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Abstract�In this paper it is proven that three-axis stabi-
lization of satellites using magnetorqers is uniformly globally
asymptotically stable (UGAS). The application of Matrosovs
theorem allows for removal of the assumption that the ge-
omagnetic (internal and external) �eld is periodic in order
to establish this stability result. The results are applied to a
model of a Norwegian pico-satellite.

I. INTRODUCTION
Active control of the attitude of a satellite can be

achieved with a number of different actuators: reaction
wheels, thrusters or magnetic coils. The development of
a Norwegian pico-satellite required a control system that
is both inexpensive and lightweight. This motivated the
use of magnetic coils. As shown in [1], magnetic three-
axis stabilization of a spacecraft can be achieved by using
feedback from magnetic �eld measurements and angular
velocity. Asymptotic stability can then be established by
assuming that the internal geomagnetic �eld (the component
of the �eld having its cause in the iron core of the earth), as
seen from the spacecraft, is periodic and then applying the
Krasovskii-LaSalle theorem. However, the magnetometer
on board the satellite will not only measure the internal
geomagnetic �eld, but also the external magnetic �eld and
a disturbance �eld induced by the spacecraft electronics,
thus prohibiting the assumption of a periodic �eld. In this
paper periodicity of the magnetic �eld will not be assumed,
and UGAS will be proven for this time-varying system by
using Matrosov's theorem.

II. THE NCUBE SATELLITE
On mission from The Norwegian Space Center and

Andøya Rocket Range, four Norwegian universities and
educational institutions have since 2001 participated in a
program to develop a pico satellite. The satellite, nCube, is
being designed and built by MSc-students, in accordance
with the Cubesat concept: Mass is restricted to 1 kg and
size is restricted to a cube measuring 0:1 m on all sides. A
prototype of nCube is shown in Figure 1. The four partners
are Narvik University College, Norwegian University of
Science and Technology (NTNU), Agricultural University
of Norway, and University of Oslo. The Attitude Determi-
nation and Control System (ADCS) is the responsibility of
the Department of Engineering Cybernetics at NTNU.
The main mission of the satellite is to demonstrate ship

traf�c surveillance from a LEO satellite using the maritime
Automatic Identi�cation System (AIS) recently introduced

Fig. 1. Prototype of nCube illustrating the size and solar panels.

by the International Maritime Organization (IMO). The AIS
system is based on VHF transponders located on board
ships. These transponders broadcast the position, speed,
heading and other relevant information from the ships at
regular time intervals. The main objective of the satellite is
to receive, store and retransmit at least one AIS-message
from a ship. Another objective of the satellite project is
to demonstrate reindeer herd monitoring from space by
equipping a reindeer with an AIS transponder during a
limited experimental period. In addition, the satellite should
maintain communications and digipeater operations using
amateur frequencies. A third objective is to demonstrate
ef�cient attitude control using passive gravity gradient sta-
bilization and active magnetic torquers.
The satellite will be placed in a low earth sun synchro-

nous orbit with a perigee of approximately 700 km, and
as circular as possible. The inclination will be close to
98�. The launch is scheduled to early 2005. For further
information on the nCube project and detailed description
of the satellite the reader is referred to [2] or [3]
The attitude and angular velocity of the spacecraft will

be determined by integrating measurements of the magnetic
�eld and measurements of the sun vector in an extended
Kalman �lter. The magnetic �eld will be measured using a



Fig. 2. Photo of one of the torque coils

Fig. 3. Photo of the nadir surface of Ncube. The gravity boom is coiled
up and restrained inside a box.

digital magnetometer and the sun vector will be measured
by monitoring the current output from the solar panels
which cover all the sides of the cube. For actuation of the
satellite, magnetic torque coils will be used. A prototype
coil is shown in Figure 2. A gravity boom is constructed
from measuring tape which will act as the boom rod. A
tip-mass made of lead is attached to the boom. The coiled
up boom is shown in the lower middle in Figure 3. For
details on sensors and actuators and the construction of the
satellite in general, see [4].

III. MODELING

A. Satellite model

1) Coordinate frames and kinematics: Earth-Centered
Inertial (ECI) Reference Frame The origin of this frame
is located in the center of the earth. This reference frame
will be denoted i, and the earth rotates around its z-axis.
The x-axis points towards the vernal equinox.
Orbit Reference Frame The orbit frame origin coincides

with the spacecraft center. The origin rotate at an angular
velocity !o relative to the ECI frame and has its z-axis
pointed towards the center of the earth. The x-axis points
in the spacecraft's direction of motion tangentially to the
orbit. The satellite attitude is described by roll, pitch and

yaw which is the rotation around the x-, y-, and z-axis
respectively. The orbit reference frame is denoted o.
Body Reference Frame The body frame shares it's

origin with the orbit frame and is denoted b. The rotation
between the orbit frame and the body frame is used to
represent the spacecraft's attitude. It's axes are locally
de�ned in the spacecraft, with the origin in the center of
gravity or the center of the volume. The nadir side of the
spacecraft, intended to point towards the earth, is in the
z-axis direction.
The rotation matrix R from frame a to frame b is

denoted Rb
a. Rotation matrices are members of the special

orthogonal group of order three:

R 2SO(3)=
�
R
��R2R3�3;RTR=I;detR = 1

	
(1)

where I is the 3 � 3 identity matrix. A transformation of
a vector r from frame a to frame b is written rb = Rb

ar
a.

From the orthogonal property in (1), it can be shown [5]
that the time derivative of Rb

a can be written as

_Rb
a = S (!

a
ab)R

b
a = R

b
aS
�
!bab

�
(2)

where !bab is the angular velocity of frame b relative to
frame a represented in frame b, and S (!) = !� is the
cross product operator. Generally, the matrix Rb

o can be
written as

Rb
o =

�
cb1 c

b
2 c

b
3

�
; (3)

where cb1 =
�
cbix c

b
iy c

b
iz

�T are column vectors. The cb3
vector is the projection of the zo-axis in the body frame.
If cb3 = (0 0 1)

T , the zb-axis is aligned with the zo-axis.
In this paper cbiz will be frequently used as a measurement
of deviation between the zb-axis and the zo-axis. From (2)
and (3), it follows that

_cbi = S(c
b
i )!

b
ob: (4)

2) Dynamics: Using Euler's moment equation, the atti-
tude dynamics of the satellite can be derived as

J _!bib + !
b
ib �

�
J!bib

�
= � b; (5)

where J is the inertia matrix of the satellite, !bib is the
angular velocity of the b-frame with respect to the i-frame,
decomposed in the b-frame, and

� b = � bm + � g + � a + � s + �m

is the torque acting on the satellite. The torque � bm gener-
ated by the magnetorquers can be modelled as

� bm =m
b �Bb; (6)

where mb is the magnetic dipole moment generated by the
coils andBb = (Bx By Bz)T is the local geomagnetic �eld
vector. The magnetic dipole moment is given by

mb =mb
x +m

b
y +m

b
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Disturbance Magnitude [Nm]
Gravity gradient 1:0382 � 10�7
Aerodynamic drag 3:65 � 10�9
Solar radiation 1:5371 � 10�8
Internal electronics �eld 1 � 10�6

TABLE I
DISTURBANCE TORQUES FOR NCUBE

where Nk is the number of windings in the magnetic coil
on the axis in the k-direction, ik is the current in the coil
and Ak is the coil area. The disturbance torques � g; � a; � s
and �m will be de�ned later.
The angular velocity of the body frame with respect to

the orbit frame can be found by

!bob = !
b
ib �Rb

o!
o
io = !

b
ib � !ocb1:

B. Disturbance torques
A satellite is subject to small but persistent disturbance

torques. Unless actively resisted the disturbances will reori-
ent the satellite. The main disturbances are brie�y discussed
below. The discussion is based on [6] and [7].

a) Gravity gradient torque: The gravity gradient
torque � g , written in the b-frame as

� bg = 3!
2
0c
b
3 �

�
Jcb3

�
; (7)

where !0 �
�
�=R30

�1=2, � = GM is the Earth's gravita-
tional coef�cient and R0 is the distance to the Earth's center,
will affect a non symmetric body in the Earth's gravity �eld.
This effect can be exploited, and will be in the case of
nCube, with a gravity boom for passive stabilization.

b) Magnetic �elds: The electronics in the satellite may
create an unwanted residual magnetic dipole. This �eld will
interact with the Earth's geomagnetic �eld. The resulting
torque can be written as

�m = DB;

where D is the residual dipole of the satellite and B is the
Earth's magnetic �eld.
Also, disturbances may have their source in the external

geomagnetic �eld. This �eld varies on a faster time-scale
than the internal geomagnetic �eld. Moreover, the external
�eld may very in an unpredictable manner.

c) Other: Other disturbances that are taken into ac-
count for the nCube satellite, but not discussed in de-
tail here, include aerodynamic torque, � a, solar radiation
torque, � s; and boom distortion. In Table I, the worst case
numerical values for nCube are presented.

IV. CONTROLLER DESIGN
A. Energy considerations
An important tool in control theory is the use of energy-

based controllers based on Lyapunov designs and passivity
[5]. In this section expressions for the satellite's energy is

presented, and a suitable Lyapunov function candidate and
its derivative is found.
The energy of the satellite can be divided into kinetic

and potential energy. The kinetic energy is mainly due to
rotation in the inertial and orbit frame, while the most
important source to potential energy is the gravity gradient
and gyro effects due to revolution about the Earth. The
expressions for kinetic and potential energy is based on
[8], [9] and [10]. From a control perspective the rotation
of the body frame with respect to the orbit frame is most
interesting. Assuming a near circular orbit, and therefore a
constant orbital rate !o, the kinetic energy can be written

Ekin =
1

2

�
!bob

�T
J!bob: (8)

The potential energy due to the gravity gradient is

Egg =
3

2

�
!2o
�
cb3
�T
Jcb3 � Iz

�
; (9)

and the potential energy due to the revolution of the satellite
about the Earth is given by

Egyro =
1

2
!2o

�
Ix �

�
cb1
�T
Jcb1

�
: (10)

De�ning

x =
�
!bob c21 c31 c13 c23

�T 2 R7;
and using (8), (9) and (10), it can be seen that the energy
function V de�ned by

V (x) = Ekin + Egg + Egyro =
1

2

�
!bob

�T
J!bob

+
3

2
!2o
�
(Ix � Iz) c213 + (Iy � Iz) c223

�
(11)

+
1

2
!2o
�
(Ix � Iy) c221 + (Ix � Iz) c231

�
satis�es V (0) = 0: The simpli�cations in the last two terms
of (11) follows from the fact that Rb

o is orthogonal. In order
to ensure that V is positive de�nite, that is V > 0 8x 6= 0;
we require that Ix > Iy > Iz: For use in the stability
analysis of the controller we need an expression for the
time derivative of (11)

_V =
�
!bob

�T
J _!bob+3!

2
o

�
cb3
�T
J_cb3�!2o

�
cb1
�T
J_cb1: (12)

It follows from (5) and (7) that the satellite dynamics,
considering the gravity gradient and magnetic coil torques
only, can be written as

J _!bib + !
b
ib �

�
J!bib

�
= 3!20c

b
3 �

�
Jcb3

�
+ � bm: (13)

Using (4), (13) and the relations !ib = !ob + !0c
b
1 and�

!bob
�T
S(!bob) = 0; (12) is written

_V =
�
!bob

�T �
3!20S(c

b
3)Jc

b
3 + �

b
m � !0JS(cb1)!bob

�!0S(cb1)J!bob � !20S(cb1)Jcb1
�

(14)

+3!2o
�
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�T
JS(cb3)!

b
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�
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�T
JS(cb1)!

b
ob:



Since ST (x) = �S(x), (14) is reduced to
_V =

�
!bob

�T
� bm: (15)

Remark 1: The equilibrium given by x =�
!bob c21 c31 c13 c23

�T
=0; corresponds to four equilibria�

!bob c
b
3 c

b
1

�T
= (0 � co3 � co1)

T for the satellite, [8].

B. Detumbling
When the satellite is released from the launcher it will

have an initial angular velocity. Before the boom can
be deployed, angular velocity must be reduced and the
body frame must be aligned with the orbit frame. During
detumbling the kinetic energy of the satellite is dumped
and the angular velocity of the body frame with respect
to the inertial frame is to be reduced to a value below
!bob <

�
5�10�3 5�10�3 5�10�3

�T
: The only sensor avail-

able in this mode will be the magnetometer. After the
rate detumbling phase the satellite may have an arbitrary
attitude. Before the boom can be deployed we must ensure
that the body zb-axis is aligned with the orbit zo-axis.
If the boom is deployed in the opposite direction it may
be dif�cult to turn the satellite. For boom deployment we
require that the deviation between the zb and zo axes is less
than 30�.
The objective of the rate detumbling controller is to

dissipate the kinetic energy of the satellite. A controller
which uses only rate measurements from the magnetometer
is suggested below. The controller is proposed in [10], [11]
and [9].
Proposition 1: The control law

mb = �k _Bb �mc; (16)

where mc = (0 0 mc)
T will dissipate the kinetic energy of

the satellite and align it with the local geomagnetic �eld.
Proof: To prove that the energy is dissipated, Lya-

punov theory will be used. The proof is based on [10] and
[11]. Combining (6) and (16), the control torque � bm gives

� bm =m
b �Bb =

�
�k _Bb �mc

�
�Bb: (17)

We note that the magnetic �eld vector Bb can be written
as Bb = Rb

iB
i, and consequently

_Bb = _Rb
iB

i +Rb
i
_Bi = Bb � !bib +Rb

i
_Bi: (18)

Near the North and South Poles, Bb is approximately
constant. Equation (18) can therefore be approximated as
_Bb � Bb �!bib: This assumption is valid only in the polar
regions. When the boom is stowed, the gravity gradient will
be very small and can be neglected, however the constant
term in (16) will contribute to the potential energy. Thus,
the sum of kinetic T and potential energy U is

V = T +U =
1

2

�
!bib
�T
J!bib+ jmcj

��Bb��+mT
c B

b: (19)

Assuming a constant magnitude of the geomagnetic �eld in
the polar regions, the time derivative of (19) is

_V =
�
!bib
�T
� bm +m

T
c
_Bb;

and using (17) it follows that

_V =
�
!bib
�T ���k _Bb �mc

�
�Bb

�
+mT

c
_Bb

= �k
�
_Bb
�T

_Bb

which is negative semide�nite. We conclude that energy is
dissipated and the angular velocities are reduced.
Remark 2: The zb-axis will tend to point along Bi. This

is not shown in the analysis above, but a proof can be found
in [9] or [11]. Near the poles Bi points vertically upwards,
meaning that in the polar regions the deviation of the zb-
axis from nadir will be relatively small. This can be utilized
for boom deployment.

C. Stabilization
We will here use the same control law as in [10] and

[1] with the correction suggested by [12].. Asymptotic
stability of Wisniewski's controller was proven by assuming
Earth's magnetic �eld to be periodic and then using the
Krasovskii-LaSalle theorem [13]. As discussed in Section
III-B.0.b, the magnetic �eld may vary with time in an
unpredictable manner. Our contribution to previous work
is to use Matrosov's theorem [14] as stated in [15] in
order to prove uniform global asymptotic stability (UGAS)
of the equilibrium without assuming periodicity of the
geomagnetic �eld Bb(t):
Proposition 2: The control law

mb = H
�
!bob �Bb

�
; (20)

makes the origin, x = 0 of the system (13), (4) GUAS.
Proof: De�ne

V1 = V =
1

2

�
!bob

�T
J!bob +

3

2

�
!2o
�
cb3
�T
Jcb3 � Iz

�
+
1

2
!2o

�
Ix �

�
cb1
�T
Jcb1

�
; (21)

where the LFK in equation (11) has been used. Using
(20) and calculating the time derivative of (21) along the
trajectories of (13), (4) results in

_V1 =
�
!bob

�T
H
�
!bob �Bb

�
�Bb (22)

= �
�
!bob

�T
ST
�
Bb
�
HS

�
Bb
�
!bob = Y1 � 0;

as shown in equations (12) to (15). The Lyapunov function
candidate (21) is positive de�nite and its time derivative
(22) is negative semide�nite. It follows that the origin is
UGS, and Assumption 1 of Theorem 1 in [15] is satis�ed.
Moreover, Assumption 2 is satis�ed for i = 1. De�ne the
auxiliary function V2.

V2 = �c3JTST (c3)J!bob;

where the b superscript on cb1;2 has been dropped for
notational convenience. Now,

_V2 = �_c3JTST (c3)J!bob � c3JTST (_c3)J!bob
�c3JTST (c3)J _!bob:



As the system is stable, it follows that the states are
bounded. Using the same notation as in [15], we let the
number � denote a generic bound on continuous functions,
and _V2 can be upper bounded as

_V2 � �c3JTST (c3)J _!bob + �1
��!bob�� ;

and using (13) further bounded as

_V2 � �cT3 JTST (c3)
�
3!20S(c3)Jc3 � !20S(c1)Jc1

�
+�2

��!bob��
The second term in _V2 satis�es

!20c
T
3 J

TST (c3)S(c1)Jc1 = �!20cT3 JTS(c3)S(c1)Jc1
= �!20cT3 JT

�
c1c

T
3 � cT3 c1I

�
Jc1

= �!20cT3 JT c1cT3 Jc1
= �!20

�
cT3 J

T c1
�2
< 0

so that

_V2 � �3!20cT3 JTST (c3)S(c3)Jc3 + �2
��!bob�� :

Now, we see that Y1 � 0 implies
_V2 � �2!20c3JTST (c3)S(c3)Jc3 = Y2 � 0;

and Assumption 2 and 3 are satis�ed for i = 2. De�ning
the auxiliary function V3 as

V3 = c1J
TST (c1)J!

b
ob;

and calculating its time derivative in the same manner as
for _V2 results in

_V3 = _c1J
TST (c1)J!

b
ob + c1J

TST (_c1)J!
b
ob

+c1J
TST (c1)J _!

b
ob

� c1J
TST (c1)J _!

b
ob + �3

��!bob��
� c1J

TST (c1)
�
3!20S(c3)Jc3

�!20S(c1)Jc1
�
+ �4

��!bob��
� �!20c1JTST (c1)S(c1)Jc1

+�4
��!bob��+ �5 jc3j ;

where the same technique as for _V2 has been used. Now
Y1 � Y2 � 0 implies

_V3 � �!20c1JTST (c1)S(c1)Jc1 = Y3 � 0;

and Assumption 2 and 3 are satis�ed for i = 3: Finally
Yi = 0; i = f1; 2; 3g =) x = 0;and Assumption 4 of [15]
is satis�ed and the result follows.
Remark 3: In the two equilibria

�
!bob c

b
3 c

b
1

�
=

(0 � co3 � co1) the boom is pointing in the wrong direction.

V. SIMULATIONS
Now the controllers for detumbling and stabilization

will be simulated. The parameters of the model used in
the simulations are: Body size 10 � 10 � 10 cm, boom
length: 1:5 m, moments of inertia, boom stowed: Ix =
0:0621 kgm2; Iy = 0:0606 kgm

2; Iz = 0:0031 kgm
2; mo-

ments of inertia, boom deployed: Ix = 0:3210 kgm2; Iy =
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Fig. 4. Detumble mode simulation

0:1806 kgm2; Iz = 0:0031 kgm
2; maximum magnetic mo-

ment from the coils: 0:1 Am2: Feedback from the magnetic
�eld is done using the The International Geomagnetic Ref-
erence Field, IGRF. It is an approximation, near and above
the Earth's surface, to that part of the Earth's magnetic �eld
which has its origin in the earths core. The IGRF speci�es
the numerical coef�cients of a truncated spherical harmonic
series and together with an orbit estimator, an estimate of
the magnetic �eld is made.

A. Detumbling mode
The detumbling mode controller (16) was simulated with

initial values: !bib = (0:1 0:1 0:09)
T
rad=s and controller

parameters: k = 104 and mc = �0:01 Am2: In Figure 4 it
is shown that the angular velocities are quickly reduced and
the zb-axis aligns itself with the geomagnetic �eld vector.

B. Stabilization mode
In Figure 5, the Euler angles of the satellite using the

stabilizing controller (20) is shown. A disturbance (white
noise) with amplitude �10�5 T has been added to the
magnetometer measurements, and as can bee seen the
satellite is stabilized. The magnetic moments from the coils
are shown in Figure 6. The total energy V of the satellite
as well as the angular velocity is shown in Figure 7.

VI. FURTHER WORK

Ongoing work in the ADCS-part of this project includes
�nal design of the determination system and implementa-
tion of the complete ADCS on microcontrollers. The �nal
satellite will undergo assembly and testing during autumn
2004 and launch is planned for spring 2005.

VII. CONCLUDING REMARKS

It has been shown that the equilibrium of a time-varying
system consisting of spacecraft attitude dynamics and a
nonlinear control law using feedback from magnetic �eld
measurements and angular velocity is UGAS. Magnetic



Fig. 5. The stabilized attitude of nCube
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coils are used as actuators and the stability result is estab-
lished by using Matrosovs theorem. The theoretical results
have been con�rmed by simulations on a model of the pico-
satellite nCube.
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