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A Bode Sensitivity Integral for Linear
Time-Periodic Systems

Henrik Sandberg and Bo Bernhardsson

Abstract—Bode’s sensitivity integral is a well-known formula that quan-
tifies some of the limitations in feedback control for linear time-invariant
systems. In this note, we show that there is a similar formula for linear
time-periodic systems. The harmonic transfer function is used to prove the
result. We use the notion of roll-off 2, which means that the first time-
varying Markov parameter is equal to zero. It then follows that the har-
monic transfer function is an analytic operator and a trace class operator.
These facts are used to prove the result.

Index Terms—Bode sensitivity integral, linear time-periodic systems,
performance limitations.

1. INTRODUCTION

In recent years, there has been an increased interest for the funda-
mental limitations in feedback control. One reason for this is that in
many control design tools these limitations are not clearly visible, and
an inexperienced designer can easily specify performance criteria that
are not possible to attain. The articles [1] and [2] contain examples of
this. There are many of these limitations in control. The connection be-
tween amplitude and phase of transfer functions and Bode’s sensitivity
integral formula are two examples. The limitations come from the fact
that the transfer functions are analytic functions, and this has strong
implications.

In this note, we focus on Bode’s sensitivity integral. This is a stan-
dard result in control, see for example [3]. If the transfer function G(s)
of an open-loop linear time-invariant system G has roll-off 2, and is
stable, then we have in the multiple-input-multiple-output (MIMO)
case that

/ log |det(I + G(jw)) | dw =0 1)

0

see, for example, [3]. This is also called the waterbed effect. In par-
ticular, the modulus of the sensitivity, |det(I + G(jw))™"|, cannot be
less than 1 for all frequencies w. This trade-off holds for time-invariant
linear systems. It is known that there are limitations also for linear
time-varying and nonlinear systems, see for example [4]. However, fre-
quency-domain methods are then often not applicable. In the note [5],
an analogue to (1) is developed for continuous-time time-varying linear
systems. The sensitivity integral is interpreted as an entropy integral
in the time domain, i.e., no frequency-domain representation is used.
For discrete-time time-varying systems similar time-domain results are
given in [6].

For time-periodic linear systems there do exist frequency-domain
representations. Sampled-data systems are a special type of time-peri-
odic systems. Fundamental limitations for sampled-data systems are
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studied in [7] using transfer function techniques. We study general
time-periodic systems in this note and we use the harmonic transfer
function (HTF), see [8]-[10], which formally is an MIMO transfer
function G‘(a) with an infinite amount of inputs and outputs. Using
the convergence and existence results for the harmonic transfer func-
tion that are developed in [10], we will be able to write (1) with G(jw)
being the HTE. To do this we need to answer the following questions:
What does roll-off 2 mean for a time-periodic system? In what sense is
the HTF G/(s) analytic? What does the determinant mean for the HTF?

We do not consider open-loop unstable systems in this note. This
case is considered in [5] using exponential dichotomies. In the time-in-
variant case, when the open-loop system is unstable, the right-hand
side of (1) is equal to = Y ., Re p;, where p; are the unstable open-loop
poles, see [11]. During the completion of this article, the authors be-
came aware of the independent work in [12]. The sensitivity integral
derived there is similar to the one in this note. However, the result is de-
rived using techniques from [5], and is restricted to state—space models.

The note is organized as follows: In Section II, we give some of the
basic results for the HTF. The section ends with a definition of roll-off
2. In Section III, we derive Proposition 2, which shows that with roll-off
2 the HTF is an analytic operator. In Section IV, we review the definition
of the trace class operators and the operator determinant. In Proposition
3, we see that the HTF indeed is a trace class operator and that the
determinant is well defined. By using the propositions of the previous
sections, we can in Section V state the main result, which is a direct
analogue of (1) for periodic systems. In Section VI, we give an example
of the result. This article is based on [13].

II. HARMONIC TRANSFER FUNCTION AND ROLL-OFF

We repeat some results from [10]. A linear time-periodic system ¢
on impulse-response form is given by

y(t) = / Cgtnu(rydr, g(tr) =gt +Tor+T) @)

for some period 7' > (). We assume that the impulse response g(t, 7)
is real and has uniform exponential decay of rate «

for some positive constants A and «. The operator & is then bounded
on L-. To define the HTF we expand the periodic impulse response in
a Fourier series

oo ) . ) 2
g(t,7) = l; qi(t —7)e™ 0ty = Tﬁ
1/t ey
gi(t—71) = T / glr,r —t+7)e 70" dr 3)
Jo

with convergence in L2, see [10]. Hence, we expand the periodic
impulse response into a sum of modulated time-invariant impulse
responses ¢;(¢). For exponentially stable systems, we can apply the
Laplace transform on each time-invariant impulse response g;(t)

Ji(s) = / g(t)e " dt Res > —a. 4
Jo
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Furthermore, we have that §;(s) is analytic in Re s > —«, and §; €
H> N H . Now, the HTF is defined by the infinite-dimensional matrix

go(s+jwo)  g1(s)  ga(s — jwo)
G(s) = g-1(s+jwo)  do(s) gi(s—jwo) |- O
G-2(s+jwo) g-1(s) Jo(s — jwo)

Since the HTF has a periodic structure, it is often enough to consider
G(s) for complex numbers s in open regions .J.

Je={siRes > —¢e,Ims €I}
I. = (—wo/2 —e,wo /2 + €),
where & > € > 0. The HTF G( s) can be seen as an infinite-dimen-

sional operator defined on the space of square-summable sequences {5.
In [8], [9] it is shown that we can compute the induced L»-norm as

|IG||742—>712 =

wo =27 /T

sup

1Gullr, = ess sup |GGl (6)
llull Ly <1 welo

where || - ||« is the induced ¢z -norm.

A. Roll-Off of Periodic Systems [10]

For all ¢ € R, we can rewrite (2) as
y(tye ¥ = /t [g(t,’r)e_q“_T)] w(r)e” 7 dr. )
We use the notation i
Yq = Gqugq

where the operator (Y, has impulse response g(t,7)e~?“~7) and
maps input signals of the type u,(t) = wu(t)e”?" into signals
yq(t) = y(t)e ' For every fixed ¢ > —«, we may apply the theory
developed in [10].

In the following proposition, g, g:¢, g-, g-- denote one and two par-
tial derivatives of g with respect to the first and second argument, re-
spectively, and pu(t) = du(t)/dt. Furthermore, the set S is the set
of Schwartz functions, i.e., the set of infinitely differentiable functions
u(t) with t*p®u(t) bounded for ¢+ € R and all nonnegative @ and b.
The set S is dense in L.

Proposition 1: Assume that g(¢,¢) = 0 for all ¢, and that
g, 9¢, gets g7 §-- are continuous and have uniform exponential decay
of rate @ > 0. Then, (7) can be expanded in either of the following
ways:

%mz—%wﬂ@i—wxw

+q)

¢ s 1
—I—/ [gﬂ_(t,T)e alt )] mttq(”r) dr  (8)

yy(t) = 5 9t (t, ug(t)

1

(r+a)
1 [ (t-r)
4+ — / [gu t,r)e 1T ] ug(Tydr  (9)
TETE AN !

when vy € Sand ¢ > —a.

Proof: We prove (9). By the assumptions on g(?,7) and since
ug € S, the output y, is continuously differentiable and bounded.
Differentiate (7) with respect to ¢, and we obtain

t
(P + Qyq(t) = gt huy(t) + / [gt(ta T)(f_"’(”_r)] ug(7)dr.
(10)
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By assumption, g(t,t) = 0, and the first term on the right-hand side
disappears. If we divide by (p + ¢) and repeat the procedure on the
integral on the right hand side of (10), (9) follows. Equation (8) can be
proven similarly. u

Remark 1: The assumptions on g(¢,7) typically hold for smooth
stable linear time-periodic systems. The expansions remain valid when
« < 0, but we only consider stable systems in this note. The operator
(1/(p+ q)) should be interpreted as multiplication with (1/(jw+ ¢q))
in the frequency domain.

Since the first terms in the expansions (8)—(9) contain double inte-
grators when ¢ = 0, we make the following definition.

Definition 1 [10]: If the first time-varying Markov parameter,
g(t,t), is zero for all ¢, then G is said to have roll-off 2.

Introduce Po as an ideal (noncausal) low-pass filter with the fre-
quency characteristic

- 1, |w| <Q
Po(jw) = -

Q(.)"‘)) {07 |UJ|>Q
Proposition 1 together with the facts that S is dense in L2, and that the
Fourier transform of a function in S is again in S, implies that if we
filter the input or the output of systems G, there are, for all 6 < a,
positive constants C';, C> (dependent on 6 and «) such that

&

Go(I-Po)l||lpg—r, < —m———— 11

1G4 ( M Lo—rs < PESFSTE an
Cs

(I = Po)Gqllro—1, < PES ISR (12)

To show (11) one uses (8), and to show (12), one uses (9). Similar
bounds are derived in detail in [10]. In particular, we have that
IGallz,—r, = O(q™2) as ¢ — oo and [|Go(I = Po)llr,—1, =
O 2) and ||(I = Po)GyllLa—r, = O(Q27?) for each fixed ¢ as
Q — oo.
The relation between the HTF of GG and G| is simple

Glg+jw) = Go(jw),  ¢>—a
so it is enough to speak of G(b) The high-pass filtering of Gy with
(I — Po) means that rows or columns are truncated (replaced by zeros)
in G(s). If we choose §2 = (N +1/2)wy for some nonnegative integer
N, then G, (I — P;) has an HTF where the 2NV + 1 middle columns of
G(s) are replaced by zeros. (I — Po)G, has an HTF where the 2N +1
middle rows of G(s) are replaced by zeros, see [10] for details. This
has consequences for the roll-off of the individual transfer functions
§1(s) as is shown in the next section.

Remark 2: For a stable time-invariant system with smooth impulse
response g(t,7) = go(t — 7), the Markov parameters are equal to
{90(0), 96(0), 90 (0),...}. If g(t,t) = go(0) = 0 then we have that
|6(s)| = O(]s|7%), as |s| — oo and Re s > —«. This is called roll-off
2 for a time-invariant system.

III. ANALYTIC OPERATORS

To prove Bode’s integral theorem for time-invariant systems, one
uses that the transfer function is analytic and Cauchy’s integral the-
orem. The HTF is an infinite-dimensional operator and therefore we
need some of the theory for analytic operators. There are several equiv-
alent definitions of an analytic operator, see for example [14]. We say
that a bounded linear operator G(s) is analytic in an open set 2 C C
if it can be expanded in a power series around each so € 2

G(s) = Z(s — 50)" Gy, 5 € Qs0) CQ
k=0
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with uniform convergence in the open disc £2(s¢) in the induced
5-norm, || - || . The constant operators G, are linear bounded opera-
tors on {>. To prove that the HTF G (s) is an analytic operator in J.,
we can check the following sufficient conditions [14].
K1)
K2)

All the elements of G(b) are analytic functions in .J..
There is a positive constant K such that ||G(s)||ee < K for
all s € J..

We have the following statement.

Proposition 2: 1f the periodic system G fulfills the assumptions of
Proposition 1, then its harmonic transfer function G (s) is an analytic
operator in .J., where € < a.

Proof: Property K1) follows from (4) and (5). Property K2) needs
some extra attention. By using the roll-off formulas and the discussion
about the truncation of rows and columns in Section II-A, we can con-
clude that for all positive integers IV and s € .J.

N Ci 4+ Cs B

G <~ leZ |l|>2N+1 (13)
9)| < Tz ]

. C

lg:(s)] < B _'_15 2 leZ. (14)

The first bound follows since ||Gy — PoGqPalln,—1, <
(I = Po)Go)llo—r, +IG I = Po)lly—r, < (G2 +
Cs)/(N?wd) when Q@ = (N 4 1/2)wo. The modulus of the an-
alytic elements of the HTF of GGy — Po Gy Po must be less or equal
to the L»-induced norm according to (6). Since the transfer functions
gi1(s), [1| > 2N + 1, are not truncated with this choice of £2, (13)
follows. The bound (14) follows since the modulus of the analytic
functions g;(s) must be less than the L»-induced norm bound in (11).
Hence, roll-off 2 for a time-periodic system implies that the transfer
functions §;(s) on the diagonals of G/(s) have roll-off 2 in the classical
sense (see Remark 2).

The Hilbert-Schmidt norm || - ||2 gives an upper bound to the induced
ly-norm, i.e., ||G(s)||s < [|G(5)||2. Now, by definition

IG5 =Y lin(s + jkwo)]?
kil=—cc
Di(s)= > lauls + jkwo)|*. (15)
k=—o0

From (14), D_1(s), Do(s), D1(s) are bounded for Re s > —e > —6.
We bound the remaining diagonals D;(s) next.

From (13) and (14), we have for fixed N > 0 that
|9+ 2n41) (g + jw + jhwo)|

1 1
<(Cy +C2)mm{m, m}

For s = ¢ + jw € J., we then obtain

, [2N -1 > 1
Dinin(s) < (Cr+C2) <W +2) W—W)
it k=N 0
C
S ﬁ

where C is a constant. We can derive a similar bound for Diynyn (s).
Hence, we have that D;(s) = O(JI|™") uniformly in s as |I| — oc,
and there is a positive K such that |G (s)||? = 32, Di(s) < K2, for
all s € .J.. Since the calculations hold for all 0 < € < 6 < «a, the
proposition follows. ]
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IV. TRACE CLASS OPERATORS AND DETERMINANTS

We need to define a determinant for infinite-dimensional operators.
This can be done for so-called trace class operators; see [15] and [16].
For a trace class operator (¢, the determinant is defined as

det(IT+G) = [J(1 + (&)

L

(16)

where Ax (G’) are the eigenvalues of G. Trace class operators are com-
pact operators and have a countable number of eigenvalues. Note that
for finite matrices, (16) coincides with the regular determinant. For the
definition of a trace class operator, we need the s-numbers (or singular
numbers) of G

51 (G) = inf{||G' = Gi||oe: rank G < k1.

The numbers s tell how well G may be approximated by a finite-rank
operator. If G is compact, we have that s — 0 as & — oo. The trace
class operators are those operators for which

9]

G =3 51 < .

k=0

a7

With the norm || - || 1, the trace class operators form a complete normed
space; see [15]. We have that trace(G) = Y, Ae(G) < ||G]|1, and
|det(I + G)| < exp([|Gl1). (18)
Next, we see that under the assumptions of Proposition 1, the HTF G/(s)
is in fact a trace class operator. We have the following proposition.
Proposition 3: 1f the periodic system G fulfills the assumptions of

Proposition 1, then its harmonic transfer function G(s) is a bounded
trace class operator in .J., where € < «, and

A . K, .

G W)t € = , w € J.
I (q+Jw)I|1_B2+q, q+jw€
for some positive constants [ and K> > e. X

Proof: Since G(s) is analytic from Proposition 2, G(gq + jw) is
continuous in w, and

50(G(qg+ jw)) = |Glq + jw)ll
Ch

<NGollLa—ry < ——.
_” q”Lg LZ_(tS-i—(j)z

The remaining singular numbers can be bounded as follows. The HTF
of G4 Pqo, with @ = (N + 1/2)wg, has elements equal to zero every-
where except for its 2V + 1 middle columns which are identical to the
2N + 1 middle columns of G’(s) defined by (5). Hence, the truncated
HTF has at most rank 2NV + 1. We know that G, Po converges to G as
O(Q27%) = O(N~?) from (11). We conclude that for each g+ jw € J.
we have that

son1(Go(w)) < |Go(Gw) (I = Po(jw))]l
G (T = Po)llr,—ro
C] C1
~ o S . 5. (19
Bra+i0F = prart ey 1Y

IN

IN

The singular numbers form a decreasing sequence and, hence, we can
make the upper estimate

san42(Glq + jw) < sangr (Glg + jw).
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_]“"-)0/2 B b <

Fig. 1. Integration path ['g.

Hence, for each fixed s, the singular numbers s (G(s)) decay as
O(k™?) for systems with roll-off 2. Now, we can use these estimates
to bound the trace norm (17)

A , > 2C K
G+l <3 g -
k=0

S+ )2 +w2k? = Katq

for some constants K7 and Ky > € (since 6 > ). | |
Before stating the main result, we need the following lemma.
Lemma 1 [15]: If J. is an open set in C and if G(a) is an ana-
lytic trace-class-operator-valued function for s € .J¢, then det(I +
G(-)): J. — C is an analytic function.

V. MAIN RESULT

Using Propositions 1-3 and Lemma 1, we are finally ready to state
the analogue of Bode’s sensitivity integral, applicable to time-periodic
systems.

Theorem 1 (Sensitivity Integral): Assume that a (real) linear time-
periodic system ( satisfies the assumptions of Proposition 1. Assume
furthermore that the sensitivity operator (I 4+ G)™' is exponentially
stable, i.e., there are strictly positive v and e such that

|det(I 4+ G(s))| > v, s € J.. (20)

Then

wp /2 .
/ log |det(T + G(jw)) ™' dw = 0. )
9]

Proof: We have that det(I 4+ G’(‘s))il =1/ det(I+G(s)), see
[16]. From Proposition 3 we know that ||G(s)|[1 < K1/(K2 — ¢€) in
Je. Using (18) and (20), we then have that

: A —1 1
(K (e — ey S et + G [ < T

and, hence, det(I + G (s))~ " is a bounded function that does not be-
come zero for s € J.. Because of this, we can take the complex loga-
rithm, and

logdet(I + G(s))™" = —logdet(I + G(s)).

From Propositions 1-3 and Lemma 1, we know that det(I + G(s)) is
an analytic function in J.. Then for any simply closed curve I' C J.

/ logdet(I 4+ G(s)) tds =0 (22)
JT

by Cauchy’s integral formula. To prove the theorem we choose the
curve ['r shown in Fig. 1 and let R — oo. First, we evaluate the inte-
gral (22) along ~» and ~4. Notice that

R
/ log det(I + G(q + jwo/2)) " dg
0

0
—1—/ log det(I 4+ G(q — jwo/2)) " dg =0
R

for all R. The cancellation is because
det(I + G(q — jwo/2)) = det(I + G(g + jwo/2))

for all ¢. This follows by the structure (5) of the HTF and the definition
of the determinant. Next, we evaluate the integral along 3. The com-
plex logarithm is defined as

log det(I + G(s)) = log |det(I + G(s))| + j arg det(I + G(s)).
Since the impulse response g(¢, 7) is real, we have that §;(s) = §—i(5),
where - denotes complex conjugate. By the structure (5) and the defi-
nition of the determinant, it then holds that

arg det(] + é(s)) = —argdet(I + G(E))

|det(I + G(s))| = |det(I + G(3))]. (23)

The argument is an antisymmetric function, so when we integrate it
over the symmetric interval v3, it disappears from the logarithm

—wo/2 . l
/ log det(I + G(R + jw))d(jw)

wp /2

r—wo /2 N
/ log |det(I + G(R + jw))|d(jw)

wp /2

—wo/2
< / IG(R + ju) de

wo /2
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Fig. 2.
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1.5 ! ; ? !

log | det(I + G(jw))™!|

(b)

(a) Values of the integral (21) for different values of ¢ in (24). By Theorem 1, the integral must equal zero for stable closed-loop systems. It can be

verified by, for instance, Floquet analysis that the system indeed is stable for £ € [0, 2.6] U [9.6, 10.4]. (b) Logarithm of the sensitivity function is plotted for
£ =1.0,2.0,3.0,and 3.5. For the bold curves (the stable systems) the conservation law in Theorem 1 applies. When ¢ increases the sensitivity decreases for low
frequencies. The sensitivity must then increase for high frequencies to keep the areas below and above the zero level equal. This is the waterbed effect.

for each fixed R. The last bound follows by (18). Now, [|G/(R 4 jw)||1
converges uniformly to zero as R — oc according to Proposition 3.
The integral along -3 then goes to zero as R — oo. The only term
remaining of (22) is the integral along v;

wo/2 N
/ log det(I + G(jw))™"d(jw) = 0.
J—wo /2

Using (23) on the interval [—wo /2, wo /2], we obtain (21). ]

Remark 3 (Time-Invariant Systems): The integral in (1) is over the
interval [0, oo ) whereas the integral in (21) is over [0, wo /2]. This might
seem strange, but notice that for a time-invariant system with transfer
function §(s), the HTF is given by

G(s) = diag{.... d(s + jwo). §(5),4(s — jwo),...}

for any wo > 0, and we see that (1) and (21) are identical if we use that
9(5) = g(s).

Remark 4 (Sampled-Data Systems): The HTF can be calculated di-
rectly, without using the impulse response, for sampled-data systems;
see [17]. If one can show that the HTFs also in these cases are analytic
and of trace class, Theorem 1 still holds. In [7], another sensitivity inte-
gral is derived for sampled-data systems. There the integral satisfies an
inequality constraint instead of an equality. The reason for this is that
in [7] only the main diagonal (“the time-invariant component”) of the
HTF is integrated.

VI. EXAMPLE: THE MATHIEU EQUATION
Now, we verify the main result on an example. We choose an open-
loop system G with dynamics given by
§(t) + 0.49(t) + 2y(t) = € cos(2t)w(t) 249

where ¢ is a parameter and w(t) the input. The impulse response is
given by

£

glt,7) = ﬁe,fo‘z(t*r) sin(1.4(t — 7)) cos(27).

Clearly, the system has roll-off 2, and it is exponentially stable. The sen-
sitivity operator is obtained by applying the feedback w(t) = —(y(t)+
u(t)). Notice that when u(¢t) = 0, the dynamics of the closed-loop
system is given by a damped Mathieu equation; see, for example, [8].

Next, we compute the HTF of GG using (3)—(5). Here, wy = 2. After
this, we may compute the integral (21) for different values of £. For
& €10,2.6] U [9.6,10.4], the closed loop is stable. This can be shown
by, for instance, Floquet analysis. According to Theorem 1 the integral
should then equal zero. In Fig. 2, this is verified. It is also seen that
when the closed loop is unstable, the integral is strictly less than zero.
Furthermore, we can visualize the waterbed effect for periodic systems.
When the sensitivity decreases for some frequencies, it must increase
for other frequencies.

VII. CONCLUSION

We have seen that there are fundamental limitations for feedback
control of linear time-periodic systems. The modulus of the determi-
nant of the harmonic transfer function (I + G/(jw)) ™" cannot be made
small for all frequencies w. The result is a direct generalization of
Bode’s sensitivity integral. To prove the result, we have defined roll-off
2 for a time-periodic system, and used some of the theory for analytic
operators and trace class operators.
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Optimal Selection of the Forgetting Matrix Into an Iterative
Learning Control Algorithm

Samer S. Saab

Abstract—A recursive optimal algorithm, based on minimizing the input
error covariance matrix, is derived to generate the optimal forgetting ma-
trix and the learning gain matrix of a P-type iterative learning control (ILC)
for linear discrete-time varying systems with arbitrary relative degree. This
note shows that a forgetting matrix is neither needed for boundedness of
trajectories nor for output tracking. In particular, it is shown that, in the
presence of random disturbances, the optimal forgetting matrix is zero for
all learning iterations. In addition, the resultant optimal learning gain guar-
antees boundedness of trajectories as well as uniform output tracking in
presence of measurement noise for arbitrary relative degree.

Index Terms—TIterative learning control, optimal control, stochastic sys-
tems.

I. INTRODUCTION

The original idea for using the forgetting factor into iterative learning
control (ILC) is due to Heinzinger et al. [1]. However, this was intro-
duced to D-type ILC. Subsequently, Arimoto et al. [2], [3] used the
forgetting factor into P-type ILC. In [4], a forgetting factor was consid-
ered for generating the initial guess for the input to be learned whereby
the speed of convergence can be accelerated. Thereafter, the inclusion
of a forgetting factor into ILC algorithms, addressing different tracking
problems, has been vastly considered, e.g., [S]-[11].

Most of ILC algorithms, which are considered in the ILC literature,
incorporating a forgetting factor can be described as follows:

u(t,k+1)=(1—a)u(t,k)+ gle(t,k))

where 0 < « < 1 is the forgetting factor, u(¢, k) is the control input
of kth iteration trial, g( - ) is the learning operator which depends on
the previous measurement output error e(¢, k). For example, if the ILC
algorithm is of P-type, then g(e(t. k)) = K(t)e(t, k) where K (t) is
the learning gain matrix.

The main objective of the forgetting factor is found to increase the ro-
bustness of algorithm against random disturbances. The motive behind
this attribute is as follows: When summing the signal over k learning
iterations indicates that the scalar (1 — «) is taken to kth power for
input error further back in the iteration domain for every fixed t. Since
0 < (1 — «) < 1, this could lead to more reduction in older errors
than recent errors in the iteration domain. However, since the learning
operator converges to zero as the error tends to zero, then by fixing
() << « < 1, the control can only converge to a neighborhood of
the desired control. Consequently, it is necessary to have the forgetting
factor somehow converge to zero as the number of learning iterations
increase in order to possibly have the control input converge to its de-
sired control.

In this note a P-type ILC control algorithm is considered using a for-
getting matrix, A(t, k), which is described by u(t,k + 1) = [I —
A(t,B)]u(t, k) + K(t,k)e(., k). The optimal forgetting matrix and
learning gain matrix are obtained by minimizing the trace of the input
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