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Abstract. This paper develops two efficient methods of non-myopic
(long-term) sensor management and investigates the benefit in the set-
ting of multitarget tracking. The underlying tracking methodology is
based on recursive estimation of a Joint Multitarget Probability Density
(JMPD), which is implemented using particle filtering methods. The my-
opic sensor management scheme is predicated on maximizing the expected
Rényi Information Divergence between the current JMPD and the JMPD
after a measurement has been made. A full non-myopic strategy based
on this information theoretic method is calculated using Monte Carlo
methods for a model problem. Since this is computationally intractable
when looking more than a small number of time steps ahead, two alterna-
tive strategies are investigated. First, we develop an information-directed
search algorithm which focusses the Monte Carlo evaluations on action
sequences that are most informative. Second, we give two approximate
methods which replace the value-to-go with an easily computed function
which captures the long term value of the current action. The perfor-
mance of these methods is compared to the myopic scheme in terms of
tracking performance and computational requirements.

1 Introduction

The problem of sensor management is to determine the best way to task a sensor
or group of sensors when each sensor may have many modes and search patterns.
Typically, the sensors are used to gain information about the kinematic state
(e.g. position and velocity) and identification of a group of targets. Applications
of sensor management are often military in nature [1], but also include things
such as wireless networking [2] and robot path planning [17]. There are many
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objectives that the sensor manager may be tuned to meet, e.g. minimization of
track loss, probability of target detection, minimization of track error/covariance,
and identification accuracy. Each of these different objectives taken alone may
lead to a different sensor allocation strategy [1].

Sensor management schemes may be either myopic (i.e. short term) or non-
myopic (i.e. long-term). Many researchers have investigated myopic schemes us-
ing, for example, an information-based sensor selection strategy [16][3][4]. It is
believed that long-term sensor scheduling will out perform short-term methods
in situations where the dynamics of the scenario are rapidly and predictably
changing. For example, when targets and/or sensor platforms are moving the
visibility of a target from a sensor changes with time and this property may
make long-term planning advantageous.

The long-term sensor scheduling problem has been approached with a Markov
decision process strategy. However, a complete long-term scheduling solution suf-
fers from combinatorial explosion when solving practical problems of even mod-
erate size. Researchers have thus worked at approximate solution techniques.
For Example, Krishnamurthy [5][6] uses a multi-arm bandit formulation involv-
ing hidden Markov models. Since the optimal approach has prohibitive compu-
tational complexity, suboptimal approximate methods are developed and some
simple numerical examples involving a small number of targets moving among
a small number of discrete states are presented. Even with the proposed sub-
optimal solutions, the problem is still very challenging numerically. Bertsekas
and Castanon [7] formulate heuristics for the solution of a stochastic scheduling
problem corresponding to sensor scheduling. They implement a rollout algorithm
based on their heuristics to approximate the stochastic dynamic programming
algorithm. Castanon [8][9] formulates the problem of classifying a large num-
ber of stationary objects with a multi-mode sensor based on a combination of
stochastic dynamic programming and optimization techniques.

In this paper, we detail a multi-target tracking situation in which non-myopic
scheduling should out perform myopic scheduling. This scenario involves a mov-
ing sensor which, due to terrain elevation, results in part of the surveillance region
being not visible at each time step. We contrast the sensor scheduling decisions
made by a myopic scheduler with that of a non-myopic scheduler in terms of
the resulting track error. As the full non-myopic solution requires computational
time exponential in the number of time steps forward that the algorithm plans,
we present two alternative schemes. First, we give an information-directed path
searching scheme which reduces the complexity of the full Monte Carlo (MC)
search and yields similar results. Second, we present approximate methods which
replace the value-to-go by a function of visibility which captures the long-term
value benefit of an action. This function is clearly motivated in the case of in-
tervisibility constraints, but may not be motivated in general.

This paper proceeds as follows. First, Section 2 is an overview of Bayesian
multiple target tracking and our particle filter implementation. Second, in Sec-
tion 3, we give the details of our information-based method of myopic sensor
management. Third, in Section 4, we provide a motivating example of a scenario



Non-myopic Sensor Management 3

in which non-myopic sensor management ought to provide benefit. Fourth, in
Section 5, we detail the full MC approach to non-myopic sensor management,
and note the intractability for long time-scale problems. Additionally, we show
an information-directed method of selectively searching trajectories, which re-
sults in similar performance as the full MC method at reduced computational
cost. Furthermore, we detail techniques that approximate the non-myopic strat-
egy with a computational cost similar to that of the myopic strategy by replacing
the value-to-go with a function of future visibility that captures the long-term
value of an action. Fifth, in Section 6, we provide simulation results comparing
the myopic, non-myopic, and approximate techniques in terms of track error and
computational burden.

2 Bayesian Multi-target Tracking

Here we briefly describe recursive Bayesian multiple target tracking and our
particle filter implementation. A more detailed presentation of our methodology
may be found in [11]. The central element of our target tracking methodology is
the Joint Multitarget Probability Density (JMPD).

Estimating the JMPD provides a means for tracking an unknown number of
targets in a Bayesian setting. The statistics model uses the joint multitarget con-
ditional probability density p(x¥,x5,..x% | x%|Z¥) as the probability density
for exactly T targets with state vectors s x’f, xg, ~--XI7€L17 x? at time k based on
a set of observations Z*. The number of targets T is a variable to be estimated
simultaneously with the states. The observation set Z* refers to the collection of
measurements up to and including time k, i.e. Z¥ = {z!,22,...2"}, where each
of the z' may be a single measurement or a vector of measurements made at
time . As is typically done, we denote the multitarget state vector by X, i.e.
X = [x1, X2, ..., Xp—1, X7|, where X is defined for all ', T' = 1...0c0.

For simplicity, the simulations presented in this paper treat only the case
where the number of targets is known and fixed, and the states of the targets
are one-dimensional. Details regarding multitarget tracking and myopic sensor
management when the state of each target is four dimensional and many targets
are tracked, may be found in [11] and [3].

The temporal update of the posterior likelihood of the JMPD proceeds ac-
cording to the usual rules of Bayesian filtering. Given a model of how the JMPD
evolves over time p(X*|X*~1), we compute the prediction density via

p(XH(ZF1) = / dXF (XK [XF)p(X 1 ZR 1) (1)

p(XF|ZFE~1) is referred to as the prior or prediction density at time k, as it is the
density at time k conditioned on measurements up to and including time k£ — 1.
The time evolution of the JMPD may be a collection of target kinematic models
or may involve target birth and death.
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Given a model of the sensor, p(z*|X*), and assuming conditional indepen-
dence of the measurements given the state, Bayes’ rule is used to update the
posterior density as new measurements z* arrive via

p(z* [ XF)p(X*F|zE )

p(XH[2) = B 2

p(X¥|ZF) is referred to as the posterior or updated density at time k as it is the
density at time k conditioned on all measurements up to and including time k.

The sample space of X* is very large. It contains all possible configurations
of state vectors x; for all possible values of T'. Discretization of the JMPD on
a grid has computational burden exponential in the number of targets and grid
cells allotted to each state. We find that a particle filter based implementation
allows for computational tractability. To implement JMPD via a particle filter
(PF), we approximate the joint multitarget probability density p(X|Z) by a set
of Nport weighted samples (particles), p(X|Z) ~ Zgi‘f‘t wpd(X —X,).

Particle filtering is a method of approximately solving the prediction and
update equations by simulation. The particle filter recursion implemented here
follows the standard paradigm of particle proposal, weight update and resam-
pling [15], but utilizes an adaptive sampling strategy that dramatically reduces
the number of particles required to track multiple targets (see [11] for details).

3 Information Based Myopic Sensor Management

In this section, we detail our information-based myopic sensor management al-
gorithm. The setting in which we are interested is where a collection of moving
targets is to be tracked using a fixed number of sensor dwells at each time step.
As others have realized [16][10], a good measure of the quality of each sensing
action is the reduction in entropy of the posterior distribution that is expected
to be induced by the measurement. Therefore, at each instance when a sensor
is available, we use an information-based method to compute the best sensing
action to take. This is done by first enumerating all possible sensing actions.
A sensing action may consist of choosing a particular mode (e.g. SAR mode or
GMTI mode), a particular dwell point/pointing angle, or a combination of the
two. Next, the expected information gain is calculated for each possible action,
and the action that yields the maximum expected information gain is taken.
The calculation of information gain between two densities f; and fy is done
using the Rényi information divergence [12][14], also known as the a-divergence:

1
a—1

Dafillfo) = i [ Fr(@)f " @)da 3)

The « parameter in eq. (3) is used to adjust how heavily one emphasizes
the tails of the distributions f; and fy. In the limit as o — 1, the a-divergence
converges to the Kullback-Leibler Divergence. In our application, we are inter-
ested in computing the divergence between the predicted density p(X*|Z*~1)
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and the updated density after a measurement is made, p(X*|Z*). Our particle
filter approximation of the density simplifies eq. (3) to

Npart
D (p(X*|Z)][p(XF |2 1)) = ﬁln}ﬁ 3 wp(aXp)®  (4)
where
Npart
p(z) = wyp(alX,) ()
p=1

The sensor model p(z|X,,) is used to incorporate everything known about the
sensor, including signal to noise ratio, detection probabilities, and whether the
locations represented by X, are visible to the sensor.

We want to perform the measurement that makes the divergence between the
current density and the density after a new measurement largest. This indicates
that the action has maximally increased the information content of the mea-
surement updated density with respect to the density before a measurement was
made. To this end, we calculate the expected value of eq. (4) for each of the N
possible sensing actions and choose the action that maximizes the expectation.
We use a;, i = 1...N to refer to the possible sensing actions under consideration,
including but not limited to sensor mode selection and sensor beam positioning.

The expected value of eq. (4) may be written as an integral over all possible
outcomes z,, when performing sensing action a;:

< Dy >4,= /dzaip(zai Zk_l)Da (p(Xk|Zk)||p(Xk|Zk_l)) (6>

In the special case where measurements are thresholded and are therefore
either detections or no-detections this integral reduces to

1 Npart
1 1 N
< -DO[ >ai: a_1 Zz;()p(zal)lnp(zab)a pgl wpp(zai XP) (7)

In summary, our method of myopic sensor management proceeds as illus-
trated in Figure 1. At each occasion where a sensing action is to be made, we
evaluate the expected information gain as given by eq. (7) for each possible sens-
ing action a;. We then perform the sensing action that gives maximal expected
information gain. Computationally, the value of eq. (7) can be calculated for N
possible sensing actions in O(N Npgrt).

4 Non-Myopic Sensor Management : Motivating Example

It is expected that in some situations a non-myopic sensor management strategy
will provide sensor tasking decisions that are better than the myopic strategy. In
this section, we detail such a scenario. We consider the problem where at each
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Fig. 1. Myopic Sensor Management

time step an airborne sensor is able to image a portion of a ground surveillance
area in order to determine the location of a set of moving ground targets. The
surveillance area has a known terrain elevation, and the sensor has a known
flight pattern (Figure 2).
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Fig. 2. Left: The elevation of the surveillance area. Right: The sensor flight path.

At each time step, the sensor position relative to the surveillance area causes
certain portions of the ground to be unobservable due to terrain elevation be-
tween the sensor and the ground. Given the sensor position and the terrain ele-
vation, at any time we can compute a visibility mask which determines whether
a particular spot on the ground can be seen by the sensor. As an example, in
Figure 3, we give the visibility maps that are computed from a sensor positioned
below and to the right of the surveillance area.

The visibility constraint enters directly into our sensor management formu-
lation given in Section 3, through the p(z). This factor will make the (myopic)
sensor manager give no gain to looking at an invisible cell, and hence no dwells
will be made in those cells.

The situation in which we expect non-myopic sensor management to aid in
target tracking is when a target becomes invisible to the sensor for a brief amount



Non-myopic Sensor Management 7

Visibility Map, Sensor Below Visibility Map, Sensor Right
15 . 15 e - : —
k- ERE | Ll [ 5 T
12 -\-1 A{i . : 12 %‘ﬁ% : - d
e : . e 1 £ ¥ *
e ] &
£ e £ e
x - g X =
6 = ] 6
. . . s . . “ -
e TR i b ke
NS UL SR IR
=3 = . .
0 3 6 9 12 15 0 3 6 9 12 15
km km

Fig. 3. Visibility masks for a sensor positioned below and to the right of the surveillance
area. Non-visible areas of the surveillance region are black. Visible areas are white.

of time and then reemerges. In this case, extra sensor dwells immediately before
the target enters into the obscured area (at the expense of not interrogating
other targets) will sharpen the estimate of the target location. This sharpened
estimate will allow for better prediction of where the target will emerge and
cause extra dwells to be focussed there. We illustrate this graphically with a six
time-step vignette in Figure 4.

5 Non-Myopic Sensor Management : Computational
Methods

In this section, we present three methods of performing non-myopic sensor man-
agement based on information-theoretic measures. For simplicity of exposition,
all methods are described in the two-step non-myopic situation.

The first method is a straightforward Monte Carlo (MC) technique that
considers all two step action sequences (af,a?“) and computes the expected
information gain for the action sequence by repeatedly simulating its application
and computing the average gain acquired. While straightforward to describe, this
method has a computational burden of O(NT), where N is the number of actions
at each time and 7T is the number of time steps the algorithm looks ahead.

The second method is a MC technique that adaptively decides which paths
through the action space to investigate. Given a fixed computational budget, we
use an information-directed algorithm to decide which paths deserve more or
less attention by the search algorithm.

The third method is an approximate technique that replaces the value-to-
go with a function of visibility that captures the long term value of a current
action. This function makes actions that are rewarding over the long term more
desirable to chose at the current time step, thus approximating the non-myopic
decision. This algorithm is O(N).
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Fig. 4. A six time step vignette in which the target moves through an obscured area.
The target is depicted by a gray asterisk. Obscured areas are in black and visible areas

are in white. Extra sensor dwells just before becoming obscured (time = 1) should aid
in relocalization after the target emerges (time = 6)
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This section proceeds as follows. First, we give a Markov Decision Process
expression for the non-myopic benefit of choosing an action at the current time.
Next, we detail the straightforward but computationally intractable MC method
for solution. Third, we show the improved information-directed search which pro-
duces similar results at reduced computational cost. Finally, we detail a simple
approximate technique for incorporating long-term gains into the current deci-
sion that has computational burden on the order of that of the myopic strategy.

5.1 Notation and Preliminaries

The value of state s at time k will be denoted by Vi (s). In our case, the value
is computed based on the action that yields the maximum expected amount of
information gained. We will use ¢(s,a) as shorthand for the myopic expected
gain associated with an action a in state s, that is

c(s,a) =< Da (p(X*|Z")|[p(X*Z*71)) >q (8)

where s is used as a surrogate for p(X*|Z¥~1).
The Bellman equation in the discounted reward scenario is then written as
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Vie(s) = max{c(s, a) + 7By [Vita (s)]} (9)

where Eg [Vi11(s')] = 32,508, ) Viy1 ().

The optimal non-myopic action a is then given by

i = argmax{c(s, a) + 7By [Vis1 ()]} (10)

5.2 Monte Carlo Rollout for Non-myopic Sensor Management

A straightforward but computationally intractable way of solving eq. (10) is
via MC rollout techniques. Here we use “rollout” in the manner of Tesauro
[13], which is as a synonym for repeatedly playing out a given position in order
to calculate the expected reward starting from that position. For simplicity of
exposition, we first describe only the two-step non-myopic solution in this section
and comment on the extension to multiple time steps at the end.

The two-step rollout procedure is shown graphically in Figure 5. We first
predict the target density at the measurement time (k+ 1) by performing model
update as in the myopic scheme (Figure 1). The prediction density, p(X**+1|Z*)
is used to determine all possible actions at time k + 1, alfﬂ e afVH. In practice,
only those actions with non-zero expected myopic gain are considered.

For each action at time k+1, we perform the following two steps repeatedly to
generate a MC average of the information gain, which is used to approximate the
expected value. First, the action is simulated resulting in a measurement 2%+1.
The density of 28*! is formed from p(X*+1|Z*), as in eq. (5). The simulated
measurement is then used to update the density and form p(Xk+1|Zk 2k+1).
The realized gain in information from this measurement is calculated between
the densities p(X**+1|Z*) and p(X*+1|ZF, 28+1) using eq. (3).

This predicted posterior is then model updated to form the prediction density
at time k + 2, p(Xk+2|ZF 2k+1), At this point, the expected one-step (myopic)
gains for each possible action at time k + 2 is generated using eq. (7). The value
of action af“ is then the actual realized gain from time step k + 1 to time step
k + 2 plus the mean of the expected gain at time k + 2. We call this 2-step
procedure searching the path (or trajectory) associated with the action af“.

The extension to looking more than two time steps into the future is straight-
forward but computationally prohibitive. For example, a three-step rollout would
perform an additional simulation step using p(X*¥+2|Z*, 2k+1) to simulate a mea-
surement 2572 at time k+2. This would generate a predicted posterior at time k+
2, p(Xk+2|Zk, 2F+1 2k+2) " A model update would form p(X*+3|ZF, 2k+1 2k+2)
and the expected myopic gain at time k+ 3 would be calculated. This procedure
would be repeated for each action at time k + 1 many times to generate a MC
average of the expected gain for making that measurement.
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Fig. 5. The two-step non-myopic algorithm is rolled out for all possible actions at time
k + 1. The value of an action at time k + 1 is taken to be the realized gain from the
action plus the expected gain at the next step. This procedure is run many times to
generate a MC average of the two-step gain for each action aF*?
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5.3 Adaptive Trajectory Selection for Improved MC Rollout

In this section, we describe a method of performing the MC rollout discussed
above where we restrict ourselves to searching down the tree only a small number
of times. Given this computational budget, we wish to adaptively determine the
best trajectories to investigate.

At time k + 1, there are N possible actions. Each action corresponds to the
first step in a trajectory down the tree. Associated with each action is an expected
(long-term) gain in information for actually executing that action, and we wish
to determine this as precisely as possible. In section 5.2 we determined this gain
by simply searching down each path many times and using the empirical average
of information gain as a surrogate for the expected information gain. We then
executed the action with the largest long-term gain in information.

Here, rather than looking down the trajectory associated with each action an
equal number of times, we wish to select the paths to search so as to best estimate
the expected information gain with a fixed number of samples. We propose to
select the best trajectory to simulate by computing the gain in information about
the trajectory that making an additional simulation will garner.

We define the density p,,(9|Gq,) to be a density on the expected long-term
gain in information ¢ if we were to actually take action a;, conditioned on the
long-term information gains simulated so far from searching down trajectories
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starting with action a;, G,,. Of course, at beginning of each decision epoch,
we will have not searched any trajectories yet and so G,, = 0. Our goal is to
determine p,,(g|G,,;) for all actions a; as accurately as possible using a fixed
search budget, so that when we actually task the sensor we are tasking it to
make the action that maximizes the expected long-term gain in information. In
Section 5.2 we concerned ourselves with estimating only the expected value of
g rather than p,, (g|G,,) itself. We estimated the expected value of pg,(9|Gq;)
by searching down the trajectory associated with each a; a large and constant
number of times and calculated the empirical average of information gain. Here,
we focus on looking at each trajectory a variable number of times so that given
we search only a fixed number of trajectories, we have the best estimate for
Pa; (9|Ga,) possible for all a;. We are determining an automatic method to prune
trajectories — i.e. to decide which paths that are not worth further investigation,
and which paths deserve greater attention.

At the onset, we have N possible actions and no idea which action is the best
to take. We propose to construct the initial density on the expected long-term
information gain for actually taking action a; by looking down the trajectory as-
sociated with action a; a small number of times (M) to generate samples from the
density p,, (g|Ga,). These samples from p,,(g|G,,) will be used to approximate
Pa;(9]Ga,) in a particle filter like manner, e.g. py,(9|Ga,) = & 22/[:1 0(g — gp)-

We wish to simulate an additional K trajectories to improve our estimate of
the distribution of the expected long term information gain when taking action
@iy Pa; (9|Ga,)- In section 5.2, we simply looked at each trajectory an equal num-
ber of times. Here, we use an information directed method for selecting which
trajectory to investigate for each of the K investigations we make. The method
proceeds as follows. For each action a;, we compute the expected gain in in-
formation with respect to pq,(g|Ge,) that making one additional simulation of
that action will garner. We then investigate that path that generates the largest
expected gain in information. We repeat this procedure for all K investigations
that we are to make.

Formally, we can compute the expected gain in information for investigat-
ing action a; as follows. Before investigating a new path, we have a density
Da,; (9]Ga,;). Assume that we have decided to investigate a particular action this
investigation generated a new realization of the expected long-term gain §. The
updated density (by Bayes’ rule) becomes

~ Pa; (g|g)paz (g|G(lz)
Pa;(9lGa;, §) = — - 11
(91 9) Pa; (91Ga,) -
Using the Alpha-Divergence metric (eq. 3), and a method identical to that
of section 3, we can determine that the expected gain in information between
Da; (9|Ga;) and pg, (g|Ga,, §) for searching the trajectory starting with action a;
is proportional to the entropy of the distribution associated with that action,

/ P (91Gua )1 (P (91Giar)) dlg (12)

g
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This yields the very intuitive result that the best trajectory to search is the
trajectory associated with the highest uncertainty.

5.4 Approximating the Value-to-go

In this section, we investigate an approximate method of determining the long-
term gain associated with each action. As mentioned above, the optimal method
for choosing the action to make at the current time, @ is by evaluating

i = argmax{c(s, a) + 7By Vi (s))]) (13)

We propose here to approximate the value-to-go Es [Vi11(s')] by a function
of visibility N, (s) which captures the long term reward of action s and is trivially
computable. This yields the approximate methods

a = argmax{¢(s,a) + yN(s,a)} (14)
where ¢ represents a normalized myopic gain, and
a = argmax{c(s,a) * N(s,a)} (15)

The form of eq. (14) looks like a direct approximation of the optimal solution
of eq. (10). The myopic gain ¢(s, a) is normalized so that the maximum expected
gain is 1. The approximation of eq. (15) is also natural, as the Rényi information
divergence adheres to the geometric mean rather than the algebraic mean.

N(s,a) should depress the value of actions associated with low long-term
rewards while amplifying actions associated with large long-term rewards. In
our current setting, the dynamics of the problem are changing through the time
varying visibility map. We specialize to “actions” corresponding to measuring
cells. If we denote by Visg(c) the visibility of cell ¢ at time k, a visibility induced
long-term penalty/reward for measuring cell ¢ may be

J
Ni(s,c) = [[7/(1 = Visgrj(c)) (16)
j=1

This long-term penalty /reward works to boost the value of measuring a cell
that is to have reduced visibility in the future, while suppressing the value of
measuring a cell that is to have good visibility in the future. For the two step
non-myopic scheduler, the Ni(s, ¢) becomes simply Ny (s, c) = v(1 — Visgy1(c)).
Algorithms implemented with this penalty/reward remain O(N).

In our simulations, we assume the elevation of the terrain and sensor trajec-
tory are known precisely, and therefore the future visibility is exactly calculable.
This easily extends to the case where only an estimate of visibility is present,
in which case eq. (16) might use the conditional expectation E(Vis;(c)|Z¥)
which would allow the most up-to-date estimate of visibility to be used.
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6 Simulation Results

We investigate the following model problem, which is inspired by the scenario
depicted in Section 4. There are two targets which are each described by a one-
dimensional position. Target 1 is initially positioned at x = 2.1 and Target 2
is initially positioned at x = 14.9. The targets move slowly with respect to the
sensor resolution so that they stay in the same cell for the entire simulation.

For each dwell, the sensor may measure any one of 16 cells, each of which is
1 unit wide. The cell locations are fixed and centered at .5,1.5,---,15.5 units.
The sensor is allowed to make three (not necessarily distinct) dwells per time
step. The sensor receives binary returns from the cell interrogated, which are
independent from dwell to dwell. In cells that are occupied, a detection is received
with probability Py (set here at 0.9). In cells that are unoccupied a detection is
received with probability Py (set here at .01). This corresponds to a signal to
noise ratio of 16dB, assuming Rayleigh distributed threshold detected returns.

At the onset, the positions of the two targets are known only probabilistically
to the filter. The filter is initialized with the probability of target 1 location
uniformly distributed across sensor cells {2---6} and the probability of target 2
location uniformly distributed across sensor cells {11---15}.

The visibility of the various sensor cells is constructed to change in the follow-
ing manner. At time step 1, all cells are visible to the sensor. At time steps 2, 3, 4,
cells {11---15} are invisible to the sensor. At time step 5 all cells are visible to
the sensor again. This model problem closely emulates the situation where a tar-
get is initially visible to the sensor, becomes obscured, and then reemerges from
the obscuration. This scenario can benefit from non-myopic scheduling as look-
ing in the cells that are about to become obscured preferentially will minimize
total track error at the end of the simulation.

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 | 10-11|11-12| 12-13 | 13-14 | 14-15| 15-16
Cell1|Cell2| Cell3| Cell4] Cell5[Cell6 Cell 7| Cell 8| Cell 9 [Cell 10|Cell 11|Cell 12|Cell 13|Cell 14|Cell 15|Cell 16
Time 1 X
Time 2
Time 3
Time 4
Time 5

Fig. 6. An illustration of the model problem. At the onset, the filter has its posi-
tion estimates of target 1 and target 2 uniformly distributed across cells {2...6} and
{11...15}, respectively. At time 1 all cells are visible to the sensor. At time 2,3, and 4
cells {11...15} are obscured. This situation emulates the the situation where one target
is initially visible to the sensor, becomes obscured and then reemerges.

We anticipate at time 1 the myopic strategy, having no information about the
future visibility, will choose cells uniformly from the set {2...6} U {11...15}. As
a result, target 1 and target 2 will on the average be given equal attention. The
non-myopic strategy, however, should preferentially choose cells from {11...15}
as they are to become invisible while cells {2...6} are not.
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6.1 Results Using Information Directed Trajectory Interrogation

We present a comparison between uniform searching of all paths suggested in
Section 5.2 with the information-directed search algorithm of Section 5.3 in
Figure 7. Performance is compared in terms of median error after time 4 versus
number of paths searched (which measures algorithm complexity). As expected,
as either algorithm searches more paths, better decisions are made resulting in
lower tracking error. However, uniform search requires more paths to be searched
to yield a desired error since it wastes investigations on paths of little value.

Comparison of Uniform Search and Information Based Search

2 T
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Total Paths Investigated

Fig. 7. A comparison between uniform MC and information-directed search. This graph
contains three curves. The top curve contains the results of searching each path equally
(uniform search) where the number of searches of each path is varied between 10 and
250 to produce the six points on the curve. The bottom two curves are each seeded with
uniform search and followed by information-directed searches. The number of uniform
searches is again varied between 10 and 250 to produce the six points on each curve.
The results are plotted against the total number of paths searched, which is a measure
of algorithm complexity. For a given number of paths searched, information-directed
search yields better performance.

6.2 Results Using Approximation of Value-to-go

We compare here the performance of the myopic sensor management, exhaustive
MC search and the two approximate methods based on replacing the value-to-go
with a function of visibility. in Figure 8. For each method, we show two measures
of performance. First, we provide a histogram of the errors after time 4 along
with the mean and median error. Second, we provide a histogram of the sensor
cell decisions made at time 1 for each of the methods.
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Fig. 8. The tracking performance of myopic, non-myopic MC, and approximate meth-
ods. For each method we illustrate the performance with two metrics. First (top) we
histogram tracking error. Non-myopic MC and approximate methods outperform the
myopic method. Second (bot), we show the allocation of sensor resources at time = 0.
The non-myopic and approximate methods correctly look at the region that is about
to become obscured whereas the myopic method allocates dwells uniformly.

The non-myopic strategy of Section 5.2 dramatically reduces target localiza-
tion error at time step 4. Furthermore, the approximate techniques yield results
similar to the MC non-myopic strategy at a computational cost similar to the

myopic strategy. The performance of the various strategies is summarized in
Table 1 below.

References

1. S. Musick and R. Malhotra, “Chasing the Elusive Sensor Manager”, Proceedings of
NAECON, Dayton, OH, May 1994, pp. 606-613.

2. J. Liu, P. Cheung, L. Guibas, and F. Zhao, ” A Dual-Space Approach to Tracking and
Sensor Management in Wireless Sensor Networks”, ACM International Workshop
on Wireless Sensor Networks and Applications Workshop, Atlanta, September 2002.



16 Chris Kreucher et al.

Table 1. The performance of the four sensor management strategies considered.

CPU Time|Mean Error|Median Error
Method ‘ (sec) (cells) (cells)
Myopic 0.31 1.80 2.04
MC Non-myopic 102.54 1.35 0.86
Non-myopic approx. eq. (14) 0.32 1.34 1.13
Non-myopic approx. eq. (15) 0.32 1.35 1.18

3. C. Kreucher, K. Kastella, and A. O. Hero ITI, “Sensor Management Using Relevance
Feedback Learning”, under review at IEEE Transactions on Signal Processing.

4. C. Kreucher, K. Kastella, and A. O. Hero III, “Multi-target Sensor Management
Using Alpha-Divergence Measures”, The Second Annual Symposium on Information
Processing in Sensor Networks (IPSN ’03), April 22-23, 2003.

5. V. Krishnamurthy, “Algorithms for Optimal Scheduling and Management of Hidden
Markov Model Sensors”, IEEE Transactions on Signal Processing, Vol. 50, no. 6,
pp. 1382-1397, June 2002.

6. V. Krishnamurthy and D. Evans, “Hidden Markov Model Multiarm Bandits: A
Methodology for Beam Scheduling in Multitarget Tracking”, IEEE Transactions on
Signal Processing, Vol. 49, no. 12, pp. 2893-2908, December 2001.

7. D. P. Bertsekas and D. Castanon, “Rollout Algorithms for Stochastic Scheduling
Problems”, Journal of Heuristics, Vol. 5, no. 1, pp. 89-108, 1999.

8. D. Castanon, “Approximate Dynamic Programming for Sensor Management”, Pro-
ceedings of the 1997 Conference on Decision and Control, 1997.

9. D. Castanon, “Optimal Search Strategies for Dynamic Hypothesis Testing”, IEEE
Transactions on Systems, Man, and Cybernetics, vol. 25, no. 7, pp. 1130-1138, 1995.

10. K. J. Hintz, “A Measure of the Information Gain Attributable to Cueing”,
IEEE Transaction on Systems, Man, and Cybernetics, vol. 21, no. 2, pp. 237-244,
March/April 1991.

11. C. Kreucher, K. Kastella and A. O. Hero III, “Tracking Multiple Targets Using a
Particle Filter Representation of the Joint Multitarget Probability Density”, SPIE
Annual Meeting, San Diego, California, August 2003.

12. A. Rényi, “On measures of entropy and information”, Proc. 4th Berkeley Symp.
Math. Stat. and Prob., volume 1, pp. 547-561, 1961.

13. G. Tesauro, and G. R. Galperin, “On-Line Policy Improvement Using Monte Carlo
Search”, The 1996 Neural Information Processing Systems Conference, Denver, CO.

14. A. O. Hero, B. Ma, O. Michel and J. Gorman, “Applications of entropic span-
ning graphs,” IEEE Signal Processing Magazine (Special Issue on Mathematics in
Imaging), Vol 19, No. 5, pp 85-95, Sept. 2002.

15. Doucet, A. de Freitas, N., and Gordon, N. “Sequential Monte Carlo Methods in
Practice”, Springer Publishing, New York, 2001.

16. F. Zhao, J. Shin, and J. Reich, “Information-Driven Dynamic Sensor Collabora-
tion”, IEEE Signal Processing Magazine, March 2002, pp. 61-72.

17. V. J. Lumelsky, S. Mukhopadhyay, and K. Sun, “Dynamic Path Planning in Sensor-
Based Terrain Acquisition, IEEE Transactions on Robotics and Automation, vol. 6,
no. 4, pp. 462-472, August 1990.



