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Measurement Feedback Controller Design to Achieve
Input to State Stability

S. Huang, M.R. James, D. Nešić and P.M. Dower

Abstract— An approach for design of measurement feed-
back controllers achieving input-to-state (ISS) stability prop-
erties is presented. A synthesis procedure based on dynamic
programming is given. We make use of recently developed
results on controller synthesis to achieve uniforml∞ bound
[6]. Our results make an important connection between the
ISS literature and nonlinear H∞ design methods.

I. INTRODUCTION

Analysis and design of control systems with disturbances
is one of the central topics in control engineering that is
continuing to attract a lot of research interest in the context
of nonlinear systems. This trend has been driven by several
major breakthroughs over the past 15 years that occurred in
nonlinear H∞ control (e.g. [3], [21], [5]) and the input
to state stability (ISS) related literature (e.g. [19], [16],
[2]). These two approaches have been developed relatively
independently of each other and they differ in stability prop-
erties that are considered, tools that are used and questions
that are asked. Both approaches have their advantages and
disadvantages but they both provide invaluable tools and
insight into the problems of analysis and design of nonlinear
control systems with disturbances.

NonlinearH∞ control has its roots in the areas of LQ
control and linearH∞ control. The main objective of
this research has been to translate all linearH∞ control
results to a nonlinear setting. In this context, it is typical to
model the plant and controller as nonlinear operators and to
considerL2 stability with a finite (linear) gain of the closed
loop system, which comes from its linear tradition. More-
over, this literature often aims at designing controllers that
achieve minimum (optimal) gains from disturbance inputs
to plant outputs and, hence, controller design often requires
a solution of an appropriate dynamic programming equation
(DPE) or inequality (DPI). An advantage of this approach is
that it can be applied to a very broad class of plants and its
main drawback is the heavy computation required to solve
DPE/DPI [5]. Nevertheless, the methodology is fundamental
and provides useful conceptual insights.
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On the other hand, ISS related literature builds on the
tradition of stability of dynamical systems and Lyapunov
theory. Research in this area has concentrated on finding
appropriate nonlinear generalizations of different finite gain
input-output stability properties that are more natural in
the nonlinear context and fully compatible with Lyapunov
theory. The plant is modelled as a dynamical system with
disturbance inputs and the related stability properties usu-
ally make use of nonlinear gains. Majority of ISS related
research has concentrated on presenting different equivalent
characterizations of ISS like properties [18], [19], [2],
proving appropriate small gains theorems [10] and applying
the ISS like properties to analysis and controller design.
This literature is usually not concerned with computing
minimum disturbance gains and the main tool for applying
these results are Lyapunov like functions that are very
difficult to find. We are not aware of any results that provide
a systematic procedure for controller design for general
nonlinear systems that achieves different ISS like stability
properties for the plant dynamics.

It is the purpose of this paper to exploit techniques
typically used in nonlinearH∞ control to address the
problem of controller design with the goal of achieving
the ISS property for the plant dynamics. In particular,
we use recent results on uniforml∞ bounded (ULIB)
robustness [6] that extend nonlinearH∞ techniques to
an appropriatel∞ robostness property. Our main results
show that the controller design problem achieving ISS
property for the plant dynamics can be solved by solving
another ULIB problem for an auxiliary augmented plant.
Important features of our approach are: (i) we need to
fix the desired ISS gain and transients bound prior to
controller design; (ii) admissible controllers we consider
are causal operators and our solutions can be interpreted
as a dynamical controller with an appropriate initialization;
(iii) we achieve an ISS bound only for the plant dynamics
and controller dynamics is not considered; (iv) we consider
the measurement feedback problem; (v) our controllers
are obtained via solutions of appropriate DPE/DPI and in
general they are computationally very demanding.

This paper is an extension of our state feedback ISS
synthesis result [8]. A range of other ISS-like properties
can be dealt with using the same framework and can be
found in a full version of this paper [9].

This paper is organized as follows. Preliminaries and
notations are given in Section II. In Section III, we present a
modified definition for ISS property. In Section IV, we state
the measurement feedback synthesis problem considered



in this paper. The problem is then transferred into ULIB
synthesis problem in Section V. In Section VI, the dynamic
programming results are presented using the existing ULIB
results. An illustrate example is given in Section VII.
Conclusion is presented in Section VIII.

II. PRELIMINARIES

Sets of real numbers, nonnegative real numbers, integers
and nonnegative integers are denoted respectively asR,
R+, Z andZ+. Moreover, we denote

R̄ := R ∪ {+∞} , R̃ := R ∪ {+∞} ∪ {−∞} . (1)

Recall that a functionγ : R+ → R+ is of classK if it is
continuous, strictly increasing andγ(0) = 0; it is of class
K∞ if it is of classK and alsoγ(s) → ∞ as s → ∞. A
function β : R+ ×R+ → R+ is said to be a function of
classKL if for each fixedt ≥ 0, β(·, t) is of classK and
for each fixeds ≥ 0, β(s, ·) decreases to zero.

Sontag [15] proved the following lemma onKL functions
that we need.

Lemma 2.1:[15] Given arbitraryβ ∈ KL, there exist
two functionsα1, α2 ∈ K∞ such that

β(s, t) ≤ β1(s, t) = α1

(
α2(s)e−t

)
, ∀s ≥ 0, t ≥ 0 . (2)

Given W ⊆ Rs, we use the following notation for
signals:

w[0,k−1] := {w0, · · · , wk−1}, ∀k ≥ 0,
W[0,k−1] := {w[0,k−1] : wi ∈ W, 0 ≤ i ≤ k − 1},
W[0,∞) := {w[0,∞) : wi ∈ W}.

(3)
Sometimes we use the notationw = w[0,∞). We use the
convention thatw[0,−1] = ∅. In the sequel, we use the
notationU[0,∞), y[0,k−1],Y[0,k−1],Y[0,∞), etc, which have
meanings analogous to (3). We also use the following
notation:

‖w[0,k−1]‖∞ := max
0≤i≤k−1

|wi|

where |·| is the Euclidean norm. To simplify the notation,
for any two vectorsx1 andx2, sometimes we also denote
(xT

1 xT
2 )T as (x1, x2).

III. I NPUT TO STATE STABILITY

Consider the following nonlinear system

xk+1 = f(xk, wk), k ≥ 0 (4)

wherexk ∈ Rn is the state,wk ∈ W ⊆ Rs is the input.
We denote byφ(k, x0, w[0,k−1]) the solution of the system
at timek that starts from the initial conditionx0 and under
the action of the inputw[0,k−1]. Sometimes we simply use
φk or xk to denoteφ(k, x0, w[0,k−1]).

The definition of Input to State Stability (ISS) was given
in [14], [11]. Here we modify it slightly to accommodate
the possibility of restricting the range of initial conditions
and input values.

Definition 3.1: Let B0 ⊆ Rn,W ⊆ Rs, the system (4)
is input to state stable (ISS) if there existβ ∈ KL and
γ ∈ K such that the trajectories of (4) satisfy:

|φ(k, x0, w[0,k−1])| ≤ β(|x0|, k) + γ(‖w[0,k−1]‖∞),

for all x0 ∈ B0, w[0,k−1] ∈ W[0,k−1], andk ≥ 0.
(In the original definition,B0 = Rn andW = Rs.)
Remark 3.2:By Lemma 2.1, anyβ ∈ KL has an upper

bound of the formβ1(s, t) = α1 (α2(s)e−t). Notice thatβ1

itself is also aKL function, so the system (4) is ISS if and
only if there existα1, α2 ∈ K∞ and γ ∈ K such that the
trajectories of (4) satisfy:

|φ(k, x0, w[0,k−1])| ≤ α1

(
α2(|x0|)e−k

)
+ γ(‖w[0,k−1]‖∞),

(5)
for all x0 ∈ B0, w[0,k−1] ∈ W[0,k−1], andk ≥ 0. Certainly,
the boundα1

(
α2(|x0|)e−k

)
may be not as tight as the

bound β(|x0|, k) with β ∈ KL. In this paper, we will
only consider the case whenKL function is of the form
α1 (α2(s)e−t).

We find it useful to restate Definition 3.1 since its new
form is more suited for our paper. First, note that the
inequality (5) in the ISS definition is:

|φ(k, x0, w[0,k−1])|−α1

(
α2(|x0|)e−k

)−γ(‖w[0,k−1]‖∞) ≤ 0,

for all x0 ∈ B0, w[0,k−1] ∈ W[0,k−1], andk ≥ 0.
Now we define functionρ : Rn × Z+ → R+, for every

k ∈ Z+, functions ψk : W[0,k−1] → R+, and function
G : Rn ×R×R → R, by

ρ(x0, k) := α2(|x0|)e−k,
ψk(w[0,k−1]) := ‖w[0,k−1]‖∞,

(6)

and
G(φ, ρ, ψ) := |φ| − α1 (ρ)− γ(ψ), (7)

where γ ∈ K and α1, α2 ∈ K∞. We use the convention
that ψk(∅) = 0 and note that sincew[0,−1] = ∅, we have
that ψ0(w[0,−1]) = 0.

Now we can restate the definition of ISS as follows.
Definition 3.3: Let B0 ⊆ Rn and W ⊆ Rs be given.

The system (4) is called input to state stable (ISS) if there
exist γ ∈ K andα1, α2 ∈ K∞ such that withρ(·, ·), ψk(·)
and G(·, ·, ·) defined by (6) and (7), we have that the
solutions of the system (4) satisfy:

G(φ(k, x0, w[0,k−1]), ρ(x0, k), ψk(w[0,k−1])) ≤ 0, (8)

for all x0 ∈ B0, w[0,k−1] ∈ W[0,k−1], k ≥ 0.
Remark 3.4:The reason for restating Definition 3.1 as

in Definition 3.3 is that the inequality (8) will be shown to
be related to an inequality in the Uniforml∞ Boundedness
(ULIB) problem that was recently considered and solved in
the literature [6].

Remark 3.5:A range of other stability and detectability
properties can be captured by using the same Definition
3.3 in an appropriate manner by redefining the functions
ρ, ψk, G etc. for each of the property. Such as integral input



to state stability (iISS) [2], integral input to integral state
stability (iIiSS) [15], input to output stability (IOS) [20],
input output to state stability (IOSS) [12] and incremental
input to state stability (δISS) [1], etc. Some details are
provided in [9].

IV. PROBLEM STATEMENT

In this section we pose the measurement feedback prob-
lem that achieves ISS property for the plant state in the
closed loop system.

A. Measurement Feedback ISS

Consider the nonlinear discrete-time system

xk+1 = f(xk, uk, wk), k ≥ 0,
yk = h(xk, wk), k ≥ 0 (9)

Here xk ∈ Rn, uk ∈ U ⊆ Rm, wk ∈ W ⊆ Rs, yk ∈
Rp are the state, control input, disturbance, and measured
output, respectively.

Before we state the problem, we define the class of
admissible controllers that our design will yield. For system
(9), let Y = range{h} ⊆ Rp and U ⊆ Rm be given,
defineY[0,∞) andU[0,∞) similarly as in (3). Anadmissible
measurement feedback controller is a causal mapK :
Y[0,∞) → U[0,∞), meaning that for each timek > 0 if
y1, y2 ∈ Y[0,∞) and y1

l = y2
l for all 0 ≤ l ≤ k − 1 then

K(y1)k = K(y2)k, i.e., the control at timek is independent
of current and future measurements. We denote the set of
admissible measurement feedback controllers as

Cmf := {K : Y[0,∞) → U[0,∞),K is causal}. (10)

We sometimes abuse notation by writinguk = K(y[0,k−1]).
Also, we still denote the trajectories of the plant in
the closed loop system consisting of the system (9)
and a given admissible controlleruk = K(y[0,k−1]) as
φ(k, x0, u, w[0,k−1]).

Note that the class of admissible controllers is very large
and it includes static and dynamic controllers, as well as a
number of other configurations.

The problem that we consider is stated next.
Measurement Feedback ISS (MFISS) Problem:Consider
system (9), letB0 ⊆ Rn,W ⊆ Rs, γ ∈ K, α1, α2 ∈ K∞
be given and define the functionsρ(·, ·), ψk(·), andG(·, ·, ·)
by (6) and (7). Find, if possible, an admissible measurement
feedback controllerK ∈ Cmf such that the trajectories of
the plant in the closed loop system satisfy

G(φ(k, x0, u, w[0,k−1]), ρ(x0, k), ψk(w[0,k−1])) ≤ 0, (11)

for all x0 ∈ B0, w[0,k−1] ∈ W[0,k−1], k ≥ 0. When there
exists such a controller, we say that the MFISS Problem is
solvable for system (9).

Remark 4.1:Note a crucial difference between Defini-
tion 3.3 and the statement of the MFISS Problem. In the
definition, we say that the property holds ifthere exist
functions γ ∈ K and α1, α2 ∈ K∞ such that the ISS
inequality holds. However, in the statement of the MFISS

Problem wefix all the functionsγ ∈ K, α1, α2 ∈ K∞ and
then attempt to find a controller that satisfies (11). Finding
a design technique that does not requirea priori fixing of
the gain functions is highly desirable and is left for future
research.

Remark 4.2:The MFISS problems require only that a
desired bound is achieved on the solutions of the plant
whereas no such requirement is imposed on the states of
a possibly dynamic controller. There are three reasons for
this: (i) ISS property for nonlinear systems provide a desired
bound for any initial state of the system. However, for a
closed-loop system, the initial state of the plant and the
initial state of the controller play different roles. The initial
state of the plant may be arbitrary. But the initial state
of the controller can be chosen by the designer. Hence it
may be too strong to require ISS bound to be obtained
for any initial state of the plantand any initial state of
the controller in the closed-loop system. (ii) We consider
possibly dynamic feedback controller design where the
dimension of the controller is not given before the design.
(iii) This requirement is compatible with definitions of
nonlinearH∞ problems ([5]) and the ULIB problems that
are stated next.

B. Uniform `∞ Bounded (ULIB) Problem

We shall show in section V that the MFISS Problem
for the system (9) can be solved by solving the following
controller synthesis problem for certain auxiliary systems.
We first state the problem itself and then introduce the
auxiliary systems in the following section.

Consider the following system

xk+1 = f(xk, uk, wk), k ≥ 0,
yk = h(xk, wk), k ≥ 0,
zk = g(xk), k ≥ 0.

(12)

where xk ∈ Rn, uk ∈ U ⊆ Rm, wk ∈ W ⊆ Rs, yk ∈
Rp are the state, control input, disturbance, and measured
output, respectively.zk ∈ R is the performance output
quantity.

Notice that the dimensions of the states, the measurement
outputs and the control inputs of system (9) and system (12)
are all the same. So we still use the same notationCmf and
φ(k, x0, u, w[0,k−1]) as those in the MFISS problem
Measurement Feedback ULIB (MFULIB) Problem:
Consider system (12) and letB0 ⊆ Rn and λ ∈ R
be given. Find, if possible, an admissible measurement
feedback controllerK ∈ Cmf such that the trajectories of
the closed-loop system consisting of the plant (12) and the
controllerK(·) satisfy

g(φ(k, x0, u, w[0,k−1])) ≤ λ, (13)

for all x0 ∈ B0, w[0,k−1] ∈ W[0,k−1], and k ≥ 0. When
there exists such a controller, we say that the MFULIB
Problem is solvable for system (12).

Remark 4.3:When the trajectories of the closed-loop
system satisfy (13), we say that the closed-loop system is



uniform l∞-bounded (ULIB) dissipative with respect toB0

and λ. We emphasize that the solutions to the MFULIB
Problem have been already obtained in [6].

Remark 4.4:Note the similarity between the bounds in
(11) and (13) that are respectively used to define the MFISS
and MFULIB problems. The main difference is that the
bound in (11) depends directly onφ(k, x0, u, w[0,k−1]),
ρ(x0, k) and ψk(w[0,k−1]) whereas the bound in (13) de-
pends only onφ(k, x0, u, w[0,k−1]). However, we will show
in the next section thatρ(x0, k) and ψk(w[0,k−1]) can be
generated as solutions of auxiliary difference equations that
are appropriately initialized and, moreover, we can solve the
MFISS Problem for the system (9) by solving appropriate
ULIB problems for augmented auxiliary systems that is
appropriately initialized.

V. PROBLEM TRANSFORMATION

In this section we show how the MFISS Problem for
the system (9) can be converted into appropriate MFULIB
problem for auxiliary augmented systems.

Let B0 ⊆ Rn, W ⊆ Rs, γ ∈ K, α1, α2 ∈ K∞ be given.
For system (9), we define the following auxiliary system





xk+1 = f(xk, uk, wk),
ζk+1 = e−1ζk,
ηk+1 = max{ηk, |wk|},

zk = |xk| − α1(ζk)− γ(ηk),
yk = h(xk, wk).

(14)

We also let:

B̃0 =








x0

α2(|x0|)
0


 : x0 ∈ B0



 , λ = 0. (15)

The following theorem shows a relationship of the MFISS
Problem for system (9) and the MFULIB Problem for
auxiliary system (14) withB̃0 and λ defined in (15). The
proof is omitted because of the space limitation.

Theorem 5.1:Let Y = range{h} ⊆ Rp and U ⊆ Rm

be given and define the set of admissible controllerCmf as
in (10). Let B0 ⊆ Rn, W ⊆ Rs, γ ∈ K, α1, α2 ∈ K∞ be
given. Then, the following statements are equivalent:

(i) The MFISS Problem is solvable for system (9).
(ii) The MFULIB Problem is solvable for system (14) with

B̃0 andλ defined in (15).

Moreover, a controllerK ∈ Cmf of the form

uk = K(y[0,k−1]) (16)

solves the MFISS Problem for system (9) if and only if the
same controllerK (here “the same controller” means the
mapping from the measurement output to the control input
is the same) solves the MFULIB Problem for the system
(14) with B̃0 andλ defined in (15).

Remark 5.2:Notice that the dimension of the auxiliary
system (14) is two dimension higher than the original
system (9).

VI. DYNAMIC PROGRAMMING RESULTS

Using Theorems 5.1 and the results of ULIB problems [6,
Theorems 4.17, 4.19], we can obtain dynamic programming
results for the MFISS Problem. They provide a framework
for measurement feedback controller design to achieve ISS
property.

We use2Rn+2
to denote the set of all subsets ofRn+2,

wheren is the dimension of the states in system (9). We
defineĜ : 2Rn+2 → R by

Ĝ(X) := sup
(x,ζ,η)∈X

{|x| − α1(ζ)− γ(η)}, ∀X ⊆ Rn+2

(17)
andF : 2Rn+2 ×Rm ×Rp → 2Rn+2

by

F (X, u, y) = {(x, ζ, η) : ∃w ∈ W, ∃(x′, ζ ′, η′) ∈ X,
such thath(x′, w) = y, f(x′, u, w) = x,
e−1ζ ′ = ζ, max{η′, |w|} = η}.

(18)
The set-valued observeris defined as

Xi+1 = F (Xi, ui, yi), X0 ⊆ Rn+2. (19)

Remark 6.1:The solution of set-valued observer are sets
which are estimates of the states of system (14). In fact, for
X0 ⊆ Rn, j ≥ 1, u[0,j−1] ∈ U[0,j−1], y[0,j−1] ∈ Y[0,j−1],

Xj = {(x, ζ, η) : ∃w[0,j−1] ∈ W[0,j−1], ∃(x0, ζ0, η0) ∈ X0,
such thatxj = x, ζj = ζ, ηj = η,
h(xi, wi) = yi, 0 ≤ i ≤ j − 1,
wherexi+1 = f(xi, ui, wi), ζi+1 = e−1ζi,

ηi+1 = max{ηi, |wi|}, 0 ≤ i ≤ j − 1}.
(20)

Theorem 6.2:(Necessity) LetY = range{h} ⊆ Rp and
B0 ⊆ Rn,W ⊆ Rs,U ⊆ Rm be given and define the
set of admissible controllerCmf as in (10). Letγ ∈ K,
α1, α2 ∈ K∞ be given. LetB̃0 andλ come from (15). Let
Ĝ come from (17) andF come from (18). If the MFISS
Problem is solvable for system (9), then the value function
Wa : 2Rn+2 → R̃ defined by1

Wa(X) := inf
K∈Cmf

sup
k≥0

sup
y[0,k−1]∈Y[0,k−1]{

Ĝ(Xk) : X0 = X,uk = K(y[0,k−1])
}

(21)
satisfies

1) B̃0 ∈ domWa where

domWa :=
{

X ∈ 2Rn+2
: −∞ < Wa(X) < +∞

}
;

2) Wa(B̃0) ≤ λ;
3) the following dynamic programming equation (DPE)

holds

Wa(X) = max{Ĝ(X), inf
u∈U

sup
y∈Y

Wa(F (X,u, y))},
∀X ∈ domWa.

(22)

1HereY[0,k−1] is defined similarly as in (3),Xk is the solution of (19)
with uk = K(y[0,k−1]) andX0 = X.



Theorem 6.3:(Sufficiency) LetY = range{h} ⊆ Rp

and B0 ⊆ Rn,W ⊆ Rs,U ⊆ Rm be given and define
the set of admissible controllerCmf as in (10). Letγ ∈ K,
α1, α2 ∈ K∞ be given. LetB̃0 andλ come from (15). Let
Ĝ come from (17) andF come from (18). Suppose there
exist S ⊆ 2Rn+2

,W : 2Rn+2 → R̃, u : S → U, and
X0 ∈ S such that the following conditions hold:

1) B̃0 ⊆ X0;
2) W (X0) ≤ λ;
3) the following dynamic programming inequality (DPI)

holds

W (X) ≥ max{Ĝ(X), inf
u∈U

sup
y∈Y

W (F (X,u, y))},
∀X ∈ S;

(23)
4) for all X ∈ S,

max{Ĝ(X), sup
y∈Y

W (F (X,u(X), y))}
= max{Ĝ(X), inf

u∈U
sup
y∈Y

W (F (X, u, y))}; (24)

5) the solution of

Xk+1 = F (Xk,u(Xk), yk) (25)

satisfies
Xk ∈ S (26)

for all X0 ∈ S, k ≥ 0 andy[0,k−1] ∈ Y[0,k−1].

Then the controller defined by

uk = u(Xk) (27)

solves the MFISS Problem for system (9).

VII. E XAMPLE

Consider one-dimensional discrete-time system with lin-
ear dynamics:

{
xk+1 = xk + uk + wk, k ≥ 0

yk = xk + wk, k ≥ 0 (28)

wherexk, uk, yk ∈ R, wk ∈ W = R, thenY = R.
SupposeB0 = R, consider MFISS Problem with

α1(s) = s, α2(s) = es, γ(s) = s, (29)

(i.e. β(s, k) = se1−k).
Notice that the admissible measurement feedback con-

troller we will choose has the form

uk = K(y[0,k−1]). (30)

i.e. uk depends ony0, · · · , yk−1 but not onyk.
We chooseX0 = B̃0, sinceα(|x0|) = e |x0|, by (15) we

have
X0 = B̃0 = {(x0, e |x0| , 0) : x0 ∈ R}. (31)

By (17), we have

Ĝ(X0) = sup
x0∈R

{|x0|− ζ0−η0} = sup
x0∈R

{|x0|− e |x0|} = 0.

By (19) and (18), for anyu0, y0,

X1 = {(x1, ζ1, η1) : ∃w0, ∃(x0, ζ0, η0) ∈ X0, such that
x0 + w0 = y0, x0 + u0 + w0 = x1,
e−1ζ0 = ζ1, max{η0, |w0|} = η1}.

By x0 + w0 = y0, x0 + u0 + w0 = x1, we have

w0 = y0 − x0,
x1 = y0 + u0.

Hence

x1 = y0 + u0,
η1 = max{η0, |w0|} = max{η0, |y0 − x0|},
ζ1 = e−1ζ0 = |x0|

and

X1 = {(y0 + u0, |x0| , |y0 − x0|) : x0 ∈ R}.
By (17),

Ĝ(X1) = sup
x0∈R

{|y0 + u0| − |x0| − |y0 − x0|}.

Notice that

Ĝ(X1) ≥ |y0 + u0| − |y0| .
(choosex0 = 0 ∈ R)

It is easy to see that

sup
y0∈R

Ĝ(X1) ≤ 0

holds if and only if
u0 = 0.

Now for k ≥ 1, for anyuk, yk, by (19) and (18) we have

Xk+1 = {(yk + uk, e−k |x0| , max{|y0 − x0| ,
|y1 − y0 − u0| , · · · , |yk − yk−1 − uk−1|}) :

x0 ∈ R}.
Again by (17),

Ĝ(Xk+1) = sup
x0∈R

{|yk + uk| − e−k |x0|
−max{|yk − yk−1 − uk−1| , · · · ,
|y1 − y0 − u0| , |y0 − x0|}}

≥ |yk + uk| −max{|yk − yk−1 − uk−1| ,
· · · , |y1 − y0 − u0| , |y0|}.

For |yk| sufficiently large,

|yk − yk−1 − uk−1| ≥ max{|yk−1 − yk−2 − uk−2| ,
· · · , |y1 − y0 − u0| , |y0|},

and

Ĝ(Xk+1) ≥ |yk + uk| − |yk − yk−1 − uk−1| .
It is easy to see that

sup
yk∈R

Ĝ(Xk+1) ≤ 0,

holds if and only if

uk = −yk−1 − uk−1.



So we obtain a control law

u0 = 0, uk = −yk−1 − uk−1 =
k−1∑

i=0

(−1)k+iyi, k ≥ 1.

(32)
We will prove that (32) is the optimal controller. Now

we useS to denote the set of all the possible set-valued
observer obtained by (19) when the controller is given by
(32) (outputyk(k ≥ 0) are arbitrary). i.e.

S = {Xj : j ≥ 0, yk ∈ R(k ≥ 0), u0 = 0,

uk =
∑k−1

i=0 (−1)k+iyi, k ≥ 1.}
whereX0 is given by (31).

By induction, we can prove the value functionWa(X)
defined by (21) satisfies

Wa(X) = 0, ∀X ∈ S.

Since
Ĝ(X) ≤ 0, ∀X ∈ S,

it is easy to see thatWa(X) satisfies the dynamic program-
ming equation

Wa(X) = max{Ĝ(X), inf
u∈R

sup
y∈R

Wa(F (X, u, y))}, ∀X ∈ S

(33)
where

F (X, u, y) = {(y+u, e−1ζ, max{η, |y − x|}) : (x, ζ, η) ∈ X}.
From Theorem 6.3, the controller (32) is the optimal

controller such that the closed-loop system is ISS withγ
and β. In fact, using the controller (32), the closed-loop
system becomes





x0 = x0,
x1 = x0 + w0,

xk+1 = wk, k ≥ 1
(34)

Obviously it is ISS with

γa(s) = s = γ(s),

βa(s, k) =





s, k = 0
s, k = 1
0, k ≥ 2

≤ β(s, k) = se1−k.

Remark 7.1:The above example is a very special one
dimensional example. Only for very special examples, it
is possible to obtain an explicit solution. In general, the
set-valued observer is not easy to obtain, this makes the
solving of the dynamic programming equation (inequality)
very difficult.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we considered the controller synthesis
to achieve the ISS property. We made a connection be-
tween the ISS property and thel∞ bounded robustness
considered in [6]. It turns out that the design methods
provided in [6] is a powerful tool that can be applied to
the synthesis of ISS property when the disturbances gain
and the transient bound are prescribed. The measurement

feedback ISS synthesis problem can be solved in principle
using dynamic programming techniques. Though we only
considered ISS synthesis problem in this paper, our method
can be easily used for many other synthesis problems for
ISS-like properties. Further research include the synthesis
problems to achieve the optimal/suboptimal gains, and the
reduction of the computation complexity.
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