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Fair Coalitions for Power-Aware Routing in

Wireless Networks

Ratul K. Guha, Carl A. Gunter and Saswati Sarkar

Abstract

Several power aware routing schemes have been developed for wireless networks under the assumption that nodes

are willing to sacrifice their power reserves in the interest of the network as a whole. But, in several applications of

practical utility, nodes are organized in groups, and as a result a node is willing to sacrifice in the interest of other nodes

in its group but not necessarily for nodes outside its group. Such groups arise naturally as sets of nodes associated with

a single owner or task. We consider the premise that groups will share resources with other groups only if each group

experiences a reduction in power consumption. Then, the groups may form a coalition in which they route each other’s

packets. We demonstrate that sharing between groups has different properties from sharing between individuals and

investigate fair mutually-beneficial sharing between groups. In particular, we propose a pareto-efficient condition

for group sharing based on max-min fairness called fair coalition routing. We propose distributed algorithms for

computing the fair coalition routing. Using these algorithms we demonstrate that fair coalition routing allows different

groups to mutually beneficially share their resources.

Index Terms

Wireless Communication, Algorithm design and analysis, Energy-aware systems and Routing.

I. INTRODUCTION

Wireless networks typically consist of nodes that must discharge increasingly complex computing and

communication functionalities despite rigorous constraints on power, bandwidth, size and memory. Signifi-

cant progress has been made to improve hardware to address these needs and much is being done to develop
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software that uses techniques like power-optimizing algorithms. Comparatively less has been done to exploit

sharing amongst nodes as a way to address these challenges. This is unfortunate, since sharing can yield

great benefits. A variety of challenges impede progress: (a) determining which resources can be shared,

(b) deciding when to share resources, as sharing would evidently involve a cost, (c) deciding with whom to

share resources, and (d) determining how to share resources.

Oftentimes, groups of nodes rather than individual nodes are basic entities in the sharing mechanism.

The resource expenditure/utilization of the group as a whole is more important than that of a single node

or the entire network. Groups are often formed on the basis of membership in an organization or a shared

task. For example, employees of an organization A may carry wearable computers that belong to A. When

these devices form an ad hoc network, they may share resources with other devices with the objective of

minimizing the total resource consumed by the devices in A, rather than that of all devices in the network.

Thus, the devices belonging to an organization form a natural group. Wearable computers involved in one

distributed computation may form a group. In a sensor network, different groups would consist of sensors

that monitor different attributes such as temperature, pressure, wildlife presence etc. Sensors can also be

deployed in the same area by different organizations, e.g., seismic sensors can be deployed in the ocean

by two different agencies. Then, sensors belonging to each agency will constitute a group. In the above

cases, the resource consumed by groups is more important than that consumed by individual nodes as the

distributed computation can be performed and the attributes can be measured even when some members fail.

The research in this case must investigate issues pertinent to sharing of resources from the perspective of

groups.

A group is an intermingled set of nodes having a purpose in common. We do not consider the motivation

behind the group formation, but investigate the sharing of resources among different groups. The critical

resource we focus on is power. Nodes in wireless networks are powered by battery, and size limitations

compel the usage of low lifetime batteries. This calls for judicious consumption of battery power. Normally,

communication consumes significantly higher power than other operations. Nodes share power by routing
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each others packets, and it is well-known that multihop routing substantially decreases the overall power

consumption of the network [34]. We address the research challenges that arise when nodes decide to route

each others packets with the sole objective of reducing the power consumption of their groups.

We now enumerate some of these challenges. The nodes in a group share power by routing each other’s

packets to common destinations. Groups are said to form coalitions∗ when they route each other’s pack-

ets. The first challenge is to determine which groups would form coalitions. Presumably, a precondition

for forming coalitions among groups is that each group communicates the same amount of information to

the chosen destinations while consuming less power after the coalition is formed. Whether or not the pre-

condition is satisfied depends on the routing in the coalition, and the number of possible routes can be an

exponential function of the number of nodes in the groups. There need not even exist a routing that reduces

the power consumption of each group. Fig.1(a) and (b) show that if each group consists of a single node,
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Fig. 1. In (a) and (b), we show two different routings where node a constitutes group A and node b constitutes group B. Both groups need to

send traffic to the access point(AP). In (a) the farther node a routes its traffic to b and b sends to AP. So the routing in (a), reduces the power cost

of a but increases that for b. In (b) each node routes directly to AP and there is no reduction in power costs for both groups.

In (c) nodes a1 and a2 constitute group A and b1 constitutes group B. Here a1 can send its traffic through b1 and b1 can in turn send through a2.

This could result in a decrease in the total power for group A and B as against the case when the groups route to AP independently.

then groups do not mutually benefit from the coalition; but this no longer holds if the groups consist of two

or more nodes (Fig.1(c)). The challenge then is to answer whether there exists at least one joint routing that

makes the coalition mutually beneficial. The next challenge is to compute such a joint routing. We will show

in Section III-C that the routing that minimizes the total power consumption of all groups may not result

in mutually beneficial coalitions as it may increase the power consumption of some groups. The benefit
∗Even after forming a coalition, different groups maintain their separate identities, associations with their individual organizations and dis-

charge their individual responsibilities. The coalition operation just allows joint routing.
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incurred by a group due to the coalition operation is the decrease in its power consumption after it joins the

coalition. We need to determine a routing that shares the benefit equitably. A simplistic approach is to insist

that the groups each get the same benefit, but this can be wasteful if one group can gain benefit without

harming the others. A max-min fair [1] routing uses the following strategy for a pair of groups: determine

the greatest minimum benefit to be gained by either of the two groups when sharing and maximize the ben-

efit of the other group so long as the changes do not reduce this minimum. This strategy can be generalized

to multiple groups. The challenge now is to compute a max-min fair power aware coalition routing.

Finally, the network topology is dynamic since nodes move and the transmission condition in the links

significantly change over time. Thus, the benefits obtained through coalition and hence the decisions to

remain in coalition change with time. When topology changes, even if the coalition operation remains

mutually beneficial, the max-min fair power aware coalition routing may change. We therefore need a

distributed and dynamic algorithm that seamlessly adapts the computations in the event of topology change.

In Section II we survey the relevant literature. In Section III we provide a mathematical framework for

a coalition of two groups. This section presents several distinctive properties of coalition routings. For

example, a max-min fair power aware coalition routing exhibits important characteristics that do not hold

for max-min fair allocation of other resources such as bandwidth. We show that the max-min fair coalition

routing is guaranteed to attain the desired minimum benefits for each group should the coalition be feasible.

In Section IV we present a polynomial complexity algorithm for computing the fair coalition routing. This

algorithm needs to solve a linear program at a central processor, which requires the knowledge of the global

topology. In Section V we present a distributed computing scheme which allows the routing to be computed

via simple iterative computations and message exchanges at each participating node. In Section VI we

generalize the framework and the computation algorithms for a coalition among multiple groups in more

general networks, and also consider more general models for power consumption and signal propagation.

These coalition routing algorithms provide foundations for developing operational protocols. Design of

such protocols would require deployment of mechanisms to enforce group routings e.g., security checks. In
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Section VI we briefly discuss some of these issues. Refer to appendix for all proofs.

II. RELATED WORK

The existing research on efficient utilization of power in wireless networks can be classified into the

following broad categories. The first maximizes the lifetime of any given node through optimum battery

discharge strategy [6], [19]. The second varies the transmission power levels of nodes so as to control

the network topology as desired [8], [14], [23], [25], [32]. The third reduces the power consumption by

optimizing several parameters at the MAC layer [11], [21], [22], [31]. The last maximizes the lifetime of the

network by balancing the power consumption of different nodes [3], [4], [17]. Another prevalent approach

is to route in accordance with a power based metric rather than a distance metric [34]. However the common

feature of the existing research is that the basic entity is a node. The performance of the network is either

quantified in terms of the aggregate performance of the nodes or that of the bottleneck node. Hou et al.

[10] propose a polynomial time algorithm to compute lexicographic max-min(LMM) fair rate allocation and

show that this rate allocation attains the LMM node lifetimes. The distinctive feature of our work is that

the basic entity is a group rather than a single node, and the operations are coalitions. The performance

objective we consider is fairness and the issues significantly differ due to the choice of the basic entity.

We are concerned about the performance of each group rather than the network as a whole. Relaying and

caching strategies have been proposed for node cooperation when a node decides to relay the requests of

other nodes based on its selfish interests [24], [30]. Our research is complementary since we assume that a

group of nodes decide to route the packets of other groups based on the interest of the group as a whole. We

present an algorithm that obtains a specific pareto optimal objective, the max-min fair operating point.

III. MATHEMATICAL FRAMEWORK FOR COALITION OF GROUPS

A. Power Model

We first present the mathematical model we use for power consumption [7], [33]. Let the transmitted

energy per bit be Et. The received energy depends on the distance between the transmitter and the receiver
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and on other phenomena like refraction (e.g., through walls), diffraction (e.g., around buildings), reflection

(e.g., on ground and objects), scattering and absorption. The collective variation due to these phenomena is

referred to as shadowing [26]. The received energy at a distance d is then Etκ
−1d−α where 2 ≤ α ≤ 6 and

κ represents the link attenuation due to shadowing. For simplification, we assume that κ does not change

with time and is the same for all links [7], [33] and we relax these assumptions in Section VI-C. We assume

that the noise level is the same at all nodes. Let Erx be the energy per bit required to maintain the SNR

necessary for successful decoding at the receiver. Then for successful communication a node must transmit

each bit at energy Etx, where Etxκ−1d−α ≥ Erx. The power consumed by a transmitting node then is of

the form K1 + K ′rErxκdα where K ′ is a constant, r is the node’s data rate and K1 is the node’s idle power

consumption. The node dissipates power K1 even if it does not transmit or receive any traffic. Let constant

K = K ′Erxκ.

The MAC and the physical layers determine K1, K and α. For example, α is higher for obstructed paths

within buildings. Unless otherwise stated we will use α = 4 which corresponds to the path-loss in closed

areas; however all analysis hold for any α ≥ 0. Nodes may exchange control packets for transmitting

data packets; the control packet exchange depends on the MAC protocol e.g., IEEE 802.11 uses RTS, CTS

packets. The energy consumed in exchanging control packets determine the constant K ′. The linear relation

between transmission power and data rate implicitly assumes that the expected number of control packets

exchanged per data packet does not depend on the data rate. But, for example, in IEEE 802.11, the expected

number of control packets exchanged per data packet increases with increase in data rates due to increase

in collisions of RTS, CTS. Thus, strictly speaking the dependence is not linear. But, the inaccuracy due to

the linear assumption is negligible except when the energy consumed in transmitting the control packets is

comparable to that for transmitting data packets (Fig.2). Since the size of each control packet is significantly

less than that of a data packet, this happens only when the expected number of control packets exchanged

per data packet is very high which happens only at very high data rates. Usually, in order to avoid excessive

energy consumption in retransmitting control packets, the system does not operate at these data rates. Thus
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Fig. 2. We consider a network with 10 nodes such that all nodes are in each other’s transmission range and share a single channel of capacity

11 Mbps. Node i transmits data to node (i + 1)%10 at network layer rate r. The MAC protocol is IEEE 802.11. We plot the power consumed

by node 1 as a function of r. The power includes the power consumed in transmitting both control and data packets.

most power aware routing schemes assume this linear dependence e.g., [3], [4], [7], [17].

B. Formulation For a Single Group

We consider a network with M exit points. We denote the set of exit points (EP) as e= (e1, . . . , eM).

We model the network nodes as a Weighted Directed Graph G〈V, E, e,W 〉 where V is the node set for

the group, E is the edge set, e is the exit point set and W denotes the edge weights which are positive real

numbers. Every node v ∈ V has at least one path to an exit point and the outdegree of each exit point

is 0. Hence the exit points act as a sink for data traffic. The node set V and the exit points are defined

through their co-ordinates in the euclidean plane. The distance d(v, v′) is the distance between node v ∈ V

and node v′ ∈ V ∪ e. If (v, v′) ∈ E, weight w(v, v′) = d(v, v′)4 and w(v, v′) ∈ W . The edge set E is

usually determined at the MAC and physical layers, and can be arbitrary except that the exit points only have

incoming edges. We now describe an example edge set. When the node radios have limitations on maximum

transmission power for each bit, then an acceptable SNR level can be maintained at the receiver only if the

distance from the transmitter is below a certain maximum value which is referred to as the transmission

range (D). In such networks, a directed edge exists from v ∈ V to v′ ∈ V ∪ e if d(v, v′) < D. Origin

function Oi : V → < defines the traffic originating at a node v ∈ V for each exit point (ei in e. The graph
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G and the origin functions are given.

Let the traffic on an edge (v, v′) intended for exit point ei be ri(v, v′) ∈ <. If (v, v′) 6∈ E then r(v, v′) = 0.

The total outgoing traffic from a node v for exit point ei is then
∑

v′∈V ∪{ei} ri(v, v′) which is the load on node

v, Li(v). The sum of the incoming traffic and the originating traffic at a node must equal the exiting traffic.

Thus, ∀ i and ∀ v ∈ V

∑

v′∈V ∪{ei}
ri(v, v′) = Oi(v) +

∑

v′′∈V

ri(v
′′, v) = Li(v). (1)

Traffic routing is an |E|M dimensional vector ~r whose components satisfy (1). The components of ~r are

the traffics on the corresponding edges. Under routing ~r, a node v spends power N~r(v) and N~r(v) =

K1 + K
∑

i

∑

v′∈V ∪{ei}
ri(v, v′)d(v, v′)4, where the constants K1 and K are defined in Section III-A.

Different nodes may have different energy limitations. Thus, we assume that for each node v, the average

power consumption is upper bounded by B(v). Hence,

K1 + K
∑

i

∑

v′∈V ∪{ei}
ri(v, v′)d(v, v′)4 ≤ B(v).

The power expenditure of a group P~r is then the total power consumed by all nodes in the group i.e.,

P~r =
∑

v∈V

N~r(v). The group optimal power expenditure Popt is the minimum value of P~r over all possible ~r,

and can be obtained by routing the traffic over the minimum weight path from any node v ∈ V to each exit

point ei ∈ e for the weights W †. Such minimum weight paths can be computed by well-known algorithms

like Dijkstra, Bellman ford, etc. Let v′i be the next hop node to v in such a path. If Nopt(v) is the power spent

by a node v under optimal routing, then

Nopt(v) = K1 + K ×∑

i

Li(v)× d(v, v′i)
4 and Popt =

∑

v∈V

Nopt(v). (2)

C. Coalition of Groups

We have described the terminology and the equations for a group of nodes. Now consider two groups of

nodes A and B. Let their node sets be V a and V b respectively. Let their group optimal power expenditures

before forming a coalition be P a
opt and P b

opt.
†Here, the weight of a path is the sum of the weights of the links in the path.
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Next, we consider a combined network with groups A and B jointly routing to the exit points. Depending

on the network scenario each group may route to one or more exit points. For example, when groups

correspond to an organization, they could route to their own exit point. On the other hand, in sensor networks

each group could route to multiple exit points. These scenarios constitute specific cases of our model.

The vertex set V for the combined network then is V a∪V b. The edge set E joint can be determined from V

and the MAC and physical layer considerations. For example, E joint can be obtained using the transmission

range D, i.e., directed edge (v, v′) ∈ E joint for any v ∈ V a ∪ V b and v′ ∈ V a ∪ V b ∪ e if d(v, v′) < D. Also,

E joint is a superset of the edge sets of each group. Again, for any (v, v′) ∈ E joint, weight w(v, v′) = d(v, v′)4.

The origin functions for all the nodes remain the same. Any vector in RM |Ejoint| whose components are

non-negative and satisfy (1) is a routing in the joint network, and will be referred to as a coalition routing.

Note that r(v, v′) = 0 if (v, v′) 6∈ E joint. For an arbitrary coalition routing ~r, we now evaluate the power

expenditure for each node. Let Ja
~r and J b

~r be the total power expenditure for nodes in groups A and B

respectively, under routing ~r.

Then, Ja
~r =

∑

v∈V a

N~r(v) and J b
~r =

∑

v∈V b

N~r(v).

Definition 1: Group benefit under coalition routing ~r is the difference between the power spent by the

group under individual optimal routing before merging, and the power spent by the group for coalition

routing ~r. The group benefits form the benefit vector ~B~r, where ~B~r ≡ (Ba
~r , B

b
~r), Ba

~r = P a
opt − Ja

~r and

Bb
~r = P b

opt − J b
~r .

The idea behind combining two groups is to reduce the total power each group was spending initially.

Depending on the system, group coalition may introduce some additional operational cost and groups would

want to benefit over and above this cost. Let t be the benefit below which groups will not be willing to enter

into a coalition. The value of t would depend on group policies and the overhead for the coalition.

Definition 2: A coalition is useful with a routing ~r if min(Ba
~r , B

b
~r) ≥ t.

Definition 3: A coalition is useful if it is useful with some routing ~r.

We will present an algorithm to compute such a routing ~r if one exists.
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Fig. 3. Groups A(a1, a2) and B(b1, b2) route to the exit point EP. Each node sends 1 Mbps.

Definition 4: A minimal coalition routing is a coalition routing that results in the optimal or the minimal

total power expenditure for groups A and B combined.

Next we illustrate the combination of two groups with an example. Consider Fig.3 in which groups A and

B route to a single exit point. Each node generates traffic at the rate of 1 Mbps. Let K = 1, K1 = 0. Optimal

power expenditure for group A is 24+
√

2
4

= 20 and for group B is 14+
√

4.25
4 ≈ 19. For the minimal power

coalition routing shown, power expenditure for A is 14 + 2(
√

2)4 = 9 and for B is 2(1)4 +
√

1.25
4 ≈ 3.6.

Benefit for group A is 20 − 9 = 11 and for B is 19 − 3.6 = 15.4 and both the components are positive.

Consider now that node b2 has a higher load to send, e.g., 5 Mbps. This will be relayed through a2 in the

coalition routing of Fig.3. Node a2 will have a high power consumption (24) and the benefit of group A will

be negative (-5). This demonstrates that the minimal coalition routing may not benefit each group.

Definition 5: A feasible benefit vector is one that results from a coalition routing ~r. The set of all feasible

benefit vectors is the feasible benefit region.

D. Properties of the Feasible Benefit Region

Theorem 1: The set of feasible benefit vectors is convex and closed.

We now demonstrate that different feasible benefit vectors can lead to disparate benefits for the groups.

For the minimal coalition routing, we can find the power expenditure for each node, i.e., Nopt(v) for each

v ∈ V a ∪ V b. Further let Ja
opt and J b

opt be the powers spent by nodes of groups A and B respectively under
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the minimal coalition routing.

Ja
opt =

∑

v∈V a

Nopt(v) and J b
opt =

∑

v∈V b

Nopt(v).

Note again that the subscript ’opt’ to J refers to the minimal coalition routing for nodes of groups A and B

combined. The benefit vector ~L corresponding to the minimal coalition routing is then (La
opt, L

b
opt) where

La
opt = P a

opt − Ja
opt and Lb

opt = P b
opt − J b

opt. Let K = 1 and let there be a single exit point. The vector ~L is

plotted in Fig.4 for different random placements of nodes. Each group has 20 nodes uniformly distributed

over a square of side 100m, and the network is fully connected, i.e., each node can directly transmit to

every other node. If the benefit vector is in the first quadrant (both coordinates are positive), then the groups

mutually benefit from being merged, otherwise one of the groups is a loser. Most pairs of groups benefit

from a minimal coalition, but there are many instances in which only one group benefits. Even when a pair

of groups mutually benefits, there is often some disproportion in the extent of benefit, with one group getting

somewhat more than the other. This motivates fair allocation of benefits.

E. Max-min Fair Benefit Vector

Definition 6: A feasible benefit vector B~r is max-min fair if for all i, Bi
~r cannot be increased while main-

taining feasibility without decreasing Bj
~r for some group j, for which Bj

~r ≤ Bi
~r.

Corollary 1: The max-min fair benefit vector exists and is unique.

The corollary follows as a consequence of Theorem 1 and results from [28].

Definition 7: A fair coalition routing is a coalition routing that results in a max-min fair benefit vector.
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Minimum component property: If ~r is a fair coalition routing, then min(Ba
~r , B

b
~r) ≥ min(Ba

~r1
, Bb

~r1
) for any

other coalition routing ~r1. This property follows from the definition of the max-min fair benefit vector.

In Fig.3 the max-min fair benefit vector when K = 1 and M = 1 is (11.9,11.9). This is achieved when

node b2 sends 0.78 Mbps to a2 and 0.22 Mbps directly to EP like in Fig.5.

Proposition 1: Let ~r be a fair coalition routing. Then min(Ba
~r , B

b
~r) ≥ 0.

Thus a coalition does not increase the power consumption of any group if fair coalition routing is used.

Theorem 2: A coalition will be useful if and only if it is useful with a fair coalition routing ~r.

Theorem 2 presents a necessary and a sufficient condition for deciding whether the coalition would be

useful.

Theorem 3: For two groups the max-min fair benefit vector has equal components.

Theorem 3 will be used in developing an efficient algorithm for computing a fair coalition routing for two

groups.

Note that for other resource allocation problems, e.g., bandwidth allocation, the max-min fair vector need

not have equal components even for two contenders (Fig.6) [5].
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IV. FAIR COALITION ALGORITHM(FC)

A. Description

We show that the fair coalition routing and the associated benefit vector can be computed by solving the

following linear program.

FC: Maximize Z:

Subject to:

Z −Ba
~r ≤ 0,

Z −Bb
~r ≤ 0,

K1 + K
∑

i

∑

v′∈V a∪V b∪{ei}
ri(v, v′)d(v, v′)4 ≤ B(v) ∀ v ∈ V a ∪ V b, (3)

∑

v′∈V a∪V b∪{ei}
ri(v, v′)− ∑

v′′∈V a∪V b

ri(v
′′, v) = Oi(v) ∀ v, v′ ∈ V a ∪ V band i. (4)

The power consumption of each node is constrained in (3) and the flows are balanced in (4). Let Z∗ be

the objective function value obtained from FC.

Theorem 4: The routing ~r obtained as a solution of FC is a fair coalition routing.

Proof: Let minben(~r) =min(Ba
~r , B

b
~r). From Theorem 3 and the minimum component property, any

feasible routing that attains the maximum value of minben(~r) is a fair coalition routing ~r. Thus FC computes

the fair coalition routing.

The exit point can solve FC to compute the fair coalition routing and the max-min fair benefit. The linear

program involves (M + 1)|V a ∪ V b| + 2 constraints and M |E joint| + 1 variables. Hence the max-min fair

benefit vector and the fair coalition routing are polynomial complexity computable [13].

For solving FC, an exit point needs to know the edge set E joint and the distances between the nodes.

Initially, the nodes inform the exit point their incident edges and the distances from their neighbors, and later

they inform the exit point only when these change. The MAC and the physical layers of a node v determines

its incident edges (v, v′) and (v′, v) in E joint. Nodes can learn the distances from their neighbors by power

measurements and positioning algorithms, some of which do not need GPS [2].
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B. Simulation Results
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Fig. 7. Performance of coalition routings in networks consisting of two groups of equal sizes and nodes uniformly distributed in a square of

size 100m.

We investigate the efficacy of fair coalition routing through simulations using MATLAB. We evaluate the

benefits attained by different coalition routing schemes. We also consider other performance attributes such

as network lifetime, end-to-end path lengths, additional power consumption for providing fairness, etc. We

consider a network with one exit point (M = 1) and a coalition of two groups. Nodes of both groups are

distributed in a square of side 100m. Each node generates traffic at the rate of 1 Mbps. The value of K

depends on the choice of the wireless interface, and its effect is to scale our measurements. Thus, without

loss of generality, we consider K = 1. We will later mention details for a specific interface. Note that the

benefit values do not depend on K1. We consider different number of nodes, different distributions of nodes,

different locations of the exit point, different sizes of the groups, different distances between groups and

report averages over 100 random topologies in each case.
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We first consider a fully connected network, i.e., each node can transmit directly to every other node.

We assume that both groups have equal number of nodes, the exit point is at the center of the square, and

all nodes are uniformly distributed in the square. In Fig. 7(a), we plot the benefit values as a function of

the number of nodes. As proved before, the max-min fair benefit vector will have equal components. We

plot the average values of the maximum component of the benefit vector of the minimal coalition routing

(max-opt), the minimum component of the benefit vector of the minimal coalition routing (min-opt) and the

max-min fair benefit (max-min). As expected the max-min group benefit is between the maximum and the

minimum components of the benefit vector of the minimal coalition routing. Benefits initially increase and

later decrease with increase in the number of nodes. This can be explained as follows. Power consumption

in a routing scheme decreases if the distance between consecutive nodes in a path decreases. This holds

even if such a decrease increases the number of hops. This is because the power consumed in any routing is

proportional to (i) the expectation of the fourth power of the distance in each hop and (ii) the number of hops.

When the number of nodes is small, each group has a small number of nodes and thus joint routings allow

packet transmissions across hops that are significantly shorter than those in the individually optimal routings

in each group. Thus, joint routings have substantially lower power consumption. This effect becomes more

pronounced with increase in the number of nodes for moderate number of nodes. But, when the number of

nodes becomes really large, each group has a large number of nodes, and the hop distances and hence the

power consumptions in the individual optimal routings become small as well‡. Thus, the benefits of joint

routing decrease. Nevertheless, the benefit values are still considerable even for networks with 200 nodes.

In Fig.7(b), we consider a different path loss exponent α = 2 which arises in open environments. Here,

the trends are similar to Fig. 7(a), but the benefits are somewhat smaller. This is because the reduction in

power consumption due to the reduction in hop-distances d(v, v′) obtained by the joint routings are less for
‡Recently Zhao et al. [35] has proved that when nodes are uniformly distributed and their number n becomes large, the network transfers

Ω(n/logn) amount of data before any node dies. In other words, the data transferred by a network in its lifetime becomes arbitrarily large with

increase in n. This happens because of reduction in the distance between consecutive nodes in the routes. Although Zhao et al. do not consider

networks with groups, their result is consistent with our observation.
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α = 2 than for α = 4, as the power consumed in a link (v, v′) is proportional to d(v, v′)α.

We now revert to the closed environment, α = 4, and compare the lifetime of the network attained under

different coalition routing schemes. The network lifetime can be defined in different ways, e.g., it can be

considered as the time required for a certain fraction of nodes to die, or the first time instant at which the

network is disconnected etc.[3], [4], [34]. The lifetime of a network for all these metrics is governed by the

power consumption of the nodes that spend high power and die faster than others. Thus in Fig. 7(c) we plot

the quantity (X̄ + σx)/X̄ where X̄ is the mean power over all nodes and σx is the standard deviation. Note

that this quantity is a measure of the statistical maximum of the power spent by any node. Fair coalition

routing has a lower value of this quantity as compared to the minimal. This happens because the minimal

coalition routing derives its advantages by routing significant amount of traffic through a few nodes. We

therefore expect that fair coalition routing will have higher lifetime under most metrics (i.e., all metrics that

depend on the power consumption of the nodes that consume more power than others). To demonstrate

that this is indeed the case, we choose a particular notion of lifetime namely the time required for a certain

fraction (e.g., 5%) of nodes to die. We assume that all nodes have the same initial energy. In Fig. 7(d),

we plot the ratio between the lifetimes of the network under the fair and the minimal coalition routings that

are computed when all nodes are functional. We also plot the ratio of the lifetimes of the group with the

minimum lifetime under fair coalition and the group with the minimum lifetime under minimal coalition

routings. Consistent with our expectation, the ratio is always above 1.

Fig. 7(e) plots the total powers spent under the minimal and fair coalition routings and their difference.

This difference can be looked upon as the cost for providing fairness. Here K1 = 0. The average cost is

modest (18%) considering the benefit (46%)§ obtained and the fairness achieved.

In Fig. 7(f), we plot the average number of hops traversed by each packet before it reaches the exit point.

We notice that on an average, the fair and minimal coalition routings use similar number of hops. The hop

count affects the average end-to-end delay experienced by packets. But, the delay also depends on other
§The cost % is obtained from Fig. 7(e). The benefit % is with respect to the total power consumed prior to the coalition and is obtained from

Fig. 7(a) and Fig. 7(e).
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factors such as interference. The detailed investigation of the delay and interference issues in coalition

routing is beyond the scope of this paper.
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Fig. 8. Benefit values for coalition routings for different network scenarios.

We now evaluate the benefits for different distributions of nodes, different locations of the exit point,

different sizes of the groups and different distances between groups. But, the trends and the conclusions

remain the same as in the previous cases.

Fig. 8(a) shows the results for unequal group sizes. One group is four times as large as the other. The

nodes are still uniformly distributed. The smaller group has a lesser benefit under the minimal coalition

routing in this case. The remaining trends are the same as for groups with equal sizes.

We now investigate the effect of clustered topologies on the benefit values (Fig. 8(b), 8(c)). Both groups

have equal number of nodes. In Fig. 8(b), nodes of each group are normally distributed with a variance of

25 around the respective group centroids that are uniformly distributed. The group with the centroid closer

to the exit point has negative benefit under the minimal coalition routing, and zero benefit under the fair
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coalition routing. The group closer to the exit point loses after coalition when the minimal coalition routing

is used, but not when the fair coalition routing is used. Here, the benefits of the fair coalition routing starts

decreasing for much larger number of nodes than in the uniform distribution case (Fig. 7(a)), as the topology

becomes pervasive only for much larger number of nodes. For example, when the number of nodes in the

network is 400 the benefit reduces by 25% as compared to the benefit in a network with 200 nodes. In

Fig. 8(c) we consider a network with two clusters of equal sizes, but now the clusters include equal number

of nodes from both groups. The nodes in each cluster are normally distributed with a variance of 25 around

the respective group centroids that are uniformly distributed. Here both groups obtain positive benefits under

fair coalition.

We now investigate the case when the exit point is at the edge of the square. We consider two different

distributions of nodes: (i) uniform (Fig. 8(d)) and (ii) normal (Fig. 8(e)). For uniform distribution, the trends

are similar to the case with the exit point at the center (Fig. 7(a)). But, since all nodes are now in the same

side of the exit point, the paths to the exit point contain larger number of nodes of both groups, and hence

the benefits are higher. For normal distribution, the nodes of each group are normally distributed around

the centroid of the group with a variance of 25. The centroids are equidistant from the exit point and at a

distance d from each other where d is a measure of the separation between the groups. In Fig. 8(e), we plot

the benefits as a function of d. The benefits decrease as d increases as then fewer nodes from one group can

route the packets of the other group due to the larger separation between the groups.

We now relax the assumption that the network is fully connected, and assume that each node can transmit

directly to only nodes within distance D. We investigate the effect of different transmission ranges D on the

benefits in Fig. 8(f). The network has 20 nodes in each group, but the characteristics are otherwise similar

to that considered in Fig. 7(a). Lower values of D will result in fewer edges in the network. The benefit

increases significantly with increase in D for lower values of D as more and more nodes can be included

in potential routes to the exit point. Note that the maximum possible distance between any two nodes in

this network is 100
√

2. A slight drop can be noticed when D is around 10
√

2. This is because the power
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consumption of the group optimal decreases by a smaller amount than that of the fair coalition routing.

When D exceeds 18
√

2, the curves level off. The transmission range is now high enough to include those

nodes which would have been a part of the coalition routing in the fully connected case.

For the Lucent 802.11b Orinoco card, a rate of 1 Mbps in closed environment corresponds to 15dBm of

output power [18]. The constant K is then roughly 5.5 × 10−6W/Mbit ∗ m4. For any value of K1, this

translates to a benefit of 30 Watts for a group with 10 nodes for the uniform case with equal group sizes. It

is also worthwhile to note that the CPU time to compute FC, for any of the above topologies was not more

than 0.5secs on a 700Mhz/256MB RAM laptop using a simplex algorithm implementation [9].

V. DISTRIBUTED IMPLEMENTATION

The algorithm in Section IV-A for computing the fair coalition routing requires a centralized computation

at the exit point. Though the simplest solution, it will not be computationally tractable when the exit points

have capability similar to the nodes themselves. Consider for example a sensor network where a group of

sensors communicate their measurements to a common node which in turn transmits to say a satellite. Here

we would not want to overwhelm the relay node with the linear programming computation. Furthermore,

when nodes move, the edge set E changes. For example, when a node can directly transmit to only nodes

within its transmission range D, then links between two nodes will be created (cease to exist) when one

moves in to (out of) the transmission range of another. Finally, the power consumed for transmission of each

bit in a link will change with change in the distance between the incident nodes. The traffic generation rate

of each node will also change with time. Due to these changes, the coalition may no longer be useful or may

start being useful or the fair coalition routing may change. Thus, FC must be solved every time such changes

occur. Rather than having the exit point repeat the entire computation in every such instance, it is beneficial

to have a distributed implementation where every node performs some simple iterative computations and

the values seamlessly converge to the max-min fair solution. Based on the new max-min fair solution, the

groups can determine whether the coalition is useful (Theorem 3), and use the fair coalition routing if they

remain in or join the coalition.
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Now we present an iterative approach to compute a fair coalition routing for two groups. This has been

motivated by recently proposed solutions for optimization problems in other resource allocation settings [12],

[29]. Let Zn and ~rn denote the corresponding quantities in iteration n, where Z0 and ~r0 can be arbitrarily

chosen. The initial choices need not satisfy any of the constraints. Thus each node can select the initial

values of the loads for each of its outgoing edges without any co-ordination with the other nodes. Similarly

Z0 is selected at an exit point. Now we define some indicators. The benefit indicator of a group is 1 if Zn is

more than the group benefit.

εa
n =





0, if Zn + Ja
~rn
≤ P a

opt,

1, if Zn + Ja
~rn

> P a
opt.

εb
n =





0, if Zn + J b
~rn
≤ P b

opt,

1, if Zn + J b
~rn

> P b
opt.

We now outline the rate update mechanism for the traffic intended for each of the M exit points. Node

congestion cv
n,i is the difference between the outgoing and the sum of the originating and incoming traffic at

node v for exit point i. From (4),

cv
n,i =

∑

v′∈V a∪V b∪{ei}
rn,i(v, v′)−


Oi(v) +

∑

v′′∈V a∪V b

rn,i(v
′′, v)


 .

Node congestion indicator for node v for traffic directed to exit point i is

sv
n,i =





0 if cv
n,i = 0,

1 if cv
n,i > 0,

−1 if cv
n,i < 0.

Traffic for exit point i at node v is considered balanced, lightly loaded or heavily loaded as sv
n,i is 0,1 and

-1 respectively. For the exit point, se
n = 0. The power level indicator at node v, tvn is set to 1 if the current

power consumption exceeds the limit B(v) and 0 otherwise. Hence,

tvn =





0 if K1 + K
∑

i

∑
v′∈V a∪V b∪{ei} ri(v, v′)d(v, v′)4 ≤ B(v),

1 if K1 + K
∑

i

∑
v′∈V a∪V b∪{ei} ri(v, v′)d(v, v′)4 > B(v).
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We present an iterative approach using the above indicators. Note that sv
n,i and tvn can be updated at node v

using the incoming rates in the previous iteration. Now, update of εa
n and εb

n require a knowledge of the total

power being spent by the nodes of a group. We will discuss how to acquire this information in a distributed

manner.

Let {δn} be the step-sizes that satisfy limn→∞ δn = 0 and
∑∞

n=1 δn = ∞. For example δn = 1/n satisfies

the conditions. Each node v updates its outgoing traffic in edges (v, v′) ∈ E joint as follows. [·]+ denotes the

projection on [0,∞).

rn+1,i(v, v′) =
[
rn,i(v, v′)− γδn

(
sv

n,i − sv′
n,i + +d(v, v′)4(tvn + εa

n)
)]

+
if v ∈ V a.

rn+1,i(v, v′) =
[
rn,i(v, v′)− γδn

(
sv

n,i − sv′
n,i + +d(v, v′)4(tvn + εb

n)
)]

+
if v ∈ V b.

Trivially, rn+1,i(v, v′) = 0 if (v, v′) 6∈ E joint.

The exit point updates Z as follows: Zn+1 = [Zn + δn(1− γ(εa
n + εb

n))]+.

Theorem 5: For all γ > 1 the iterative procedure stated above will converge to the max-min fair benefit

vector and fair coalition routing, irrespective of the initial choice of the iterates.

Since the convergence guarantees in Theorem 5 hold irrespective of the initial choice of the iterates, the

procedure converges to the fair allocations even after changes in E joint and the power consumed in the links.

Now we outline a distributed scheme to implement the iterations. Assume that we have a spanning tree

connecting nodes of each group to any one of the exit points. Refer to Fig.9(a). Each leaf node L sends

a power packet (PP) upstream that contains the power expended by L. Each node of a group adds all the

power values in the PP arriving from its downstream branches, adds its own power expenditure to the sum,

and sends a PP upstream with the resulting power value. Using these group powers the exit point determines

εa
n+1 and εb

n+1 and updates Zn. The exit point communicates εa
n and εb

n to each group through congestion

indicator packet CP, and the nodes can use these to update their rates. The PP and CP can be separate

packets, or they can be piggybacked on the data and acknowledgement packets.

We now evaluate the convergence time of the distributed implementation. We consider a fully connected

network with 10 nodes in each group where the nodes are uniformly distributed in a square of side 100m,
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Fig. 9. Distributed Implementation

and one exit point is at the center. Each node generates traffic at the rate of 1 Mbps. We assume that the size

of each CP and PP packet is 15 bytes. The CP and the PP packets traverse a total of 12 hops per iteration.

Now, if the transmission rate in each link is 11 Mbps, then each iteration consumes approximately 0.13

milliseconds. Here K = 1, γ = 2500 and δn = 1/n, ∀ n, Z0 = 107 and ~r0 = ~0. The benefit Zn converges to

the max-min fair benefit value of 5.5 × 106 in 1000 iterations which consume 130 milliseconds (Fig.9(b)).

In general the initial convergence time will depend on how far the initial guess is from the optimal.

We next demonstrate that the re-computations that result from incremental changes in topology and traffic

generation rates converge much faster. We assume that during iteration number 2000 (i.e., after the initial

convergence) all nodes select new locations - the new locations are also uniformly distributed. The power

consumptions in the links now change due to the topology rearrangement, but Zn converges to the new max-

min fair value in 400 iterations which consumed 50 milliseconds. The convergence is faster as compared
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to the initial convergence because only the node positions were changed while their traffic generation rates

remained same. Thereafter, between iterations 2400 and 6000, nodes change their positions one by one.

If a node i’s current x-coordinate (y-coordinate) is xi, then it selects its new x-coordinate (y-coordinate)

uniformly within [0.9xi, 1.1xi] ([0.9yi, 1.1zi]). On an average, 60 iterations (≈ 8ms) are required for conver-

gence for each change. Finally, between iteration 6100 and 8100 the nodes change their traffic generation

rates one by one. If a node i’s current generation rate is O(i), then its new rate is uniformly distributed

within [0.95O(i), 1.05O(i)]. Now, on an average after each change, Zn converges to the new max-min fair

value in 20 iterations (≈ 3ms).

Groups join or remain in the coalition if and only if the new max-min fair benefit Zn exceeds the min-

imum required benefit t (Theorem 3), and use the corresponding fair coalition routing whenever they are

in a coalition. To prevent routing instability and oscillations, the groups evaluate the coalition formation

decision and alter the routing only when (i) the current value of Zn substantially differs from that at the

previous decision epoch and (ii) Zn remains at its current value for some time which ensures convergence.

Determination of these necessary deviations and time durations as also the security mechanisms required

to enforce the coalition formation decisions and the fair coaliton routing constitute separate research topics

and are beyond the scope of the current work. We however briefly discuss some of the security issues in

Section VI-D.

VI. DISCUSSION AND GENERALIZATIONS

We now describe how the framework we have proposed and the analytical results we have obtained can

be generalized to include several additional features of practical relevance.

A. Multi-Group Fair Coalition Algorithm

We now investigate the max-min fair benefit vector and fair coalition routing when multiple (n) groups

attempt to form a coalition. Definition 6 also defines the max-min fair benefit vector in this case. This

case is significantly different from the two group case discussed earlier. Let P i
opt be the minimum possible
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power spent by group i to route to the exit points before joining the coalition. Also let J i
~r be the power

spent by nodes of group i under coalition routing ~r. The benefit for group i is then Bi
~r ∀ i = 1 . . . n with

Bi
~r = P i

opt − J i
~r. The benefit vector for the coalition routing is ~B~r ≡ (B1

~r , B
2
~r . . . Bn

~r ).

We mention some important properties of fair coalition routing for multiple group coalition.

Proposition 2: Consider three groups A,B and C. Consider three separate coalitions (A,B), (B,C) and

(A,B,C). If the pairwise coalitions (A,B) and (B,C) are mutually beneficial for each group (i.e., the benefit

for each group under some coalition routing is positive), then the coalition (A,B,C) is beneficial for each

group.

A counterexample presented in Fig.10 shows that the converse is not true.

The components of the max-min fair benefit vector need not be equal when more than two groups combine.

Refer to Fig.11 where each node generates 1 Mbps. Here, M = 1 and K = 1.

Now we present the multi-group FC algorithm. This algorithm solves a sequence of linear programs.

Note that solving a single linear program is not sufficient since the components of the max-min fair benefit

allocation need not be equal in this general case.

Let I = {1 . . . n}, INC refer to the individual node constraints (3) and LF refer to the load flow condition

(4) generalized to multiple groups.
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Stage1: Maximize: Z:

Subject to: Z ≤ Bi
~r ∀i ∈ I

~r satisfies INC and LF.

Let Z∗
1 be the objective value and ~r∗1 be the routing obtained from above. Let equal = {t : Bt

~r∗1
= Z∗

1}.

Substage1 For each k ∈ equal,

Maximize: Bk
~r :

Subject to: Bi
~r ≥ Z∗

1 ∀i ∈ I \ {k}

~r satisfies INC and LF.

Let ~rk be the routing corresponding to the kth maximization ∀ k ∈ equal. Let e1 = {n : Bn
~rn

= Z∗
1}.

Stage2: Maximize: Z:

Subject to: Z ≤ Bi
~r ∀i ∈ I \ e1

Bi
~r ≥ Z∗

1 ∀i ∈ e1

~r satisfies INC and LF.

Let Z∗
2 be the objective value and ~r∗2 be the routing obtained from above. Let equal = {t : Bt

~r∗2
= Z∗

2}.

Substage2 For each k ∈ equal

Maximize: Bk
~r :

Subject to: Bi
~r ≥ Z∗

2 ∀i ∈ I \ e1 \ {k}

Bi
~r ≥ Z∗

1 ∀i ∈ e1

~r satisfies INC and LF.

Let ~rj be the routing corresponding to the jth maximization ∀ j ∈ equal. Let e2 = {n : Bn
~rn

= Z∗
2}.

Similarly in the ith step.

Stagei: Maximize: Z:

Subject to: Z ≤ Bi
~r ∀i ∈ I \ e1 \ e2 . . . \ ei−1

Bi
~r ≥ Z∗

t ∀i ∈ et ∀t = 1 . . . (i− 1)
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Fig. 12. We average the minimum, second minimum and the largest component over 100 topologies.

~r satisfies INC and LF.

Theorem 6: The routing ~r obtained as a solution of multi-group FC is a fair coalition routing.

Fig.12 shows benefits for fair coalition routing for three equal sized groups spread over a square of side

100m. Here, M = 1 and K = 1.

B. Receiving Power

We have so far assumed that a node does not consume any power when it is receiving information. We

now relax this assumption, and assume that the receiving power of a node is proportional to the incoming

traffic rate. The total power expenditure of a node v is the sum of the power spent to transmit load
∑

i Li(v)

and to receive load
∑

i(Li(v)−Oi(v)). Thus

N~r(v) = K1 + K
∑

i

∑

v′∈V ∪{ei}
ri(v, v′)d(v, v′)4 + K ′ ∑

i

(Li(v)−Oi(v))

= K1 + K
∑

i

∑

v′∈V ∪{ei}
ri(v, v′)d(v, v′)4 + K ′ ∑

i

∑

v′′∈V

ri(v
′′, v) (from (1) ).

Ja
~r =

∑

v∈V a

N~r(v)

Similarly, J b
~r =

∑

v∈V b

N~r(v).

The max-min fair benefit vector and the fair coalition routing can be computed by substituting the expres-

sions for Ja
~r , J b

~r in FC with the above¶.
¶Now, P a

opt (P b
opt) can still be obtained by routing the traffic using the minimum weight path in group a (b). But, the weight of a link (v, v′)

is now Kd(v, v′)4 + K′ instead of d(v, v′)4. This happens since we assume that the receiving power depends only on the received rate.
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The distributed algorithm remains similar except for the rate update strategy which needs to be modified.

We describe the update strategy for rn+1(v, v′) when v ∈ V a and (v, v′) ∈ E joint. The update strategy for

rn+1,i(v, v′) when v ∈ V b and (v, v′) ∈ E joint can be obtained by interchanging a with b in the following

rn+1,i(v, v′) = [rn,i(v, v′)− γδn(sv
n,i − sv′

n,i + d(v, v′)4εa
n)]+ if v ∈ V a, v′ ∈ e.

rn+1,i(v, v′) = [rn,i(v, v′)− γδn

(
sv

n,i − sv′
n,i +

(
K ′/K + d(v, v′)4

)
εa
n

)
]+ if v, v′ ∈ V a.

rn+1,i(v, v′) = [rn,i(v, v′)− γδn(sv
n,i − sv′

n,i + d(v, v′)4εa
n + εb

n)]+ if v ∈ V a, v′ ∈ V b.

The convergence guarantees in Theorem 5 hold.

C. Generalized Propagation Model

We first consider a simple generalization where κ(v, v′)s are different for different links, but do not change

with time. This happens when the environment is static. Now, for successful communication to v′ a node

v must transmit each bit at energy Etx, where Etxκ(v, v′)−1d(v, v′)−α ≥ Erx. The power consumed by

node v under routing ~r is then K1 + K
∑

v′∈V ∪{e} r(v, v′)κ(v, v′)d(v, v′)α. Thus, now d(v, v′)α must be

replaced with κ(v, v′)d(v, v′)α everywhere (note that κ(v, v′)d(v, v′)α can be obtained by measuring the

signal strength at receiver v′). The framework remains the same other than this change, and all analytical

guarantees hold.

We next consider the case that the environment and hence κ(v, v′) changes with time for each link (v, v′)‖.

The time duration during which κ(v, v′) does not change for a link (v, v′) is referred to as the coherence time

of the link. Coherence times are large when nodes move around slowly, e.g., when the maximum node

velocity vmax is lower than 5 m/s, the coherence time is c/(vmax× f) = (3× 108)/(5× 2.4× 109) = 25 ms

[26] (p. 165). Here f is the centre frequency of the signal and c is the speed of light. The fair coalition

routing can now be recomputed every time κ(v, v′) changes. Since the distributed algorithm converges fast in

presence of incremental changes, the rate allocation can seamlessly adapt to changes in κ(v, v′). If however
‖When the environment is not static, κ(v, v′) is modeled as a random variable whose logarithm is normally distributed with mean zero and a

variance 5-12dB depending on the environment [26].
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Measurement Plain Authenticated Encrypted

Time (mins) 95 93 86

Rate (Mbps) 4.016 4.034 4.061

Data (MB) 2861 2813 2622

Fig. 13. IPSec Costs

κ(v, v′) changes rapidly, statistical information must be used to determine the link rates and the transmission

powers. Specifically, the transmission powers and the routing can be determined assuming that κ(v, v′) =

E [κ(v, v′)] + 2
√

Var [κ(v, v′)], as with a high probability, κ(v, v′) ≤ E [κ(v, v′)] + 2
√

Var [κ(v, v′)].

D. Trust Issues

We assume that members of a group trust one another and are willing to jointly route packets to save power

in the interest of the group as a whole. We assume that when groups agree to form a coalition, they trust one

another to use the fair coalition routing. There is related work [20] on how to detect cheating in which one or

more parties do not support their agreed routing rules. Nodes in a group can use security schemes to ensure

that they route for other nodes in the same group and in groups that are participating in the coalition. Within

a group one can identify trusted members with public key certificates and thereafter establish a symmetric

key for authenticating individual packets. Different groups can be authenticated via third party public key

repository. This can prevent nodes from masquerading as nodes of some other group that is already a part of

an active coalition. This leads to a natural question as to what is the cost incurred to enforce group routing.

We tested whether this incurs significant additional power if it is done with IPSec tunnels [16] between

neighboring nodes. To get an idea of the processing overhead, we let a Dell L400 laptop running Windows

2000 generate constant bit rate UDP traffic over an 802.11b network. The payload rate was fixed at 4 Mbps.

For various security parameters, we measured the time for the laptop to die down∗∗. Fig. 13 shows the results
∗∗Before each experiment, the laptop was charged fully from a completely dead battery to nullify battery memory and hysteresis, and was

subsequently switched off for 2 hours to eliminate heating-related discrepancies.
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for three cases averaged over five runs of the experiment. The first column shows that the laptop battery died

in 95 minutes after sending 2861MB of data in plaintext. Header overhead accounts for the rate of 4.016

Mbps to send 4 Mbps of payload. Authentication used null-encrypted ESP [15] with SHA1 for message

authentication codes; encryption used ESP with SHA1 and 3DES. Encryption has a significant effect on

power, but it is not really needed to enforce group routing. We can assume that nodes encrypt end-to-end

and do not need hop-by-hop encryption. Hence it is possible to enforce group routing efficiently with only

modest power costs by using authentication with null encryption. Thus, it is clearly worthwhile to use group

routing.

IPSec is a sufficiently efficient enforcement mechanism when the number of nodes is less than 50. This is

because each node is likely to route to only a few others. Thus about 50-100 tunnels are required and these

can all use null encryption. There are techniques that work efficiently for larger groups (see, for example, the

IETF documents from the Multicast Security working group, msec) but these seem unnecessary if the nodes

are laptops. For sensor networks, a more specialized security protocol may be necessary. A comprehensive

design of security mechanisms is beyond the focus of this paper.

VII. CONCLUSIONS

We have studied the problem of forming coalitions between groups of nodes with the intent of saving

power. We found that an application of max-min fair techniques to this problem yields an efficient and

balanced approach which we call fair coalition routing. We developed theory and algorithms for fair coalition

routing. We have carried out a range of simulations that demonstrate that fair coalition routing is practical

and beneficial in common cases.
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APPENDIX

Proof of Theorem 1: Consider two possible coalition routings between A and B. Let P a
~r1

and P b
~r1

be the

powers expended for routing ~r1 by groups A and B respectively, and P a
~r2

and P b
~r2

similarly for routing ~r2.

The benefits vector for routing ~r1 is (P a
opt − P a

~r1
, P b

opt − P b
~r1
) and for routing ~r2 is (P a

opt − P a
~r2
, P b

opt − P b
~r2
).

Consider a new routing that sends α fraction of traffic through routing ~r1 and 1− α fraction through routing

~r2. Since P~r is a linear function of ~r, we have the new power expenditure as α∗P a
~r1

+(1−α)∗P a
~r2

for group

A and α ∗ P b
~r1

+ (1− α) ∗ P b
~r2

for group B. The benefit vector for the new routing is then,

(P a
opt − (α ∗ P a

~r1
+ (1− α) ∗ P a

~r2
), P b

opt − (α ∗ P b
~r1

+ (1− α) ∗ P b
~r2
)),

which is, α ∗ (P a
opt − P a

~r1
, P b

opt − P b
~r1
) + (1− α) ∗ (P a

opt − P a
~r2
, P b

opt − P b
~r2
).

Hence the set of feasible benefit vectors is convex. ¦
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Proof for Proposition 1: Let ~r be a fair coalition routing, and min(Ba
~r , B

b
~r) < 0. Consider the routing

~r1 in which each group uses its group optimal. Then Ba
~r1

= 0 Bb
~r1

= 0, and min(Ba
~r , B

b
~r) < min(Ba

~r1
, Bb

~r1
).

Thus from the minimum component property ~r is not a fair coalition routing which is a contradiction. ¦

Proof for Theorem 2: Let (Ba
~r , B

b
~r) be the benefit vector under fair coalition routing ~r. If the minimum

is greater that t, then all other components are also greater than t. Hence ~r will result in a useful coalition.

Now we prove the ’only if’ condition using contradiction. Let the minimum component of max-min fair

benefit vector be less that t. Also suppose a routing ~r1 exists, such that min(Ba
~r1
, Bb

~r1
) ≥ t. Thus ~r is not a

fair coalition routing from the minimum component property. This is a contradiction. ¦

Proof for Theorem 3: Consider two groups A and B. Let ~r be a fair coalition routing. Suppose that

Ba
~r > Bb

~r . From Proposition 1 Ba
~r ≥ 0 and Bb

~r ≥ 0. Thus Ba
~r > 0. Since A benefits from the coalition it

sends traffic to at least one node in B. Now consider a coalition routing ~r∗ in which group A sends α fraction

of traffic through the joint routing ~r and 1 − α fraction of traffic through its group optimal, 0 < α < 1. B

routes as in ~r. Clearly ~r∗ is feasible. Now consider the links (v, v′) from group A nodes (v ∈ V a) to group

B nodes (v ∈ V b) in the joint routing. Since in the optimal routing nodes in A do not route their traffic

through the nodes in B, for each such (v, v′),
∑

i r
∗(v, v′) ≤ ∑

i r(v, v′) and for some v ∈ V a and v′ ∈ V b,

∑
i r
∗(v, v′) <

∑
i r(v, v′). Hence J b

~r∗ < J b
~r . Now, Bb

~r = P b
opt − J b

~r and Bb
~r∗ = P b

opt − J b
~r∗ . Since J b

~r∗ < J b
~r ,

Bb
~r∗ > Bb

~r for any α ∈ (0, 1). Since Ba
~r > Bb

~r , when α is sufficiently close to 1, Ba
~r∗ > Bb

~r∗, but then ~r does

not satisfy the minimum component property. This is a contradiction. ¦

We will use the following concepts in proving Theorem 5.

Consider a convex and continuous function f defined on a convex set F ⊆ Rk. Then a vector w0 ∈ Rk is

called a subgradient of f at a point y0 ∈ F if it satisfies f(y)− f(y0) ≥ (w0, y − y0) ∀y ∈ F . An interior

point y0 of F is the minimum point of f in F if and only if ~0 belongs to the set of subgradients at y0.

Proof for Theorem 5: Let g(v) =
∑

i(
∑

v′ ri(v, v′) − Oi(v) − ∑
v′′ ri(v

′′, v)) and z(v) = K1 +

K
∑

i

∑
v′∈V a∪V b∪{ei} ri(v, v′)d(v, v′)4 −B(v).

P: Maximize : F (~r, Z) = Z − γs(~r, Z) where s(~r, Z) =
∑

v∈V a∪V b(|g(v)| + max(0, z(v))) + max(0, Z −



33

Ba
~r ) + max(0, Z − Bb

~r). Let ~Q ≡ (~r, Z). Let ~Q∗ ≡ (~r∗, Z∗) be the optimal solution and U∗ be the optimal

value of F (~r, Z). We prove in two steps. In the first step, we prove that P has the same solution as FC for

γ > 1. In the second step, we prove that the routing obtained by the iterative approach converges to the

optimal solution of P, i.e., limn→∞ ||~rn − ~r∗|| = 0 where ~rn is the routing obtained in the nth iteration, and

|| ~X|| denotes the norm of ~X , i.e., if X ≡ (x1, x2 . . .) then || ~X|| =
√

x2
1 + x2

2 . . .. The result follows.

Step 1: Select ~Q such that s( ~Q) > 0. For such ~Q, there always exists a component of the subgradient that

is less than or equal to 1− γ and 1− γ is less than 0. Therefore ~0 does not belong to the set of subgradients.

Hence ~Q cannot be an optimal solution for P . Therefore all solutions of P involve ~Q for which s( ~Q) = 0.

Also for s( ~Q) = 0 the value of the objective function of FC and P are equal. Therefore for γ > 1, any

optimal solution of P is an optimal solution of FC.

Step 2: Choose an arbitrary κ > 0. Let κ′ = κ/2. For any ε′ > 0 define Dε′ as Dε′ = { ~Q : F ( ~Q) ≥ U∗−ε′}.

From Theorem 27.2 [27] it follows that there exists an ε = ε(κ′) > 0 such that

Dε ⊂ { ~Q : || ~Q− ~Q∗|| ≤ κ′}. (5)

Consider n for which ~Qn 6∈ Dε. Therefore F ( ~Qn) < U∗ − ε.

The update equations at the nodes of group A and B can be compactly stated as ~Qn+1(v, v′) = [ ~Qn(v, v′)+

δn ~νn]+, where ~νn is the subgradient of F (~r, Z). It follows from the definition of subgradients that ( ~νn, ~Qn−
~Q∗) ≤ F ( ~Qn)−U∗ < −ε. Now, || ~νn|| ≤ T, where T =

√
2γ2(1 + L4)2N2 + (2γ + 1)2, L is the maximum

distance between any two nodes and N is the total number of nodes in the network.

|| ~Qn+1 − ~Q∗||2 = ||[ ~Qn + δn ~νn]+ − ~Q∗||2

≤ || ~Qn + δn ~νn − ~Q∗||2

= || ~Qn − ~Q∗||2 + δ2
n|| ~νn||2 + 2δn( ~νn, ~Qn − ~Q∗)

< || ~Qn − ~Q∗||2 + T 2δ2
n − 2εδn.

Since δn → 0, δn ≤ ε/T 2 when n is sufficiently large. For all such n,

|| ~Qn+1 − ~Q∗||2 < || ~Qn − ~Q∗||2 − εδn. (6)
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Suppose there exists a N ′
ε < ∞ such that ~Qn 6∈ Dε for all n ≥ N ′

ε. Therefore, there exists Nε ≥ N ′
ε such

that (6) holds for all n ≥ Nε. Adding the inequalities obtained from (6) for n = Nε to Nε + m we obtain

|| ~QNε+m+1 − ~Q∗||2 < || ~QNε − ~Q∗||2 − ε
Nε+m∑

n=Nε

δn,

which implies that || ~QNε+m+1 − ~Q∗|| → −∞ as m → ∞ since
∑∞

1 δn = ∞. This is not possible since

|| ~QNε+m+1 − ~Q∗|| ≥ 0. Hence the supposition was incorrect. Hence there exists a sequence n1,ε < n2,ε <

. . . such that ~Qni,ε
∈ Dε for all i = 1, 2, . . .. Let i1 = n1,ε. Since δn → 0, there exists i2 s.t. δn ≤

min(κ′/T, ε/T 2), ∀ n ≥ ni2,ε. Let i′ = max(i1, i2). Consider the following cases.

Case 1: n = nj,ε for some j ≥ i′. Here ~Qn ∈ Dε and from (5) it follows that || ~Qn − ~Q∗|| ≤ κ′ < κ.

Case 2: n = nj,ε + 1 for some j ≥ i′. Then ~Qn = ~Qnj,ε+1 = [ ~Qnj,ε
+ δnj,ε

~νnj,ε
]+. Thus || ~Qn − ~Qnj,ε

|| =

||[ ~Qnj,ε
+δnj,ε

~νnj,ε
]+− ~Qnj,ε

|| ≤ || ~Qnj,ε
+δnj,ε

~νnj,ε
− ~Qnj,ε

|| = δnj,ε
||~νnj,ε

|| ≤ Uδnj,ε
≤ κ′. From the above and

since || ~Qnj,ε
− ~Q∗|| ≤ κ′ (Case 1) we get || ~Qn− ~Q∗|| ≤ || ~Qnj,ε

− ~Q∗||+ || ~Qn− ~Qnj,ε
|| ≤ κ′+κ′ = 2κ′ = κ.

Case 3: nj,ε + 1 < n < nj+1,ε for some j ≥ i′. Also ~Qn′ 6∈ Dε∀nj,ε < n′ < nj+1,ε. From (6), it follows

that || ~Qn′+1 − ~Q∗|| < || ~Qn′ − ~Q∗||. Thus, || ~Qn − ~Q∗|| < || ~Qnj,ε+1 − ~Q∗||. Since || ~Qnj,ε+1 − ~Q∗|| ≤ κ (Case

2), || ~Qn − ~Q∗|| ≤ κ.

From cases 1,2 and 3, it follows that || ~Qn− ~Q∗|| ≤ κ ∀n ≥ ni′,ε. Since κ is arbitrary, limn→∞ || ~Qn− ~Q∗|| =

0 and since ~Q ≡ (~r, Z) we have limn→∞ ||~rn − ~r∗|| = 0. ¦

Proof for Proposition 2: Consider the joint routing ~r1 under which (a) A and B jointly route to the exit

points without using any node in C, and both groups have positive benefits and (b) C routes optimally to

the exit point without using nodes of groups A and B. Under ~r1, group C has zero benefit, and groups A

and B have positive benefits. Such ~r1 exists because the coalition between A and B is mutually beneficial.

Now, using ~r1 we construct a coalition routing ~r that will make benefits of all three groups positive. Since

the coalition between B and C is mutually beneficial, at least one node in C can send traffic through at least

one node in B. Let b1 and c1 be such a node pair. Let c1 send α fraction of its traffic to b1 where α > 0

and 1 − α fraction of its traffic using its group optimal. Now for any α > 0 under ~r the benefit of group C

will be greater than that under ~r1 (as nodes in C route less traffic under ~r than under ~r1), and hence positive.
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Also, the benefits of groups A and B under ~r is less than that under ~r1, as nodes in groups A and B route

more traffic under ~r than ~r1. But, α can be suitably reduced to keep the benefits of groups A and B positive.

Hence a routing ~r exists under which all three groups have a positive benefit.

Proof for Theorem 6: Consider a feasible benefit vector ~B~r such that there exists subsets y1, y2 . . . yk

such that for k ≤ n, y1 ∪ . . . yk = {1 . . . n} and the following conditions hold.

1) Bi
~r = Bj

~r if i, j ∈ ym for each m ∈ {1 . . . k}.

2) Bi
~r > Bj

~r if i ∈ ym and j ∈ ym−1 for each m ∈ {2 . . . k} .

3) For any i ∈ ym while maintaining feasibility Bi
~r cannot be increased without reducing Bj

~r for some

j ∈ y1 ∪ . . . ym.

Then ~B~r is a max-min fair benefit vector.

Each stage of the linear program has a feasible solution. Let the program yield a routing ~r∗ and terminate

at stage k. Clearly ~B ~r∗ is feasible. Note that e1 ∪ . . . ∪ ek = {1 . . . n}. We will show that ~B ~r∗ satisfies

the above properties with y1 = e1, . . . , yk = ek. Note that Bi
~r∗ = Z∗

m ∀ i ∈ em and 1 ≤ m ≤ k. Also

Z∗
1 < Z∗

2 . . . < Z∗
k . Thus properties 1 and 2 hold. Let property3 not hold. Then there exists a routing ~r1 such

that Bi
~r∗ > Z∗

m for some i ∈ em and Bj
~r1
≥ Bj

~r∗ for each j ∈ {e1 ∪ . . . ∪ em}.

Case A: Let Bj
~r1
≥ Z∗

m for each j ∈ {em+1 ∪ . . .∪ ek}. But then ~r1 is a feasible solution of a substage of

stage m and therefore i 6∈ em.

Case B: Let Bj
~r1

< Z∗
m for some j ∈ {em+1∪. . .∪ek}. Then we have two feasible benefit vectors ~B~r1 and

~B ~r∗ such that Bj
~r1
≥ Bj

~r∗ for each j ∈ {e1 ∪ . . . em}, Bi
~r1

> Z∗
m and Bj

~r∗ > Z∗
m for each j ∈ {em+1 ∪ . . . ek}.

Let ~A(α) = α ~B ~r∗ + (1− α) ~B~r1 for 0 < α < 1. Now, from Theorem 1, ~A(α) is a feasible benefit vector.

For each α > 0, Aj(α) ≥ Bj
~r∗ for each j ∈ {e1 ∪ . . . em} and Ai(α) > Z∗

m. For α close to 1, Aj(α) > Z∗
m

for each j ∈ {em+1 ∪ . . . ek}. Let α0 be one such α. Then like in Case A, ~A(α0) is a feasible solution of a

substage of stage m and i 6∈ em. This is a contradiction and thus property (c) also holds. ¦


