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Observability of Hybrid Systems and Turing Machines

Pieter Collins and Jan H. van Schuppen

Abstract— In this paper we discuss the observability of
hybrid systems and Turing machines. We give an elementary
example to show that observability is undecidable for Turing
machines with output. Since many classes of system simulate
Turing machines, we can then show that observability for
these classes is undecidable. We discuss the observability of
piecewise-affine hybrid systems, and give examples illustrating
different observability properties.

I. INTRODUCTION

In linear control theory, the basic system properties of sta-
bility, controllability and observability are straightforward
to check. Beyond linear systems, a number of undecidability
results for various classes of nonlinear systems exist. Most
existing undecidability results concern the reachability re-
lation, that is, given two points x0 and x1, is there a system
trajectory from x0 and x1. For Turing machines [1], the
reachability relation is known to be undecidable, since it
is simply a reformulation of the halting problem. A two-
stack pushdown automaton can trivially simulate a Turing
machine, and a two-counter machine also has equivalent
computational power. A reversible Turing machine was
shown to be computationally universal by Bennett [2], and
a reversible two-counter machine was shown to be universal
by Morita [3]. The reachability relation is undecidable for
all these machines.

As well as the halting problem, related problems are also
undecidable, such as the mortality problem, under which
a machine halts starting from any configuration (state and
input). The mortality problem for Turing machines with
an infinite input tape was shown to be undecidable by
Hooper [4]. An elementary proof that the mortality problem
for two-counter machines is undecidable was given by
Blondel et al. [5].

The study of computability properties for continuous-
space systems requires the reduction of problems either
to a Turing machine, or to a model with similar com-
putational power. Systems known to be able to simulate
Turing machines include planar diffeomorphisms [6], pla-
nar piecewise-linear maps [7], piecewise-constant deriva-
tive systems [8] and high-dimensional saturated linear sys-
tems [9]. (It was shown that a saturated linear system with
866 variables can simulate a universal Turing machine.)

In the literature, most attention has been directed towards
the system properties of stability and controllability. Results
for saturated linear systems were obtained by Siegelmann
and Sontag [9], [10] and a number of additional results
have been obtained by Blondel, Tsitsiklis et al. [11], [12].
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In [10], distinguishability of a state from zero was related to
reachability analysis, and hence shown to be undecidable.
Existing work on observability has focused on systems with
saturated outputs, which arise naturally in many applications
including neural networks. Observability for continuous-
time linear systems with saturated outputs holds if and only
if the Kalman rank condition plus an additional property
hold [13], but the computability of this property was not
discussed.

In this paper we study the observability problem for
systems on a compact state space, with the evolution and
output defined by continuous functions, since this is the
case of most interest. We consider the cases that the set
of possible initial states is either finite, or is the entire
state space. We show that these observability problems
are undecidable for the class of rational piecewise-affine
systems. These systems are effective (i.e. the evolution of
rational points can be exactly computed), have a hybrid-
space character (i.e. the system evolution law depends on
the position in phase space), and include the saturated
linear systems. Unlike the restricted case of saturated linear
systems, we can show that the observability problem for
general piecewise-affine systems is undecidable even in
dimension two.

The observability problem for a finite initial state set
reduces to the halting problem by considering an appro-
priate observation function. When the initial state set is the
entire state space, we reduce to the mortality problem. Since
we consider systems on a compact state space defined by
continuous maps, it is of crucial importance that we reduce
to a class of machine with a compact configuration space.
This includes Turing machines with an infinite input tape,
but not Turing machines with a finite input or two-counter
machines.

We first show that two appropriately-formulated ob-
servability problems for Turing machines are undecidable.
Although we do not use these results directly in the sequel,
they are of independent interest, and the proofs illustrate
some of the techniques used when considering piecewise-
affine systems.

Finally, we discuss the distinguishability time for two
trajectories. For observable linear systems, all states can be
distinguished in finite time. For observable hybrid systems,
we may be able to distinguish two states in finite time, but
may need to look at the trajectories on infinite time intervals.

A. Observability notions

We consider observability for systems without inputs.
Definition 1 (Distinguishability and Observability):

Two initial states x and x′ of a system S are distinguishable



if the outputs η and η ′ for the trajectories starting at x and
x′ are different. A system S is observable if the output
map x → η , which gives the output for the trajectory
starting at x, is injective.

For deterministic systems, observability amounts to de-
termining the initial state. There is a corresponding notion
of reconstructibility, which states that for any initial states
x and x′ there exists T such that if the corresponding
observations η and η ′ are equal on the interval [0,T ], then
ξ (T ) = ξ ′(T ), where ξ and ξ ′ are the trajectories starting
at x and x′.

For systems with inputs, there are a number of different
observability notions [14], corresponding to the system
being observable for some predetermined input, for every
input, or for an input given as a feedback based on the
observations up to the current time.

II. OBSERVABILITY OF TURING MACHINES

We use a standard definition of Turing machine [1].
Definition 2 (Turing machine with output): Let Σ be a

finite input alphabet and ϒ a finite output alphabet.
A Turing machine with output M over (Σ,ϒ) is a tuple

{Q,Qinit,Qhalt,Γ,Λ} where Q is a finite state set, Qinit is
the set of initial states and Qhalt is the set of halting states.
The transition function Γ and observation function Λ are

Γ : Q×Σ → Q×Σ×∆, Λ : Q → ϒ∪{ε}.

where ∆ = {−1,0,+1}.
A configuration of a Turing machine M is an element of

(q,w) of Q×ΣZ. The element w ∈ ΣZ is the tape contents.
The successor function τ of M is a function τ : Q×ΣZ →

Q×ΣZ defined as follows. If the state is q, and the element
w0 of the tape is equal to a, then the transition (q,a) 7→
(q′,a′,δ ) is applied, The element w0 is replaced by a′, the
tape is shifted by the map σ δ , where (σ(w))i = wi+1, and
the new state is q′.

We say that a Turing machine has a finite tape if there is a
special blank symbol ∈ Σ such that every symbol is blank
except for a finite contiguous block of non-blank symbols,
otherwise it has an infinite tape.

Definition 3: A (Turing) machine M is mortal if it halts
on every configuration, and nilpotent if there exists an
integer N such that M halts on every configuration after
at most N steps.
The mortality problem for Turing machines with an infinite
tape was shown to be undecidable by Hooper [4]. It is
straightforward to show [12] that a Turing machine with
infinite tape is mortal if and only if it is nilpotent. The
mortality problem for Turing machines with a finite tape
is a distinct problem; a Turing machine which moves right
until it finds the first blank symbol on the tape is always
mortal for a finite tape but not for an infinite tape, since the
latter need not contain any blanks. In general, results on the
mortality problem for one class of systems cannot be used
to derive results on the mortality problem for other classes,
even if each class can simulate the other.

For applications to dynamical systems, we will require
mortality for Turing machines with an infinite tape. The
decidability of the mortality problem for Turing machines
with a finite tape is not known to the authors.

A. Tape observability

Consider the following tape observability problem for a
Turing machine M with a single initial state qinit ∈ Qinit.
The observability problem is to determine the initial state of
the tape from the output. We assume that the initial tape is
finite, but can take any value. It is clear that there is no upper
bound on the time needed to distinguish two initial tapes,
since an output of length n can only distinguish between
outputs of length n.

The following result reduces the tape observability prob-
lem to the mortality problem for Turing machines on a finite
tape.

Theorem 4: Tape observability for Turing machines is
undecidable if the mortality problem for a finite tape is
undecidable.

Proof: Let M be a Turing machine with alphabet
Σ which has at least two non-blank symbols. Construct a
Turing machine with output M ′ as follows: M ′ first makes
a copy of its input. It then modifies this copy by replacing
the first non-blank symbol with a blank. It finally runs M

on the modified copy of the input without disturbing the
original input. If M halts, then M ′ outputs its original
input. Otherwise, M ′ outputs nothing.

Any input for M can be obtained as the modified version
of the input for M ′. Hence if M is mortal, then M ′ is
mortal, and hence tape observable. If M is immortal, then
there is an input on which M does not halt. There are at
least two inputs for M ′ which give this input for M after
blanking the first symbol. On these inputs, M ′ does not
halt, and hence these inputs are indistinguishable.
Note that the construction does not work for Turing ma-
chines with an infinite tape, since there is no way to
effectively copy the initial tape.

B. State observability

Instead of considering the initial tape as the unknown
configuration, we can instead consider the initial tape as
a known parameter describing the system, and consider
observability of the initial state. A Turing machine is state
observable if the initial state qinit ∈ Qinit can be determined
from the initial tape contents and the output.

Theorem 5: State observability is undecidable for Turing
machines with an infinite tape.

Proof: Let M be a Turing machine with a single
initial state and a single halting state. Let Λ(q) = ε except
for the halting state qhalt for which Λ(qhalt) = y. Let Q′ be
a set disjoint from Q, and i : Q → Q′ a be bijection. We let
M ′ be a copy of M with halting state q′halt = i(qhalt) ∈ Q′

for which Λ(q′halt) = y′. The transition function Γ′ of M ′ is
given by Γ′(i(q),a) = (i(q̃), ã,δ ) if Γ(q,a) = (q̃, ã,δ ).
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Fig. 1. Tape contents of a Turing machine.

Consider the disjoint union M tM ′ of M and M ′

whose states are QtQ′, initial states are Qinit tQ′
init, and

halting states are Qhalt tQ′
halt. The transitions are given by

ΓtΓ′(q,a) = Γ(q,a) if q ∈ Q, and ΓtΓ′(q′,a) = Γ′(q′,a)
if q′ ∈ Q′. An observation of a state of M tM ′ is empty,
except for one of the two halting states qhalt and q′halt, in
which case M tM ′ reveals whether its state is in the
original machine or the copy. If M halts on an input w,
then so does M tM ′, and the halting state reveals the
initial state. If M does not halt, neither does M tM ′, and
no output is observed. Therefore, it is impossible to decide
in general whether the initial state is qinit or q′init.

In the construction, the halting states of M tM ′ reveal
aspects of the initial configuration which are not observed
in other configurations. We therefore refer to halting states
as revealing states for the machine with output.

III. SIMULATION OF TURING MACHINES BY
PIECEWISE-AFFINE SYSTEMS

The standard simulation of a Turing machine relies on an
encoding of the tape contents as a pair of numbers, which
are rational for a finite tape.

A. Encoding of Turing machines

We now show how to simulate a Turing machine using
a piecewise-affine map. This map will first be a partial
function on a number of cells; later we can glue these
together in an appropriate way. Without loss of generality,
we restrict to Turing machines with a transition function
Γ : Q×Σ → Q×Σ×∆ such that for every state q of the
Turing machine, either Γ(q,a) = (q′,a,δ ) where q′ does
not depend on a, or Γ(q,a) = (q′,a′,0). The former move
simply shifts the tape without reading or writing, whereas
the latter changes the tape without shifting.

We can write the configuration of a Turing machine as a
triple (q,w,v) ∈ C = Q×Σω ×Σω = C . The pair (w,v) ∈
Σω × Σω represents the tape contents . . . ,v−2,v−1,v0 ·
w0,w1,w2, . . ., with the tape head pointing to w0. Finite
tapes can be represented by pairs of finite words (w,v) ∈
Σ∗ × Σ∗ with no trailing blanks. Note that Σ∗ can be
embedded in Σω by padding with infinitely many blank
symbols.

There is a natural topology on Σω given by the metric
d(w,w′) = 1/2k, where wi = w′

i for i < k but wk 6= w′
k. In

this topology Σω is compact, but Σ∗ is not a closed subset
of Σω .

We encode the configuration of a Turing machine as a
subset of Q× [0,1]× [0,1] as follows. We assume Σ has

B1 B2 B3
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s(B2)

s(B3)
s

s
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Fig. 2. The image of boxes under the shift map

elements with integer numbers between 1 and N, and encode
a sequence w ∈ Σω by

θ(w) =
∞

∑
i=0

wi/ri+1,

where r > N +1 (say r = N +2). The encoding of a state of
a Turing machine is given by ν(q,w,v) = (q,θ(w),θ(v)).

The function θ is continuous and injective. Its image
θ(Σω) is a Cantor set contained in the interval (0,1). If
all elements of w are eventually equal to some constant,
then θ(w)∈Q, so whatever value is chosen to represent the
blank symbol , the encoding of a word w ∈ Σ∗ is always a
rational. We define the cell C(q) = {q}× [0,1]× [0,1], and
the box B(q,a) to be the convex hull of ν(q,aw,v) in C(q).

To encode a Turing machine, we also need to simulate
its transition by a map f . If Γ(q,a) = (q′,a′,0), then we
can take f : B(q,a) → B(q′,a′) by

f (q,x1,x2) = (q′,x1 +(a′−a)/r,x2),

which simply moves around boxes.
A shift of the tape can be simulated by the shift map s

on [0,1]× [0,1] given by

s(x1,x2) =
(

rx1 −brx1c,(brx1c+ x2)/r
)

. (1)

The map s is affine on each of the boxes B. If Γ(q,a) =
(q′,a,1), then we take f : B(q,a) →C(q′) by

f (q,x1,x2)=
(

q′, rx1 −brx1c,(brx1c+ x2)/r
)

=(q′,s(x1,x2))

The reverse-shift s−1 can also be given as a piecewise-affine
map. Overall, the transitions are related by the commutation
relation f ◦ν = ν ◦ τ .

B. Rational piecewise-affine maps

Our goal is to represent Turing machines by continuous
rational piecewise-affine functions, since computations may
be performed effectively on such functions, and continuity
is a natural condition to require for functions on continuous
spaces. Further, discontinuities are a well-known source
of uncomputability; a discontinuous real-valued function
is uncomputable using interval arithmetic [15]. For an
overview of computability questions in analysis, see [16].

Definition 6 (Rational piecewise-affine maps): A
continuous function f : X →Y is a rational piecewise-affine
map if X is the union of finitely many sets Xi such that
each Xi is given by a matrix inequality of the form Bix ≤ bi,
and f : Xi → Y is given by f (x) = Aix + ai. Here, the ai
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Fig. 3. State space of a piecewise-affine map simulating a Turing machine.

and bi are vectors with rational coefficients, and the Ai and
Bi are matrices with rational coefficients.

The following results show how to extend the simulating
partial functions to total functions.

Theorem 7: Let X be a contractible (e.g. convex) poly-
tope.

1) If f : A→X is a rational piecewise-affine map defined
on A⊂X , then f extends to a rational piecewise-affine
map defined on X .

2) If in addition f is defined on a finite disjoint union of
topological discs which are disjoint from the bound-
ary and is injective, then f can be extended to a
rational piecewise-affine homeomorphism.

Proof: [Sketch] To prove Pt. 1, we simply triangu-
late the complement of A, and extend f in a piecewise-
linear way by giving its values on the vertices of the
simplices. To prove Pt. 2, we see that since f is isotopic
to the identity on A, so by the isotopy extension theorem
(see [17] Thm. 8.1.3) f extends to a homeomorphism
on X . This can be triangulated by taking small enough
perturbations. (Alternatively, we can construct the original
isotopy by a suitable piecewise-constant derivative vector
field, and extend within the class of piecewise-constant
vector fields.)
In particular, any Turing machine can be simulated by a
rational piecewise-affine map, and any reversible Turing
machine by a rational piecewise-affine homeomorphism.

The following result shows that any orbit which remains
in the boxes B(Q,Σ) for all time is shadowed by the image
of some point in the Cantor set ν(Q,Σω ,Σω).

Lemma 8 (Shadowing lemma): Suppose x ∈ X is such
that there exist sequences (qn) and (an) such that f n(x) ∈
B(qn,an) for all n. Then there exists a configuration
(q,w,v) ∈ C such that f n(ν(q,w,v)) ∈ B(qn,an) for all n.

Proof: For each m, let Rm be the set of points y such
that f n(y)∈ B(qn,an) for all n ≤ m. Then Rm is a rectangle,
since R0 is a rectangle, and f maps rectangles in some
B(q,a) to rectangles. We claim that the vertices of Rm are
points of ν(C ) for all m. This is true for m = 0, since
R0 = B(q0,a0) and the vertices of R0 are points of ν(C ). For
any m we have f m(Rm) = f m(Rm−1)∩B(qm,am), so if the
vertices of f m(Rm−1) are points of ν(C ), then so are those
of f m(Rm). The claim follows by induction since ν(C ) is
invariant under f , and f is locally injective on each B(q,a).
Hence each Rm is a nonempty compact set containing a

C(qhalt)

φ(x) = 0 for x ∈ B(q, a)

Fig. 4. A function φ(x) which is positive except on boxes B(q,a) for
q 6∈ Qhalt.

point of ν(C ), and so Rm ∩ν(C ) is a decreasing sequence
of nonempty compact sets. Therefore there is a point in
⋂∞

n=0 Rm ∩ ν(C ), and this point is the required image of
(q,w,v).

IV. OBSERVABILITY OF PIECEWISE-AFFINE
SYSTEMS

We wish to consider continuous systems consisting of
continuous functions with continuous output. We also wish
to consider various kinds of sets of initial conditions.
In particular, we would like to take all possible initial
conditions, or initial conditions in some compact set. We
define output functions of a similar form to

h(x) = (φ(x),x1, . . . ,xk,xk+1φ(x), . . . ,xnφ(x))

where φ : X → R and x ∈Rn, so that the ith coordinate of x
is observable if and only if i ≤ k or φ(x) 6= 0. An example
of the function φ is given in Fig. 4. We often take φ(x) = 0
on the boxes B(q,a) for q 6∈ Qhalt, and φ(x) > 0 otherwise.

A. Continuous rational piecewise-affine systems

Definition 9 (Continuous piecewise-affine systems): A
pair ( f ,h) is a continuous rational piecewise-affine system
if f : X → X and h : X → Y are rational piecewise-affine
maps.

Theorem 10: Observability is undecidable for continuous
rational piecewise-affine systems with finitely many possi-
ble initial states.

Proof: Let f simulate a pair of identical Turing ma-
chines M , M ′ as in the proof of Thm. 5. Let Xinit = {x0,x′0}
be a set consisting of two initial states, corresponding to the
initial states of each Turing machine. Consider an output
h : X → R where h(x) > 0 if x ∈ B(qhalt,a), h(x) < 0 for
x ∈ B(q′halt,a), and h(x) = 0 if x ∈C(q) if q 6∈ {qhalt,q′halt}.
Then deciding observability of ( f ,h) is equivalent to solving
the halting problem for M . If M halts, then x0 reaches
B(q,a) for q ∈ Qhalt giving positive output, and x′0 reaches
B(q′,a) for q′ ∈ Q′

halt giving negative output. If M does not
halt, then no output is detected for either x0 and x′0, and the
system is unobservable on its initial state.

Theorem 11: Observability is undecidable for continuous
rational piecewise-affine systems with any possible initial
states.

Proof: Let M be a Turing machine with M states
and halting states Qhalt, let X̃ = [0,M] × [0,1] and let



f̃ be a rational piecewise-affine map simulating M on
X̃ , let X = X̃ × [0,1], let f (x1,x2,x3) = ( f̃ (x1,x2),x3) and
let h : X → X × [0,1]× [0,1] be given by h(x1,x2,x3) =
(x1,x2,φ(x1,x2)x3) where φ = 0 on Bq,a for q 6∈ Qhalt, and
φ ∈ (0,1] otherwise.

Then the initial x1, x2 coordinates are known, so the initial
state can be determined as soon as the x3 coordinate is
known. This occurs if φ ever becomes nonzero. This can
only not occur if f n(x)∈ B(Q,Σ) for all iterates, and further
that the machine never halts. By the shadowing lemma, it
suffices to consider points in ν(C ), and then it is clear
that the system is unobservable if and only if M is mortal
on an infinite tape‘. Hence observability is undecidable,
since mortality for Turing machines with an infinite tape
is undecidable.

B. Piecewise-affine planar homeomorphisms

A reversible Turing machine is simulated by homeomor-
phisms of the plane. Since for a reversible system, knowing
the current state gives full knowledge of the initial state,
we can consider observability for planar systems and take
h(x) = (φ(x),x1φ(x),x2φ(x)). Observability is then equiva-
lent to having every state entering the set where φ(x) 6= 0
(though we need a dummy fixed state with φ(x) = 0 so as
not to allow a state staying in the set where φ = 0 to be
distinguished from every other state). Although [2] shows
that any Turing machine is simulated by a reversible Turing
machine, this is not enough to show that the mortality
problem is undecidable. We obtain the following results.

Theorem 12:
1) Observability is undecidable for continuous reversible

piecewise-affine planar systems with finitely many
initial states.

2) If the mortality problem for reversible Turing ma-
chines with an infinite tape is undecidable, then so is
observability for continuous rational piecewise-affine
planar homeomorphisms.

C. Discontinuous piecewise-affine systems

Up to now we have considered continuous functions.
However in many situations it is natural to model hybrid
systems by discontinuous piecewise-affine functions. On the
boundaries of partition elements, we take the functions to
by multivalued; this mild form of nondeterminism does not
cause any serious problems.

A multivalued function f : X →X is a rational piecewise-
affine function if that X is a union of polytopes of the
form Bx ≤ b on which f (x) = Ax + b. The function f is
multivalued on a common boundary of two polytopes. A
piecewise-affine hybrid system is specified by a rational
piecewise-affine function f on a (possibly disconnected)
union of polytopes, and a continuous observation function
h. Note that the system as defined may be nondeterministic;
when the intersection of polytopes is reached, the behaviour
is undetermined. However, this does not cause difficulties
in determining system observability.

Definition 13 (Discrete-state observability): A
piecewise-affine hybrid system is discrete-state observable
if it is possible to determine the initial discrete state from
the output.

By reduction to the state observability problem for Turing
machines, we obtain the following result for systems.

Theorem 14: Discrete-state observability is undecidable
for discontinuous piecewise-affine hybrid systems.

V. FINITE- AND INFINITE-TIME
OBSERVABILITY

A system is said to be observable in time T if every pair
of trajectories can be distinguished by the output over the
time interval [0,T ]. A system can be

• Observable in infinitesimal time if it is observable in
time T for any T > 0,

• Observable in finite time if it is observable in time T
for some T < ∞.

• Observable in infinite time if any pair of trajectories
can be distinguished on [0,∞).

A linear system is observable if and only if it is observable
in infinitesimal time. For Turing machines with outputs,
state observability must be in finite time, since there are
only finitely many possible trajectories which need to be
distinguished, and input observability must be in infinite
time, since infinitely long inputs are allowed.

For discrete-time and hybrid systems, it is straightforward
to construct examples which are observable in infinite time.

Example 15: Consider a Turing machine which reads
its input from left to right and halts on finding the first
zero. Then the piecewise-affine continuous simulator is
observable in infinite time, but not in finite time, since there
does not exist finite N such that M halts in time N.

Example 16: Consider the continuous piecewise-affine
system with state space X = [0,2] and output space Y =
[0,1]. Let

f (x) =

{

x+1 if x ≤ 1,
2 if x ≥ 1; h(x) =

{

0 if x ≤ 1
x−1, if x ≥ 1.

(2)
Then if x ≤ 1, h(x) = 0 and h( f (x)) = x, whereas if x ≥ 1,
h(x) = x − 1 and h( f (x)) = 1. Clearly, the outputs differ
after one step for any two initial states. Hence the system
is observable in time 1.

Example 17: Consider the continuous piecewise-affine
system with state space X = [0,2] and output space Y =
[0,1]. Let

f (x) =

{

2x if x ≤ 1,
2 if x ≥ 1; h(x) =

{

0 if x ≤ 1,
x−1 if x ≥ 1.

(3)

Note that f and h are continuous at x = 1.
If x0 > 0, then f n(x0) > 1 for some least n, the output is

(0,0, . . . ,0,2nx0 − 1,1,1, . . .) and x0 = (h( f n(x0)) + 1)/2n.
If x0 = 0, then the output is (0,0, . . .). Hence the output for
any two initial points is different, but since there are points
whose output consists of arbitrarily long initial sequences



of zeroes, it is not possible to distinguish x0 = 0 from x0 > 0
on any finite time interval.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper we have shown how to extend results on un-
decidability of reachability to results on observability. Two
observability problems for Turing machines were shown
to be undecidable. These results translate immediately to
undecidability results for classes of systems which can
simulate Turing machines with suitable initial state sets. To
obtain undecidability of observability for systems in which
any initial state is allowed, it is necessary to take more care
over the construction to ensure that the hybrid system is not
trivially unobservable. Examples of piecewise-affine hybrid
systems were given to show that observability may be in
finite-time or even infinite time.

B. Future Works

These results show that for even relatively simple classes
of system, observability is not decidable. However, observ-
ability is still an important system property which requires
study. A number of approaches are possible. Sub-classes
of system for which observability is decidable are known
to exist, such as a result of Vidal et al. [18] for linear
switched systems. Sufficient conditions for observability for
general systems which are decidable may be given, such
as observability in finite time [10] or observability after
a single discrete event for piecewise-affine systems [19].
An alternative approach is to consider approximate system
properties, in the same spirit as discrete-state observability,
which may be decidable.

There are also links with information theory, since ob-
servability of a system providing an encoding can be viewed
as decidability of the encoding; see [20]. The relationship
between observability and realisations of piecewise-affine
hybrid systems [21] is also an important area for further
work.
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