are those of the associated system
pencil (5).

Definition 3: The poles of the TFMWk(z) of the minimal
periodic system(Ek,Ak,Bk, Ck,Dk) are the zeros of the
associated pole pencilFS

k − zLS
k defined in (3).

The above definitions of zeros and poles of a periodic
system are consistent with definitions based on the lifting
technique introduced in [11] applicable to systems with
Ek square and invertible. In this case, the transfer-function
matrices of the two lifted systems are the same, thus the
corresponding definitions of poles and zeros coincide.

From the definition of zeros follows that the transmission
zeros of the periodic system (1) (finite and infinite) are those
values ofz where the rank of the lifted system matrixSS

k (z)
drops below its normal rankN +L. The ”infinite zeros” and
their multiplicities can be defined in terms of the ”infinite
eigenvalues” of the pencilSS

k (z) (see the relationship be-
tween the null zeros ofWk(1/λ) and the Kronecker form of
SS

k (z) [20]). To each Jordan block of sizej at the eigenvalue



∞ corresponds an elementary divisorλj−1 in the Smith-
McMillan form of SS

k (1/λ). Because of this difference of
one for the structure at infinity, the simple eigenvalues at∞
of the pencilFS

k − zLS
k (at mostN−rankEk+K−1) play no

role when counting the infinite zeros.

III. COMPUTATIONAL APPROACH

In this section we propose an efficient computational
approach to determine the zeros of thestacked lifted system
(2) atk = 1. The zeros for other time momentsk = 2, . . . , K
can be computed in a similar manner by just permuting the
order of the underlying matrices.

Instead ofSS(z) in (5), we consider an equivalent pencil
S(z) with permuted block rows and columns

S(z) =




S1 −T1 O · · · O
O S2 −T2 · · · O
...

. ..
.. .

. . .
...

O SK−1 −TK−1

−zTK O · · · O SK




(6)

where fork = 1, . . . , K

Sk :=
[

Ak Bk

Ck Dk

]
, Tk :=

[
Ek O
O O

]
.

To reduce this pencil by preserving its structure, we will
use orthogonal transformations of the form

S̃k = QkSkZk, T̃k = QkTkZk+1 (7)

which corresponds to apply toS(z) from left and right, the
block-diagonal matricesQ andZ, respectively.

The proposed algorithm to compute zeros can be applied
to compute the system poles as well by defining

Sk := Ak, Tk := Ek.

In a similar way, with

Sk :=
[

Ak Bk

]
, Tk :=

[
Ek O

]

or

Sk :=
[

Ak

Ck

]
, Tk :=

[
Ek

O

]

the zeros algorithm can be used to compute theinput decou-
pling zerosandoutput decoupling zeros, respectively [7]. We
also discuss some computational enhancements which arise
in the case of standard periodic systems (i.e.,Ek = Ink+1).
The algorithm we propose has three main steps, which we
discuss in the subsequent three subsections.

A. Computation of the compressed system

In the first step we reduce the problem to an equivalent
one, but for square and non-singular periodic descriptor
matrices. LetU andV be orthogonal periodic matrices such

that

[
Uk O
O I

] [
Ak Bk

Ck Dk

] [
Vk O
O I

]
=




Ak,11 Ak,12 Bk,1

Ak,21 Ak,22 Bk,2

Ck,1 Ck,2 Dk




[
Uk O
O I

] [
Ek O
O O

] [
Vk+1 O
O I

]
=




Ek,11 O O

O O O
O O O




where Ek,11 ∈ Rrk+1×rk+1 for k = 1, . . . , K, are square,
non-singular matrices. The compression of eachEk to a non-
singularEk,11 can be done by computing a full orthogonal
decompositionUkEkVk+1 = diag(Ek,11, O) using either the
singular-value decomposition (SVD) or a rank-revealing QR-
decomposition followed by an RQ-decomposition. In both
cases, we can assume that eachEk,11 results upper triangular.

If we construct the new system matrices

Ek = Ek,11, Ak = Ak,11, Bk = [ Ak,12 Bk,1 ]

Ck =
[

Ak,21

Ck,1

]
, Dk =

[
Ak,22 Bk,2

Ck,2 Dk

]

then the pencilsS(z) and the transformed pencilS(z) corre-
sponding to the reduced matrices have the same Kronecker-
canonical form, thus we have the following straightforward
result.

Theorem 1:The original system(E ,A,B, C,D) and the
”compressed system”(E ,A,B, C,D) have the same trans-
mission zeros, left and right minimal indices.
Note that in general the ”compressed system” has time-
varying dimensions not only for the state vector but also for
the input and output vectors, even when the original system
has constant input and output dimensions.

B. Isolation of the finite part

In the second step we isolate a periodic descriptor system
(Erc,Arc,Brc, Crc,Drc) whereErc andDrc are square in-
vertible matrices. Once reduced to this form, the transmission
zeros of the system are the characteristic multipliers of
the periodic pair(Erc,Arc − Brc(Drc)−1Crc). It will be
shown later that the characteristic multipliers can be obtained
without invertingDrc.

The goal of the reduction in this step is to isolate a regular
part of the transformed pencilS(z) which contains the finite
zeros. For this purpose we redefine the dimensionsmk :=
nk − rk + mk, pk := νk+1 − rk+1 + pk and nk := rk.
For convenience, we will also reuse the original notation by
redefining(E ,A,B, C,D) := (E ,A,B, C,D).

The isolation of the part containing the finite zeros is done
in two steps. In the first step, we isolate a part which corre-
sponds to a periodic descriptor system(Er,Ar,Br, Cr,Dr),
where Er is square invertible andDr is full row rank.
This is performed by employing the following procedure
generalizing the Algorithm S-REDUCE of [12]:



Algorithm PS-REDUCE
input (E ,A,B, C,D,n,m,p),
output (Er,Ar,Br, Cr,Dr,nr,mr,pr).
step–i

1. For eachk = 1, . . . , K, compress the rows ofDk with
orthogonalX

(i)

k and transformCk;
[

Ck,1 Dk,1

Ck,2 O

]
:= X

(i)

k

[
Ck Dk

]
,

where Dk,1 ∈ R(pk−τ
(i)
k

)×mk has full row rank and

Ck,2 ∈ Rτ
(i)
k
×nk ; if τ

(i)
k = 0 for k = 1, . . . ,K, then

go to exit–1
2. For eachk = 1, . . . , K, compress the columns ofCk,2

with orthogonalV
(i)

k such thatCk,2V
(i)

k = [ O Ck,22 ],
with Ck,22 ∈ Rτ

(i)
k
×µ

(i)
k full column rank;

3. For eachk = 1, . . . ,K, determine orthogonalU
(i)

k

such thatU
(i)

k EkV
(i)

k+1 is upper triangular; transform the
system and partition as:

[
U

(i)

k O

O X
(i)

k

] [
Ak Bk

Ck Dk

] [
V

(i)

k O
O Imk

]

=




Ak,11 Ak,12 Bk,1

Ak,21 Ak,22 Bk,2

Ck,11 Ck,12 Dk,1

O Ck,22 O




U
(i)

k EkV
(i)

k+1 =
[

Ek,11 Ek,12

O Ek,22

]
,

whereAk,22 ∈ Rµ
(i)
k+1×µ

(i)
k .

4. Set Ak := Ak,11, Ek := Ek,11, Bk := Bk,1, Ck :=[
Ak,21

Ck,11

]
, Dk :=

[
Bk,2

Dk,1

]
.

5. Updatenk := nk − µ
(i)
k , pk := pk − (τ (i)

k − µ
(i)
k+1), for

k = 1, . . . , K.
6. If nk = 0 for k = 1, . . . , K, then go toexit–2
7. If µ

(i)
k = 0 for k = 1, . . . ,K, then go toexit–1

8. i := i + 1 go to step–i;

exit–1 commentFull rank matrixDr found.

(Er,Ar,Br, Cr,Dr) := (E ,A,B, C,D);
nr := n; mr := m; pr := p.

exit–2 commentSystem has no finite zeros.

Remark. The compression ofCk,2 to a full column rank
matrix can be done simultaneously with maintainingEk

upper triangular by using an algorithm similar to that of [15]
for standard descriptor systems. Details for achieving this are
given in the next section. Obvious simplifications arise when
Ek = I. In this case, it possible to devise PS-REDUCE
such that the reducedEr

k is also the identity matrix. This
amounts to reduceCk,2 by performing Lyapunov similarity
transformations, thus ensuring thatU

(i)
k = V

(i)
k+1.

The PS-REDUCE algorithm determines implicitly the nor-
mal rank of the TFMW (z). If ρK is the rank defect of the
original descriptor matrixEK , then the normal rank of the
TFM Wk(z) is

L =
K∑

k=1

pr
k − ρK .

At the end of PS-REDUCE algorithm we obtain globally the
reduced matrices̃Sk and T̃k in (7) in the form

S̃k =




Ar
k Br

k ∗
Cr

k Dr
k ∗

O O Sr
k


 , T̃k =




Er
k O ∗

O O ∗
O O T r

k




where eachSr
k has full column rank and the leading nonzero

rows ofT r
k form a full row rank matrix. The overall reduced

system pencil can be put, after obvious row and column
permutations, in the form

Ŝ(z) =
[

Sr(z) ∗
O Sr(z)

]
,

with Sx(z) (x = r or r) of the form

Sx(z) =




Sx
1 −T x

1 O · · · O
O Sx

2 −T x
2 · · · O

...
.. .

. . .
. . .

...
O Sx

K−1 −T x
K−1

−zT x
K O · · · O Sx

K




where fork = 1, . . . , K

Sr
k :=

[
Ar

k Br
k

Cr
k Dr

k

]
, T r

k :=
[

Er
k O

O O

]
.

Sr
k =




Ar
k;`,` Ar

k;`,`−1 · · · Ar
k;`,2 Ar

k;`,1

O Ar
k;`−1,`−1 · · · Ar

k;`,2 Ar
k;`,1

...
...

. . .
...

...
O O · · · Ar

k;2,2 Ar
k;2,1

O O · · · O Ar
k;1,1




T r
k =




O Er
k;`,`−1 · · · Er

k;`,2 Er
k;`,1

O O · · · Er
k;`,2 Er

k;`,1
...

...
. . .

...
...

O O · · · O Er
k;2,1

O O · · · O O




where` is the number of steps performed in the Algorithm
PS-REDUCE,Ar

k;i,i ∈ Rτ
(i)
k
×µ

(i)
k

) is full column rank and

Er
k;i,i−1 ∈ Rτ

(i+1)
k

×µ
(i)
k+1 is full row rank. The subpencils

Sr(z) and Sr(z) have the same structure as the original
system pencilS(z). Sr(z) contains the finite zeros of the
periodic system and the information on the right Kronecker
structure (e.g., right nullspace) ofS(z). The trailing subpen-
cil Sr(z), has full column rank for all finite values ofz, an
thus contains information on the orders of infinite zeros and



the left Kronecker structure (e.g., left nullspace) ofS(z).
These facts can be proven similarly as done in [13] for
standard systems. This leads to the following result.

Theorem 2:The orders of the infinite elementary divisors
of Sr(z) are equal to the orders of the infinite zeros of the
system(E ,A,B, C,D).

A dual algorithm to PS-REDUCE can be devised to
compute a reduced system(Ec,Ac,Bc, Cc,Dc), whereEc is
square invertible andDc is full column rank. In this case,
the overall reduced system pencil can be put, after row and
column permutations, in the form

Ŝ(z) =
[

Sc(z) ∗
O Sc(z)

]

where bothSc(z) and Sc(z) have the same structure as
S(z). This timeSc(z) contains the finite and left Kronecker
structure, whileSc(z), having full row rank for all finitez,
contains the infinite and right Kronecker structure.

By performing these two algorithms successively, we get
finally (Erc,Arc,Brc, Crc,Drc), the reduced system with
bothErc andDrc square invertible matrices. Overall we can
then show the following result.

Theorem 3:The system(E ,A,B, C,D) and the reduced
system(Erc,Arc,Brc, Crc,Drc) have the same finite trans-
mission zeros.

As already mentioned, the finite zeros can be com-
puted as the characteristic multipliers of the periodic pair
(Erc,Arc − Brc(Drc)−1Crc), where Erc is invertible. To
avoid the inversion ofDrc, it is possible to deflate a part
of simple infinite (non-dynamic) eigenvalues by performing
a final compression of the system matrices. To do that, we
determineVk for k = 1, . . . ,K by compressing the columns
of [Crc

k Drc
k ] to [O Df

k ] and transforming the reduced
system matrices as

[
Af

k ∗
O Df

k

]
:=

[
Arc

k Brc
k

Crc
k Drc

k

]
Vk,

[
Ef

k ∗
O O

]
:=

[
Erc

k O
O O

]
Vk+1.

This reduction can be always performed such that the result-
ing non-singularEf

k are upper triangular (see [1, pp. 33-34]).
By this final reduction we succeeded to isolate the regular

part Sf (z) of the system pencilS(z) which contains the
finite transmission zeros. This part has the same structure
as the original system pencil, thus we can freely associate
this pencil to a periodic eigenvalue problem defined by the
periodic pair(Ef ,Af ). The characteristic multipliers of this
pair are the finite transmission zeros of the periodic system.

C. Computation of the finite zeros

The third step of zeros computations consists in solving the
periodic eigenvalue problem for the resulting periodic pair
(Ef ,Af ). For constant dimension, the periodic QZ-algorithm

[2], [9] can be employed for this purpose. For time-varying
dimensions the extended periodic Schur form based reduction
[16] can be applied to thenf

k+1 × nf
k periodic matrices

(Ef
k )−1Af

k , k = 1, . . . , K. This is always possible, since
Ef

k is non-singular (and also upper triangular). However, a
strongly numerically stable approach must avoid any inver-
sion, and therefore we can easily extend the approach of [16]
to compute two periodic transformation matricesUk andVk

such that

Ãf
k := UkAf

kVk =

[
Af

k,11 Af
k,12

0 Ãf
k,22

]
,

Ẽf
k := UkEf

k Vk+1 =

[
Ef

k,11 Ef
k,12

0 Ẽf
k,22

]
,

(8)

whereAf
k,11, E

f
k,11 ∈ Rnf×nf

for nf = mink{nf
k}, Af

k,22,∈
R(nf

k+1−nf )×(nf
k
−nf ), Ef

k,22,∈ R(nf
k+1−nf )×(nf

k+1−nf ) for
k = 1, . . . , K. Moreover, one of matrices in the leading
position, sayAf

K,11, is in Hessenberg form,Af
k,11 for k =

1 . . . ,K−1, Ef
k,11 and Ef

k,22 for k = 1 . . . , K are upper
triangular, andAk,22 for k = 1 . . . , K are upper trapezoidal.
Thus, the pair(Ef

11,Af
11) is in a generalized periodic Hessen-

berg form as required by the application of the periodic QZ-
algorithm. By applying this algorithm we computenf finite
zeros representing the so-calledcore set of zeros, which are
independent of the time momentk. Additionally, there are
alsonf

1 − nf null zeros, whose number varies according to
the chosen time momentk.

IV. NUMERICAL ASPECTS

For the reduction ofS(z) we employed exclusively struc-
ture preserving orthogonal transformations of the form (7).
Thus it possible to prove that the computed finite zeros are
exact for slightly perturbed initial matricesSk, T k, which
satisfy

‖X −X‖ ≤ εX‖X‖, X = Sk, Tk

where, in each case,εX is a modest multiple of the relative
machine precisionεM . It follows that the proposed algorithm
is strongly backward stable.

Regarding the computational complexity of the proposed
algorithm, we note that all reductions are performedK-
times on low order matrices, thus the overall computational
complexity is proportional withK. To estimate the worst-
case computational complexity, we assume constant dimen-
sionsn, m and p for state-, input- and output vectors, re-
spectively, andEk are invertible. The ”system compression”
performed by using either SVD-based or rank-revealing QR-
decomposition based reductions requiresO(Kn3) floating
point operations (flops). The compressions ofDk, k =
1, . . . , K can be done by computing successivelyK rank-
revealing QR-decompositions ofp×m matrices and applying
the transformation to ap×n sub-block. This reduction step,
although performed more than once, has a computational



complexity ofO(K(n + p)pn). A worst-case computational
complexity ofO(Kn3) is also guaranteed for the last steps,
to compute the finite zeros via the extended QZ-algorithm.
The only critical computation is to maintain efficiently the
upper triangular form ofEk at successive steps of the
PS-REDUCE algorithm. Note that by just computingUk

such thatU
(i)

k EkV
(i)

k+1 is upper triangular is an operation of
complexityO(n3). This would make the overall worst-case
complexity to maintainEk upper triangular fork = 1, . . . , K
to becomeO(Kn4). To avoid this, we can perform the com-
pression ofCk,2 with V

(i)

k and restoring the upper-triangular
form of Ek−1V

(i)

k simultaneously, by employing Givens
rotations. The technique is entirely similar to that proposed
in [15] and also employed in [12]. Overall, this requires to
perform the reduction for values ofk in a reverse order, for
k = K,K − 1, . . . , 1. Using this approach, this computation
has per iteration step a complexity at mostO(Kηn2), where
η is small compared ton. Thus, the overall complexity of the
compression-restoring algorithm isO(Kn3). Summing up,
the computation of finite zeros has a worst-case complexity
which can be bounded byOK(p + n)(m + n)n, which
corresponds to what is expected for a satisfactory algorithm
for periodic systems [18].

V. CONCLUSION

In this paper we developed a strongly numerically back-
ward stable algorithm to compute the finite zeros of a
stacked system matrix of a periodic system. This algorithm
can be applied to find the finite zeros, finite poles and
finite decoupling zeros of the system matrix and provides
information to determine the orders of infinite zeros as well
as the left and right nullspace structures of the corresponding
lifted transfer function. These last aspects will be addressed
in a separate paper. The algorithm works for matrices of
varying dimension, and preserves the block cyclic structure
of the corresponding lifted system pencil. This leads to two
main benefits: 1) a satisfactory worst-case computational
complexity, which is linear in the periodK and cubic in the
maximum dimension of the blocks; and 2) strong numerical
stability achieved by employing exclusively structure pre-
serving orthogonal transformations. According to [18], this
algorithm is well-suited for robust software implementations.
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