Abstract:
An original linear time varying system with matched and unmatched disturbances and uncertainties is replaced by a finite set of dynamic models such that each one describe...Show MoreMetadata
Abstract:
An original linear time varying system with matched and unmatched disturbances and uncertainties is replaced by a finite set of dynamic models such that each one describes a particular uncertain case including exact realizations of possible dynamic equations as well as external unmatched bounded disturbances. Such a trade-off between an original uncertain linear time varying dynamic system and a corresponding higher order multi model system containing only matched uncertainties leads to a linear multi-model system with known unmatched bounded disturbances and unknown matched disturbances as well. Each model from a given finite set is characterized by a quadratic performance index. The developed minimax integral sliding mode control strategy gives an optimal minimax LQ-control with additional integral sliding mode term. The design of this controller is reduced to a solution of an equivalent mini-max LQ problem that corresponds to the weighted performance indices with weights from a finite dimensional simplex. The additional integral sliding mode controller part completely dismisses the influence of matched uncertainties. Two illustrative numerical examples are presented.
Date of Conference: 09-12 December 2003
Date Added to IEEE Xplore: 15 March 2004
Print ISBN:0-7803-7924-1
Print ISSN: 0191-2216