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Abstract— In this paper, an adaptive nonlinear tracking
controller for an underactuated nonminimum phase model
of a marine vehicle is derived. The result is kept flexible
enough, throughout its derivation, to be applicable to a large
variety of marine vehicles. The characteristics of the dynamic
model are such that solving the tracking problem is non-trivial.
Specifically, we consider a propulsion system composed of either
a thruster and a rudder, or a vectored thruster, which pro-
vides two independent control commands and three degrees of
freedom, with an overall unstable zero-dynamics. The tracking
problem dealt with in this paper is solved using a backstepping
approach, as well as a technique derived from dynamic surface
control theory and the notion of ultimate boundedness. The
tracking problem is first solved assuming full knowledge of
the geometric and hydrodynamic coefficients appearing in the
vehicle’s model. The control law is then modified into an
adaptive one. Computer simulations are presented to illustrate
the performances of the final control algorithm.

I. INTRODUCTION

The controller derived in this paper is designed for the
most commonly used propulsion system available on au-
tonomous underwater vehicles as well as surface vessels: a
thruster, used for propulsion, and a rudder for stirring, or,
equivalently, a vectored thruster ([1]). The propulsion system
considered provides two independent control commands,
while the vehicle has three degrees of freedom. The vehicle
will thus have fewer independent actuators than degrees of
freedom, making it underactuated. The corresponding dy-
namic model is characterized by an unstable zero-dynamics,
as mentioned in [2].

An additional challenge is that the constant parameters
characterizing the mathematical model on which the control
law is based on are difficult to estimate. Designing a con-
trol law not dependent on those parameters is thus highly
desirable.

The design of trajectory tracking controllers for underac-
tuated marine vehicles has generated a growing interest over
the past few years. Many controllers dealing with such a
problem are available in the literature ([2]–[6]). In [3], the
case of a surface ship equipped with a pair of propellers is
considered. The derived controller yields good results and has
the invaluable advantage to be simple enough to implement.
However, the desired trajectory is limited to straight lines
and circles. In [4], still considering the same type of under-
actuation as in [3], the authors derive a controller that uses a
state estimator to handle uncertainties on state measurement.

In [5], a similar twin propellers scenario is considered.
The author, relying on a separation principle, manages to
compensate for ocean currents.

Finally, in [2], a controller for an underactuated AUV
equipped with a propeller and a side thruster is designed. The
corresponding vehicle’s model is fairly similar to the one we
consider, since it involves a coupling between sway force
and yawing moment. The controller handles constant and
slow varying external perturbations. However, the system’s
zero dynamics is stable, while the system we consider has
an unstable zero dynamics.

To compensate for the lack of knowledge of a vehicle’s
mathematical model’s constant parameters, one can use an
adaptive approach. The design of adaptive controllers for
marine vehicles has been widely studied. In [7], the authors
present an adaptive control strategy that uses an error variable
β , which corresponds to the angle between the vehicle’s
longitudinal axis, and the direction of the vehicle’s desired
position. The resulting controller solves the regulation prob-
lem for an underactuated AUV. The controller presented
in Section V builds upon the approach introduced in [7],
using the same error variable β , but extending the problem
to trajectory tracking, and dealing with an unstable zero
dynamics.

Amplitude saturation effects have been dealt with in [8],
where an adaptive control law that enforces actuators sat-
uration by modifying the reference system that the vehicle
is tracking is designed. In [9], both actuators amplitude and
rate saturations are treated. Specifically, the control algorithm
modifies the reference input controlling the motion of the
reference system in such a way that the actual vehicle, given
its actuators limits, can track the reference system without
violating the saturation constraints.

The control of underactuated marine vehicles with an un-
stable zero dynamics (or underactuated nonminimum phase
marine vehicles) is an issue rarely addressed. Only one such
controller is available in the literature [10]. But the resulting
control law is fairly complex, which makes it difficult to
implement.

In this paper, we will introduce a new nonlinear adap-
tive motion controller for a marine vehicle equipped with
either a thruster and a rudder, or a vectored thruster. The
design of controllers for underactuated marine vehicles is a
problem dealt with in many research papers. However, the
assumptions taken in the design of the control algorithms
available in the literature are incompatible with the type of
propulsion system that we consider. Namely, in our case,
two control inputs are used, surge and sway forces, the
sway force being used to generate a yawing moment. Most
controllers (see for example [3]–[6]) do not account for this
sway force, consequently, they can not be expected to provide
good performance if implemented on an actual vehicle using
a propeller and a rudder, or a vectored thruster. In [2],
the authors take into account such a coupling, however,



their dynamic model does not allow to consider the type of
propulsion we target. Indeed, the controller presented in [2],
when applied to a vehicle with a side thruster placed behind
the vehicle’s center of gravity, gives good position tracking,
but leads the vehicle to turn around and move backward,
which is an unacceptable behavior.

We chose to track a given trajectory in terms of both posi-
tion and attitude. However, having three degrees of freedom
and only two control inputs, it is unrealistic to expect to be
able to span all trajectories in the configuration space (surge,
sway and yaw). Furthermore, as mentioned in [11], perfect
tracking for a nonminimum phase system is not achievable.
Accordingly, the control design objective for such a system
should not be perfect tracking, but bounded-error tracking.
We are able to solve this problem by designing a control
strategy that orients the vehicle toward the desired position,
and keeps it at a constant distance from it. By doing so,
we introduce a constant position error corresponding to the
distance between the vehicle and its desired position, which
allows to avoid the occurrence of unstable behaviors of the
vehicle. By introducing an error over which we have a certain
amount of control, we are able to overcome an undesirable
behavior which we would not otherwise be able to avoid.
To derive such a control algorithm, we use a backstepping
technique similar to that introduced in [12].

Being able to implement a controller on a vehicle without
having to tune it is a desirable feature. The tuning process
can indeed be time consuming and quite demanding. Further-
more, the controller will only perform as well as the tuning
allows. Thus, instead of tuning the unknown parameters of
the vehicle’s model, we take initial estimates which will
then be refreshed accordingly to update laws that guarantee
good tracking properties. We use a Model-Reference Adaptive
Control (MRAC) framework, similar to the one introduced
in [9], where the reference model corresponds to a virtual
vehicle whose dynamics is described by two independent
second order oscillators. This reference system is easily
controlled and will accurately track the desired trajectory,
while the real system is going to track the reference one.

The stability of the closed loop will be studied using the
notion of ultimate boundedness ([13]). Furthermore, we will
use a technique derived from dynamic surface control ([14])
to simplify the expression of the control command.

This paper is organized as follows, Section II details the
kinematics of the system, Section III describes the vehicle’s
dynamic model, and Section IV introduces the tracking errors
considered. Section V contains the step by step derivation of
the control law, assuming perfect knowledge of the vehicle’s
geometric and hydrodynamic parameters. In Section VI, we
transform the obtained control law into an adaptive one. We
then present simulation results in Section VII, and our final
conclusions in Section VIII.

II. MARINE VEHICLE KINEMATICS

This paper deals with the design of a controller that
only takes into account movements in the horizontal plane.
Accordingly, we will use a reduced version of the six degrees
of freedom marine vehicle mathematical model introduced in
[15], considering only three degrees of freedom.

In three degrees of freedom, the position and attitude of a
marine vehicle are described by the vector

η �
[

x y ψ
]T

, (1)

where (x,y) denotes the position of the vehicle in a two
dimensional earth fixed frame of reference ([15]), and ψ
is its heading angle. The linear body-fixed velocities are
introduced with the following notation,

ν �
[

u v r
]T

, (2)

where u, v are the forward and lateral velocities, and r is the
angular velocity in yaw.

In three degrees of freedom, the projection of a vector
expressed in the body-fixed frame ([15]) into the inertial
frame is classically accomplished using the transformation
matrix

J(ψ) �


 cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1


 . (3)

The opposite operation, which consists of projecting a vector
from the inertial frame into the body-fixed frame, is accom-
plished using J−1(ψ),

J−1(ψ) =


 cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0
0 0 1


= JT(ψ). (4)

Using (1), (2), and (3), we can obtain the relationship
between the position vector η , and the velocity vector ν ,
or kinematic equation of the system [15],

η̇ = J(ψ)ν . (5)

III. MARINE VEHICLE DYNAMIC MODEL

The marine vehicle dynamic model considered is similar
to that presented in [15], the only difference being that
we consider trajectories in the horizontal plane, hence the
number of degrees of freedom is reduced from six to three.
The considered dynamic equation is given by

Mν̇ +D(ν)ν +C(ν)ν +g(η ) = Bτ + J−1(ψ)w, (6)

where τ �
[

τ1 τ2
]T

, τ1 and τ2 corresponding to the
surge and sway forces, respectively, M is the inertia matrix,
D(ν) is the damping matrix, C(ν) is the Coriolis matrix,
g(η ) is the vector of restoring forces and moments, and
w �

[
w1 w2 0

]T
represents the force applied on the

vehicle by a constant ocean current of unknown velocity and
direction, expressed in the inertial frame of reference. The
expressions of M, D(ν), C(ν), D(ν) and g(η ) are detailed
in [15].

The matrix B represents the way that our two commands
are applied to the vehicle, in particular, we will consider the
following case,

B =


 1 0

0 1
0 −L


 , (7)

where L is the distance, along the vehicle longitudinal axis,
between the vehicle’s center of mass and the point where
the thrust is applied. Most controllers for this underactuated
problem ( [4], [6], [16]) are derived using a B matrix of the
form

B =


 1 0

0 0
0 1


 , (8)



which corresponds to a vehicle equipped with two propellers
and no rudder, as described in [4], [6]. Finally, in [2], B is
of the general form

B =


 1 0

0 1
0 L


 , (9)

which corresponds to a side thruster placed in front of the
vehicle’s center of gravity instead of being placed behind,
which would be the case corresponding to (7). The difference
between B in (7) and (9) is crucial. With (9), the sway control
force has the same sign as the yawing control moment, while
when considering (7), they have opposite signs. This means
that if the vehicle must turn right, in the case given by (9), the
sway force applied to generate the desired yawing moment
will move the vehicle to the right, helping the maneuver.
When considering the B matrix provided by (7), the sway
force applied to generate the desired yawing moment will
actually push the vehicle to the left, hindering the movement.
This difference is reflected by the zero dynamics of the
system, whose behavior is stable when considering (9), while
it is not when using (7), as mentioned in [2].

IV. TRACKING ERRORS

As mentioned in Section I, we will use a reference model.
This reference model, corresponding to a virtual vehicle is
chosen so that it will easily and accurately track a desired
trajectory. The challenge then lies in controlling the actual
vehicle so that it tracks the reference system. The dynamics
of such a reference system can be arbitriraly chosen. In
particular, we chose to adopt the dynamics of two uncoupled
second-order oscillators. The interested reader should refer
to [1] or [10] for a detailed presentation of such a choice.

A. Position Errors
The error in position in the inertial and body fixed frames

of reference are respectively defined by
e � ηr −ηs, ẽ � J−1

s (ψ)e, (10)

where e is the error in position in the inertial frame, ẽ is this
same error in position, but projected in the body fixed frame,
ηs �

[
x y

]T
is the actual position of the vehicle, ηr is the

position of the reference system the vehicle is tracking, and
Js(ψ) is the (1,2)× (1,2) block of J(ψ).

Using (5) and (10), we obtain the following first and
second time derivatives for ẽ,

˙̃e = J−1
s (ψ)η̇r −νs + rSẽ, (11)

¨̃e = J−1
s (ψ)(η̈r + rSη̇r)− ν̇s + ṙSẽ+ rS ˙̃e, (12)

where νs �
[

u v
]T

, and S is the following skew-
symmetric matrix,

S �
[

0 1
−1 0

]
. (13)

Note that the control action τ appears explicitly in the
expression of ¨̃e (12) through ν̇s. Finally, the distance between
the vehicle and its desired position is defined as

ed � ‖ẽ‖ = ‖e‖, (14)

where ‖ · ‖ denotes the Euclidian norm.
The time derivative of such a distance is given by

ėd = 1
ed

ẽT ˙̃e. (15)

B. Angular Error
The angle β ∈ (−π,π] is defined as the angle between

the longitudinal axis of the vehicle and the direction of the
desired position. It can be computed as follows,

β � tan−1
(

ẽ2
ẽ1

)
, (16)

and its time derivative is given by
β̇ = 1

e2
d
ẽTS ˙̃e. (17)

V. UNDERACTUATED BACKSTEPPING DESIGN

In this section, we derive a control law for an underactu-
ated marine vehicle whose model is described in Section III.
In particular, we show how, introducing a maximum tolerable
tracking error, it is possible to overcome the zero-dynamics
instability of the controlled system, and guarantee not only
excellent tracking performance, but also boundedness of the
uncontrolled states.

A. Backstepping Technique, First Step
We want to control the vehicle in terms of distance from

the desired position ed and angle β . Thus, we introduce this
first function of the errors,

V0(ed,β) = ed sin2
(

β
2

)
+ 1

2 e2
d. (18)

Note that if ed > 0, then V0(ed,β) > 0, β ∈ (−π,π]. Using
(15) and (17), we can obtain the time derivative of this
function,

V̇0(ed,β , ˙̃e) =
[

sin2
(

β
2

)
+ ed

1
2 sin(β)

]
J−1(β) ˙̃e, (19)

where J(β) �
[

cos(β) −sin(β)
sin(β) cos(β)

]
. We now consider ˙̃e as

our virtual command, which we would ideally choose to be
equal to

˙̃edes = −edJ(β)G1

[
sin2(β

2 )+ ed −a
1
2 sin(β)

]
, (20)

where a > 0 is an arbitrary constant which will measure
the maximum allowable tracking error. Next, in order to
guarantee that ˙̃e converges toward ˙̃edes, we can introduce the
following error variable

γ � ˙̃e− ˙̃edes, (21)

whose time derivative is given by

γ̇ = ¨̃e+
[

˙̃e1 − ˙̃e2
˙̃e2 ˙̃e1

]
G1

[
sin2(β

2 )+ ed −a
1
2 sin(β)

]

+J(β)G1

[
ẽ1 − 1

2 sin2(β) ẽ2 + 1
4 sin(2β)

− 1
4 sin(2β) 1

2 cos2(β)

]
˙̃e. (22)

Given the complexity of γ̇, we choose to simplify its ex-
pression. To do so, we will use a technique derived from
Dynamic Surface Control theory [14]. Instead of using γ, we
will use

γf � J−1
s (ψ)η̇r −νs + χ , (23)

where χ corresponds to rSẽ− ˙̃edes passed through the fol-
lowing filter,

T χ̇ + χ = rSẽ− ˙̃edes, (24)



T being a diagonal matrix whose elements are positive
constants and constitute the filter time constants.

Finally, from (19), (20) and (24), we obtain that

V̇0(ed,β ,γf) = γT
f J(β)

[
sin2(β

2 )+ ed −a
1
2 sin(β)

]

−ed

[
sin2

(
β
2

)
+ ed

1
2 sin(β)

]
G1

[
sin2(β

2 )+ ed −a
1
2 sin(β)

]
.

(25)

B. Backstepping Technique, Second Step
We now introduce the new function

V1(ed,β ,γf) = ed sin2
(

β
2

)
+ 1

2 e2
d + 1

2 γT
f γf, (26)

whose time derivative is given by

V̇1(ed,β ,γf,τ ∗, t) =

−ed

[
sin2

(
β
2

)
+ed

1
2 sin(β)

]
G1

[
sin2(β

2 )+ ed −a
1
2 sin(β)

]

+γT
f

(
J(β)

[
sin2

(
β
2

)
+ed−a

1
2 sin(β)

]
+γ̇f(τ ∗, t)

)
. (27)

Next, using (6), (12), and (24), we obtain

V̇1(ed,β ,γf,τ ∗, t) = γT
f

(
F1(ed,β ,χ , t)−G2γf

+M−1
s (Ds(νs)+Cs(ν))νs−M−1

s J−1
s (ψ)ws−M−1

s Bsτ ∗
)

−ed

[
sin2

(
β
2

)
+ed

1
2 sin(β)

]
G1

[
sin2(β

2 )+ed−a
1
2 sin(β)

]
,

(28)

where Ms, Ds(νs), Cs(ν) and Bs are the (1,2)× (1,2) blocks
of M, D(ν), C(ν) and B. In addition, ws �

[
w1 w2

]T
, G2

is a positive definite matrix, and

F1(ed,β ,χ , t) � J(β)
[

sin2(β
2 )+ ed −a

1
2 sin(β)

]
+J−1

s (ψ)(η̈r + rSη̇r)+T−1(rSẽ− ˙̃edes − χ), (29)

where the explicit time dependency comes from the time
varying variables ψ and ẽ. Now that our control command
τ ∗ appears explicitly in the expression of V̇1(ed,β ,γf,τ ∗, t),
we can easily choose it in order to cancel any unwanted term.
In particular, we choose

τ ∗ = B−1
s

[
(Ds(νs)+Cs(ν))νs

+MsF1(ed,β ,χ , t)+ J−1
s (ψ)ws

]
. (30)

The corresponding V̇1(ed,β ,γf,τ ∗, t) is then given by

V̇1(ed,β ,γf,τ ∗, t) = −γT
f G2γf

−ed

[
sin2

(
β
2

)
+ed

1
2 sin(β)

]
G1

[
sin2(β

2 )+ed−a
1
2 sin(β)

]
,

(31)

We have V1(ed,β ,γf) > 0 and V̇1(ed,β ,γf,τ ∗, t) < 0 provided
that ed � a. Using ultimate boundedness [13], we can thus
guarantee that the system will enter and remain in the domain
D � {β ∈ (−π,π],ed < a}.

VI. ADAPTIVE CONTROL LAW

In this section, we modify the control law obtained in Sec-
tion V into an adaptive one, using the framework introduced
in [9], improving in this way the flexibility of the control
algorithm presented in the previous section.

A. Reformulating the Control Law

First, we need all of the unknown parameters to appear
linearly in our control command. We define the following
notations,

Θ∗
1 � B−1

s Ms, Θ∗
2 � B−1

s Dls, Θ∗
3 � B−1

s Dqs,

Θ∗
4 � B−1

s

[
m2 0
0 m1

]
, Θ∗

5 � B−1
s

[
w1 w2

w2 −w1

]
,

F2(νs) � νs, F3(νs) �
[ ‖u‖ 0

0 ‖v‖
]

νs, F4(ν) � rSTνs,

F5(ψ) �
[

cosψ
sinψ

]
, (32)

where Dls and Dqs are the coefficients of the linear and
quadratic part of Ds, respectively, and we rewrite our com-
mand τ ∗ as

τ ∗ = Θ∗
1F1(ed,β ,χ , t)+

3

∑
i=2

Θ∗
i Fi(νs)

+Θ∗
4F4(ν)+Θ∗

5F5(ψ). (33)

Next, considering that we do not have the exact values of
Θ∗

i , i = 1,2,3,4,5, we are going to use an estimate Θ for
each Θ∗. The command we will use is thus

τ = Θ1F1(ed,β ,χ , t)+
3

∑
i=2

ΘiFi(νs)

+Θ4F4(ν)+Θ5F5(ψ). (34)

The error between the estimate Θ and the actual value Θ∗
will by referred to as Θ̃,

Θ̃ � Θ−Θ∗. (35)

B. New Function of the Error

By using the control law (34) instead of (33), we introduce
new terms in V̇1. In order to compensate for those terms, we
introduce the new function of the error

V2(ed,β ,γf, t) = ed sin2
(

β
2

)
+ 1

2 e2
d + 1

2 γT
f γf

+
5

∑
i=1

1
2

tr
(
M−1

s BsΘ̃iΓ−1
i Θ̃T

i

)
(36)

where tr(·) is the trace operator, Γi, i = 1,2,3,4,5 are positive
design constants. The corresponding time derivative is given



by

V̇2(ed,β ,γf,τ , t) = −γT
f G2γf

−ed

[
sin2

(
β
2

)
+ed

1
2 sin(β)

]
G1

[
sin2(β

2 )+ed−a
1
2 sin(β)

]
−tr
(
M−1

s B−1
s Θ̃1F1(ed,β , t)γT

f −M−1
s BsΘ̃1Γ−1

1 Θ̇T
1

)
−

3

∑
i=2

tr
(
M−1

s BsΘ̃iFi(νs)γT
f −M−1

s BsΘ̃iΓ−1
i Θ̇T

i

)
−tr
(
M−1

s BsΘ̃4F4(ν)γT
f −M−1

s BsΘ̃4Γ−1
4 Θ̇T

4

)
−tr
(
M−1

s BsΘ̃5F5(ψ)γT
f −M−1

s BsΘ̃5Γ−1
5 Θ̇T

5

)
. (37)

Finally, by choosing the following update laws for Θ̇i, i =
1,2,3,4,5,

Θ̇1 = Γ1γfF
T
1 (ed,β , t), (38)

Θ̇i = ΓiγfF
T

i (νs), i = 2,3, (39)

Θ̇4 = Γ4γfF
T
4 (ν), (40)

Θ̇5 = Γ5γfF
T
5 (ψ) (41)

the expression of V̇2 becomes

V̇2(ed,β ,γf,τ , t) = −γT
f G2γf

−ed

[
sin2

(
β
2

)
+ed

1
2 sin(β)

]
G1

[
sin2(β

2 )+ed−a
1
2 sin(β)

]
.

(42)

Having V2(ed,β ,γf, t) > 0 and V̇2(ed,β ,γf,τ , t) < 0 if ed � a,
we can guarantee, using ultimate boundedness theory, that
the system will enter and remain in the domain D previously
defined.

VII. SIMULATION RESULTS

A. Circular Trajectory
The first maneuver we will attempt is a counterclockwise

circle of radius 10m at a velocity of 1m/s, with the following
initial conditions,

η =
[

0 0 0
]T

, ν =
[

0 0 0
]T

. (43)

The reference model initial conditions are

ηr(0) =
[

0.6 0
]T

. (44)

The reference system is modelled after a pair of second
order oscillators and is detailed in [1]. The natural frequency
and damping matrices of the reference system are set at 0.2I2
and 0.9I2, respectively, where I2 is the 2×2 identity matrix.

The initials conditions chosen for the Θ estimates are

Θ1 =
[

15 0
0 50

]
,

Θ2 = Θ3 =
[ −5 0

0 10

]
, Θ4 =

[
40 0
0 10

]
, (45)

In this first maneuver, we will assume there is no ocean
current to perturb the motion of the vehicle. Thus, the initial
value for Θ5 will be zero, and we will set Γ5 = 0.

Furthermore, Γi = I2, i = 1,2,3,4, a = 0.6, and G1 = G2 =
I2. The dynamic model of the vehicle corresponds to the
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Silent Quick Unmanned Intelligent Diver [1]. The values for
M, Dl and Dq are given in [1].

Finally, the initial position of the desired trajectory is

ηds(0) =
[

7.0711 7.0711
]T

.

As shown in Figure 1, the tracking performances are
excellent, and the vehicle is moving in a coherent fashion
(the arrows show the orientation of the vehicle).

We used the framework introduced in [9] to enforce
command input amplitude saturation, and keep the control
efforts at a reasonable level, as shown in Figure 1. Finally,
the Θ estimates converge quickly and remain stable (Figure
2).

0 10 20 30 40 50 60 70
0

20

40

60
Theta1

1st component
2nd component

0 10 20 30 40 50 60 70
-10

0

10

20
Theta2

0 10 20 30 40 50 60 70
-5

0

5

10

Theta3

0 10 20 30 40 50 60 70

10

20

30

40

Theta4

Time [s]

Fig. 2. Relevant Θ gains (circular maneuver without perturbation)



B. Robustness to External Perturbations
We will now consider the motion of the vehicle when it is

perturbed by a steady current. The current will be modelled
as a force, constant in the inertial frame of reference, simi-
larly to the approach presented in [2]. The value of the current
vector is w �

[
0.2 0.2 0

]T
. Furthermore, we choose

Θ5 = 10

[
1 1
1 −1

]
and Γ5 = 1. The desired trajectory, the

dynamic model constants and initial conditions are otherwise
similar to those of the first maneuver.
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Fig. 3. Circular trajectory with external perturbations and corresponding
control efforts

The bottom left corner arrow displays the direction of
the current. The tracking properties are still good, although
the vehicle slightly drifts in the direction of the current. It
can be noticed in Figure 3 that the vehicle orients itself
in order to minimize the influence of the current. To get
the vehicle’s behavior to be noticeably influenced by this
external perturbation, we had to use large numerical values
of the force modelling the current. Choosing such values for
the external perturbation, we had to remove the saturation
constraints for the vehicle to be able to cope with the current
(Figure 3).

VIII. CONCLUSION

In this paper, a backstepping approach and a technique
derived from dynamic surface control theory were used to
derive a nonlinear tracking control law for underactuated
nonminimum phase marine vehicles. The resulting control
law can be applied to solve the trajectory tracking problem
for any marine vehicle using a propeller and a rudder, or
a vectored thruster. The flexibility of the result has been
increased by introducing update laws for the estimates of

the vehicle’s model unknown parameters. It can furthermore
handle unknown, constant external perturbations. Computer
simulations illustrate the excellent performances of the con-
trol algorithm and its robustness to external perturbations.
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