“© 2004 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works.”



Measurement Feedback Controller Design to Achieve
Input to State Stability

S. Huang, M.R. James, D. Bié and P.M. Dower

Abstract—An approach for design of measurement feed- On the other hand, ISS related literature builds on the
back controllers achieving input-to-state (ISS) stability prop-  tradition of stability of dynamical systems and Lyapunov
erties is presented. A synthesis procedure based on dynamic yhaqry Research in this area has concentrated on finding

programming is given. We make use of recently developed . . o . - .
restlts on controller synthesis to achieve uniformi> bound appropriate nonlinear generalizations of different finite gain

[6]. Our results make an important connection between the input-output stability properties that are more natural in
ISS literature and nonlinear H> design methods. the nonlinear context and fully compatible with Lyapunov

theory. The plant is modelled as a dynamical system with
I. INTRODUCTION disturbance inputs and the related stability properties usu-
Analysis and design of control systems with disturbanceslly make use of nonlinear gains. Majority of ISS related
is one of the central topics in control engineering that isesearch has concentrated on presenting different equivalent
continuing to attract a lot of research interest in the contextharacterizations of 1SS like properties [18], [19], [2],
of nonlinear systems. This trend has been driven by severaioving appropriate small gains theorems [10] and applying
major breakthroughs over the past 15 years that occurredtime 1SS like properties to analysis and controller design.
nonlinear H* control (e.g. [3], [21], [5]) and the input This literature is usually not concerned with computing
to state stability (ISS) related literature (e.g. [19], [16]minimum disturbance gains and the main tool for applying
[2]). These two approaches have been developed relativdlyese results are Lyapunov like functions that are very
independently of each other and they differ in stability propéifficult to find. We are not aware of any results that provide
erties that are considered, tools that are used and questi@nsystematic procedure for controller design for general
that are asked. Both approaches have their advantages awdlinear systems that achieves different ISS like stability
disadvantages but they both provide invaluable tools arpfoperties for the plant dynamics.
insight into the problems of analysis and design of nonlinear It is the purpose of this paper to exploit techniques
control systems with disturbances. typically used in nonlinearH*° control to address the
Nonlinear H> control has its roots in the areas of LQproblem of controller design with the goal of achieving
control and linearH> control. The main objective of the ISS property for the plant dynamics. In particular,
this research has been to translate all lingFf control we use recent results on unifor@¥® bounded (ULIB)
results to a nonlinear setting. In this context, it is typical taobustness [6] that extend nonline&f* techniques to
model the plant and controller as nonlinear operators and @ appropriate> robostness property. Our main results
considerL? stability with a finite (linear) gain of the closed show that the controller design problem achieving ISS
loop system, which comes from its linear tradition. Moreproperty for the plant dynamics can be solved by solving
over, this literature often aims at designing controllers thanother ULIB problem for an auxiliary augmented plant.
achieve minimum (optimal) gains from disturbance inputémportant features of our approach are: (i) we need to
to plant outputs and, hence, controller design often requiréix the desired ISS gain and transients bound prior to
a solution of an appropriate dynamic programming equatiogontroller design; (i) admissible controllers we consider
(DPE) or inequality (DPI). An advantage of this approach isire causal operators and our solutions can be interpreted
that it can be applied to a very broad class of plants and igs a dynamical controller with an appropriate initialization;
main drawback is the heavy computation required to solv@i) we achieve an ISS bound only for the plant dynamics
DPE/DPI [5]. Nevertheless, the methodology is fundamentaind controller dynamics is not considered; (iv) we consider

and provides useful conceptual insights. the measurement feedback problem; (v) our controllers
are obtained via solutions of appropriate DPE/DPI and in
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in this paper. The problem is then transferred into ULIB Definition 3.1: Let By C R™, W C R?®, the system (4)
synthesis problem in Section V. In Section VI, the dynamidés input to state stable (ISS) if there exi8te KL and
programming results are presented using the existing ULIB € K such that the trajectories of (4) satisfy:

results. An illustrate example is given in Section VII.

Conclusion is presented in Section VIIL. |p(k, w0, wio,k—1))| < B(|2ol, k) + v(llwjo,k—1)ll0);

for all xo € By, wjo,x—1) € Wjo,k—1]» andk > 0.

(In the original definition,B; = R™ and W = R*.)

Sets of real numbers, nonnegative real numbers, integersRemark 3.2:By Lemma 2.1, any3 € K£ has an upper
and nonnegative integers are denoted respectivelRas bound of the form3; (s, t) = a; (aa(s)e™?). Notice that3,
R+, Z andZ... Moreover, we denote itself is also akCL function, so the system (4) is ISS if and
only if there existay, s € Ko and+y € K such that the
trajectories of (4) satisfy:

Il. PRELIMINARIES

R:=RU{+x}, R:=RU{4o0}U{-0}. (1)

Recgll that a funCtIOI’I}/ : R+ — R+ is of C|aSS’C if it is |¢(k,l‘0,w[0 k71])| < (042(|330D8_k) _i_,y(iiwio k71]||<>o)7
continuous, strictly increasing and0) = 0; it is of class ’ ’ (5)
Koo |_f it is of class K and alsqy(s)_ﬂ 00 855 — 0. A forall 2o € By, wiok_1) € Wiox_1], andk > 0. Certainly,
funcnonﬂ_ Ry x R+_ — R, is said t(_) be a function of bounda, (a2(|z0i)efk) may be not as tight as the
classKL if for each fixedt > 0, 3(-,t) is of classKC and  pound B(|zol,k) with 3 € KL. In this paper, we wil

for each fixeds > 0, (3(s, -) decreases to zero. _ only consider the case whefiZ function is of the form
Sontag [15] proved the following lemma &&C functions a1 (aa(s)e™t).

that we need. . . _ We find it useful to restate Definition 3.1 since its new
Lemma 2.1:[15] Given arbitrary 3 € KL, there exist form is more suited for our paper. First, note that the

two functionsay, a; € Koo such that inequality (5) in the 1SS definition is:

6(Sat) < ﬁl(svt) = (OCQ(S)eit) ) Vs > Ovt >0. (2) |¢(k7x0,w[0’k_1])|—041 (ag(ixoi)e_k)—’y(||w[0,k_1]||oo) < 07

Given W C R#, we use the following notation for for all o € By, wjo 1) € Wio,s_1p, andk > 0.

signals: Now we define functiorp : R™ x Z, — R, for every
w1 = {wo, -+, we_1},Yk >0, k € Z, functions vy, : Wy -1y — R4, and function
Wiok—-11 = {wpr-1):w;i € W,0<i <k —1}, G:R"xRxR—R,by
Wineo) = {Wo,00) 1 ws € W} @) p(zo k) = ao(|zol)e ", )
Sometimes we use the notatian = wy ). We use the Ye(wop—1) = [lwp -,
convention thatwyp ;) = (. In the sequel, we use the and
notation Uy ), ¥0,k—1]> Yj0,k—1]> Yjo,0)» €tC, which have G(p, p, ) = o] — a1 (p) — v(¥), @)
meanings analogous to (3). We also use the following .
notation: where~y € K and ay,as € K. We use the convention

I loo = max |wil that 4 ()) = 0 and note that sincevy 1) = (), we have
(0k—A]lloo == k1 7 that 1o (wyo,_1]) = 0.
Now we can restate the definition of ISS as follows.
Definition 3.3: Let By € R™ and W C R?® be given.
The system (4) is called input to state stable (ISS) if there
existy € K anday, as € Ko such that withp(-, -), ¥x(+)
ll. | NPUT TO STATE STABILITY and G(-,-,-) defined by (6) and (7), we have that the
solutions of the system (4) satisfy:

Consider the following nonlinear system
G(¢(ka Zo, w[(),kfl])7 ,0(-1'07 k)a wk(w[o,kfl])) <0, (8)

Tpy1 = f(ap,wy), k>0 4)
_ _ _ for all zo € By, wy,k—1] € Wio,k—1),k > 0.
wherez;, € R” is the statew, € W C R?® is the input. Remark 3.4:The reason for restating Definition 3.1 as
We denote byp(k, zo, wjo 1)) the solution of the system jn Definition 3.3 is that the inequality (8) will be shown to
at timek that starts from the initial Conditiomo and under be related to an inequa“ty in the Uniforit® Boundedness
the action of the inputv ;1. Sometimes we simply use (ULIB) problem that was recently considered and solved in
o Or x), to denotep(k, zo, wio k—1)- the literature [6].

The definition of Input to State Stability (ISS) was given Remark 3.5:A range of other stability and detectability
in [14], [11]. Here we modify it slightly to accommodate properties can be captured by using the same Definition
the pOSS|b|l|ty of reStriCting the range of initial Conditi0n53_3 in an appropriate manner by redefining the functions
and input values. p.x, G etc. for each of the property. Such as integral input

where || is the Euclidean norm. To simplify the notation,
for any two vectorsr; andzs, sometimes we also denote
(x,{ xg)T aS(fEl,(ﬂQ).



to state stability (iISS) [2], integral input to integral stateProblem wefix all the functionsy € K, a1, as € Ko, and
stability (iliSS) [15], input to output stability (I0S) [20], then attempt to find a controller that satisfies (11). Finding
input output to state stability (I0SS) [12] and incrementah design technique that does not requreriori fixing of
input to state stability ISS) [1], etc. Some details are the gain functions is highly desirable and is left for future
provided in [9]. research.

Remark 4.2:The MFISS problems require only that a
desired bound is achieved on the solutions of the plant

In this section we pose the measurement feedback proghereas no such requirement is imposed on the states of
lem that achieves ISS property for the plant state in thg possibly dynamic controller. There are three reasons for
closed loop system. this: (i) ISS property for nonlinear systems provide a desired
bound for any initial state of the system. However, for a
closed-loop system, the initial state of the plant and the

IV. PROBLEM STATEMENT

A. Measurement Feedback ISS

Consider the nonlinear discrete-time system initial state of the controller play different roles. The initial
Tppr = flag, up,wg), k>0, state of the plant may be arbitrary. But the initial state
ye = h(zg,wg), k>0 (9)  of the controller can be chosen by the designer. Hence it

may be too strong to require ISS bound to be obtained
Herez, € R"upy € U € R™ wp, € W C R*yx € for any initial state of the planand any initial state of
R? are the state, control input, disturbance, and measurggh controllerin the closed-loop system. (i) We consider
output, respectively. _ possibly dynamic feedback controller design where the
Before we state the problem, we define the class Qfimension of the controller is not given before the design.
admissible controllers that our design will yield. For SySte”Eiii) This requirement is compatible with definitions of

(9), let Y = rangghr} C R” and U C R™ be given, pgniinearg= problems ([5]) and the ULIB problems that
define Yo o) andijo o) similarly as in (3). Anadmissible ;.o siated next.

measurement feedback controller is a causal niap:
Vio,c) — Uo,o0), Meaning that for each timé > 0 if B. Uniform ¢>° Bounded (ULIB) Problem

y',y” € Vo) andy, = y7 forall 0 <1 < k-1 then We shall show in section V that the MFISS Problem
K(y")x = K(y), i.e., the control at timé is independent for the system (9) can be solved by solving the following
of current and future measurements. We denote the set @ntroller synthesis problem for certain auxiliary systems.
admissible measurement feedback controllers as We first state the problem itself and then introduce the
o ) ; auxiliary systems in the following section.
Cng =K Vo.oe) = Uio o), K i caUSY. (10) Cons)i/de¥ the following systemg
We sometimes abuse notation by writing = K (yjo x—1))-

Also, we still denote the trajectories of the plant in Thtt = ﬂxk’“’“’)w’i’joz 0, (12)
the closed loop system consisting of the system (9) Ye = MTE, W), B =T
zr = g(xg), k>0.

and a given admissible controller, = K(ypx—1)) as
d(k, o, u, wio k—1])- wherez; € R uy € U C R™w, € W C R*jy, €

Note that the class of admissible controllers is very largR? are the state, control input, disturbance, and measured
and it includes static and dynamic controllers, as well as autput, respectivelyz;, € R is the performance output
number of other configurations. guantity.

The problem that we consider is stated next. Notice that the dimensions of the states, the measurement
Measurement Feedback ISS (MFISS) ProblemConsider outputs and the control inputs of system (9) and system (12)
system (9), letBy C R*, W C R*,y € K,aq,a2 € K«  are all the same. So we still use the same notafigp and
be given and define the functiop§, -), ¥ (-), andG(-,-,-)  ¢(k, zo,u, wjo,x—1)) as those in the MFISS problem
by (6) and (7). Find, if possible, an admissible measuremeMeasurement Feedback ULIB (MFULIB) Problem:
feedback controllets € C,,; such that the trajectories of Consider system (12) and I8, € R™ and A € R
the plant in the closed loop system satisfy be given. Find, if possible, an admissible measurement

feedback controllets” € C,,; such that the trajectories of
G(d(k, 2o, u, wio k-11), (20, k), Ui (wpo r-11)) <0, (A1) 4o closed-loop system consisting of the plant (12) and the
for all zo € Bo,wjo k1] € Wjo,k—1],k > 0. When there controller K(-) satisfy
exists such a controller, we say that the MFISS Problem is
solvable for system (9). 9(9(k, zo, 1, wio k1)) < A, (13)

Remark 4.1:Note a crucial difference between Defini-for all xo € Bo,wjox—1) € Wijp,k—1], andk > 0. When
tion 3.3 and the statement of the MFISS Problem. In ththere exists such a controller, we say that the MFULIB
definition, we say that the property holds tifiere exist Problem is solvable for system (12).
functionsy € K and aj,as € K, such that the ISS Remark 4.3:When the trajectories of the closed-loop
inequality holds. However, in the statement of the MFISSystem satisfy (13), we say that the closed-loop system is



uniform [*°-bounded (ULIB) dissipative with respect g, VI. DYNAMIC PROGRAMMING RESULTS

and A. We emphasize that the solutions to the MFULIB  sing Theorems 5.1 and the results of ULIB problems [6,
Problem have been already obtained in [6]. _ Theorems 4.17, 4.19], we can obtain dynamic programming
Remark 4.4:Note the similarity between the bounds inregyits for the MFISS Problem. They provide a framework
(11) and (13) that are respectively used to define the MFISg; measurement feedback controller design to achieve ISS

and MFULIB problems. The main difference is that the,operty.
bound in (11) depends directly on(k, zo, u, wyo 1), We use2R""” to denote the set of all subsets Bf**2,

p(xo, k) and vy (wyo k1)) whereas the bound in (13) de-\yherey, is the dimension of the states in system (9). We
pends only onb(k, 2o, u, wi,—1)). However, we will show  yefined : 92R"™ L R by

in the next section thap(xo, k) and vy (w x—1]) can be .

generated as solutions of auxiliary difference equations thaG(X) :== sup  {|z| —a1(¢) —v(n)}, VX CR""?
are appropriately initialized and, moreover, we can solve the (@,¢mex 17)
MFISS Problem for the system (9) by solving approprlafc%ndF LoR"™2  Rm o Rp _ 9R™F? by

ULIB problems for augmented auxiliary systems that is

appropriately initialized. F(X,u,y) = {(z,¢;n):Fwe W, 7)€ X,
such thath(z', w) =y, f(2/, u, w) = z,
V. PROBLEM TRANSFORMATION e~1¢" = ¢, max{’, |w|} = 7}.
In this section we show how the MFISS Problem for . ' (18)
the system (9) can be converted into appropriate MFULIB he set-valued observes defined as
problem for auxiliary augmented systems. Xio1 = F(Xi,us,y), Xo C R™2. (19)

Let B CR", W CR*% v €K, a1,as € K be given.
For system (9), we define the following auxiliary system  Remark 6.1:The solution of set-valued observer are sets
which are estimates of the states of system (14). In fact, for

Tevr = f(oeup,wr), Xo CR", j 21, ujoj-1) € Uo,j-115 Yjo,j-1) € Voj-1]s

Cet1 = € (g

Ne+1 = max{nk, |lwkl}, (14) X; = A{(x,¢n): 3wy -1 € Wip,j-1], 3(20, Co,M0) € Xo,
= o] = aa(Ge) — v(m), such thatz; = x,¢; = ¢, n; =,
Y = h(;vk,wk). h(xiawi):yi70§i§j_17

wherew; 1 = f(z;,ui,w;), Giy1 = € 4G,

We also let Wit = max{ng, [w,]},0 < < j — 1),
o (20)
By = as(lzo]) | iw0€Bop, A=0. (15) Theorem 6.2:(Necessity) LefY = ranggh} C R? and
0 By € R",W C R*, U C R™ be given and define the

. . . et of admissible controlle€,,; as in (10). Lety € K,
The following theorem shows a relationship of the MFISS . =t
Problem for system (9) and the MFULIB Problem fors @2 € Koo be given. LetB, and\ come from (15). Let

. S~ . . G come from (17) and?” come from (18). If the MFISS
auxmqry sygtem (14) withB, and A deflr_lec_i n (15). The Problem is solvable for system (9), then the value function
proof is omitted because of the space limitation.

. oR" T2 D . 1
Theorem 5.1:Let Y = ranggh} C R” andU C R™ Wa :2 — R defined by

be given and define the set of admissible contraflgr as Wo(X) = Kie]%f sup sup

in (10). Let By CR™, W C R%, v € K, a1, a0 € Koo be —md k20 w0, k-1 €Yo, ke-1)
given. Then, the following statements are equivalent: {G(Xk) : Xo=X,up = K(y[o,kfu)}
() The MFISS Problem is solvable for system (9). o (21)
(i) The MFULIB Problem is solvable for system (14) with Sat'Sf'?S

By and X\ defined in (15). 1) By € domW, where
Moreover, a controllefs € C,, of the form domW,, := {X R oo < WL(X) < +oo};
ur = K(ypo,k-1)) (16) 2) Wa(Bo) < \;

solves the MFISS Problem for system (9) if and only if the 3) the following dynamic programming equation (DPE)

same controller (here “the same controller” means the holds

mapping from the measurement output to the control input Wa(X) = max{G(X), inf sup W, (F(X,u,y))},

is the same) solves the MFULIB Problem for the system u€Uyey

(14) with B, and \ defined in (15). VX € domW,.
Remark 5.2:Notice that the dimension of the auxiliary (22)

system (14) is two dimension higher than the original 1Herey[07k,1] is defined similarly as in (3)X} is the solution of (19)
system (9). with u, = K (ypo x—1)) and Xo = X.



Theorem 6.3:(Sufficiency) LetY = ranggdh} C RP By (19) and (18), for anyug, yo,
and B € R", W C R*,U C R™ be given and define
L ’ . X, = : Jwy, 3 X h that
the set of admissible controlléh,; as in (10). Lety € K, ! {(x;’ Ci:’;) - wo,x (iofojrnfu) 62 wo,suc a
ar, a2 € Koo be given. LetB, and A come from (15). Let eo—lg iC yon’lai{ Tw ‘}0: }1’
G come from %7) andF’ come from (18). Suppose there 0= 5b "o, [0 M-

exist S C 2R"7C W 2" L R, u: S — U, and By o +wo = yo, %0 + uo + wo = 1, we have
Xo € § such that the following conditions hold: wo = o — o,
1) By € Xo; T = Yo+ uo.
2) W(Xo) < X Hence
3) the following dynamic programming inequality (DPI)
holds T1 = Yo + uo,
A . m = max{no, |wo|} = max{no, |yo — wol},
> _
W(X) > max{G(X),ulggjgg W(F(X,u,y))}, G = e ¢ = |aol
VX € S; and
(23)
4) forall X € S, X1 = {(yo + w0, 7ol , [yo — z0|) : w0 € R}.
max{G(X), sup W (F(X,u(X),y))} By (17),
o IEY (24) QX)) = —zol| = lyo —
= max{G(X), inf sup W(F(X,u,y))}; (X1) = sup {|yo + uo| — |zo| = [yo — @ol}.
uelU yeY zoER
Notice that

5) the solution of

Xigr = F(X, u(Xe), 35) (25) () 2 fyo + uol = lyol -
(choosery = 0 € R)

satisfies .
X, €S (26) It is easy to see that
<
for all X € 5,k > 0 andyp 1] € V1. sup G(X) <0
Then the controller defined by holds if and only if
U = u(Xk) 27) ug = 0.
solves the MFISS Problem for system (9). Now for & > 1, for anyuy, yy, by (19) and (18) we have
VIl. EXAMPLE Xiyr = {(yn +uk, e [xo| , max{|yo — o,
_ , - _ , o ly1 — Yo —uol, - [yx — Yu—1 — up—1[}) :
Consider one-dimensional discrete-time system with lin- zo € R}.
ear dynamics: Again by (17)
Tht1 = Tpt+up+wg, £>0 A B T
{ vp = T twp k>0 @8 G(Xern) = sup {yn +uel = ™" faol
wherezy,, u, yx € R,w, € W =R, thenY = R.. —max{|yy — Yr—1 — ug—1/|, -,
SupposeB; = R, consider MFISS Problem with . iyl 4__90 |_ uol |Zj£0| — Tol}}
> Yk + ug| — max{|yr — Yk—1 — Uk—1/,
ai(s) = s,az(s) = es,¥(s) = s, (29) 5y = yo — ol [yol }-
(i.e. B(s, k) = sel=Fk). For |y, | sufficiently large,

Notice that the admissible measurement feedback con-

. Yk — Yk—1 — Uk—1| = MaXY|Yk—1 — Yk—2 — Ug—2
troller we will choose has the form | | {l ’

",\yl — Yo *Uo| ) |y0|},

u = K(yo,5-1))- (30) and
i.e. uj, depends ony, - - -, yx—1 but not ony. G(Xit1) > |y + k| — [yk — Yr—1 — up—1] -
We chooseX = By, sincea(|xg|) = e |z, by (15) we

It is easy to see that

Xo = BO = {(Io,e |1‘0| ,0) X € R} (31) sup G(Xk+1) <0,
yr€ER

holds if and only if

have

By (17), we have

G(Xo) = sup {|zo| —Co—m} = sup {|zo| —e|zo|} = 0. _
z9o€ER z0€ER U = —Yg—1 — Uk—1-



So we obtain a control law
k—1
Ug = 0, Ul = —Ygp—1 — Uk—1 = Z(—l)k+1yi, k > 1.

=0
(32)

feedback ISS synthesis problem can be solved in principle
using dynamic programming techniques. Though we only
considered ISS synthesis problem in this paper, our method
can be easily used for many other synthesis problems for
ISS-like properties. Further research include the synthesis

We will prove that (32) is the optimal controller. Now proplems to achieve the optimal/suboptimal gains, and the

we usesS to denote the set of all the possible set-valuegsqyction of the computation complexity.

observer obtained by (19) when the controller is given by
(32) (outputyx(k > 0) are arbitrary). i.e.

S={X,;:j>0,y, € R(k >0),u =0, (1
we = S (1) iy k> 1) 2
where X, is given by (31).
By induction, we can prove the value functidi, (X) (3]
defined by (21) satisfies
Wa(X)=0, VX €S5. 4
Since R [5]
G(X)<0, VXeS,
it is easy to see thdl/,(X) satisfies the dynamic program- [6]
ming equation
W, (X) = maX{G(X), inf sup W, (F(X,u,y))}, VXe€S 7]
uGRyeR
(33) 8]

where

F(X,u,y) = {(y+u,e” "¢, max{n, [y — z|}) : (z,¢,n) € X}

From Theorem 6.3, the controller (32) is the optimal )
controller such that the closed-loop system is ISS with
and 3. In fact, using the controller (32), the closed—loop[lo]
system becomes

[11]

To = o,
r1 = Xo+ wo, (34) 2]
Tk+1 = Wk, k Z 1 [13]

Obviously it is ISS with
Ta(s) = s=1(s), [14]
S, k= 0 [15]
Ba(s, k) = s, k=1 <pB(s k) =se'"F

0, k>2 [16]

Remark 7.1:The above example is a very special one
dimensional example. Only for very special examples, it
is possible to obtain an explicit solution. In general, th¢17]
set-valued observer is not easy to obtain, this makes the
solving of the dynamic programming equation (inequality}
very difficult.

VIIl. CONCLUSION AND FUTURE WORK

In this paper, we considered the controller synthesi@o]
to achieve the ISS property. We made a connection be1)
tween the ISS property and thé® bounded robustness
considered in [6]. It turns out that the design methods
provided in [6] is a powerful tool that can be applied to
the synthesis of ISS property when the disturbances gain
and the transient bound are prescribed. The measurement

18]

[19]
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