Design of fault detection filters for periodic systems
A. Varga

Abstract—We propose a numerically reliable computational  periodic fault detectors directly in a minimal periodic state-
approach to des_ign fault detection filters for_periodic systems. space representation. The proposed approach (see Section
This approach is based on a new numerically stable algo- ) is 5 generalization of the method proposed by the author
rithm to compute least order annihilators without explicitly . . . .
building time-invariant lifted system representations. The main 'n_[8] _and involves, as, ma'n computatlc_)nal St.ep: the deter-
computation in this algorithm is the orthogonal reduction of ~ Mination of a left annihilator of a certain periodic system.
a periodic matrix pair to a periodic Kronecker-like form,  For this computation we developed a numerically stable
from which the periodic realization of the detector is directly  algorithm to compute left annihilators for periodic systems
obtained. (see Section Ill). The main computation in this algorithm

is the orthogonal reduction of a periodic matrix pair to
|. INTRODUCTION a Kronecker-like form, which allows to obtain, practically

; - thout any additional computation, a left annihilator. A sta-
We develop a design procedure of residual generato L Lo : o
P gn p g p%e left annihilator can be obtained by solving additionally

for periodic systems which provide two basic functions: (1 iodic stabilizat | : t brobl
generate zero residuals in the fault-free case; (2) generzﬁe{)/sno IIC sg ||z|a lon or p(t) € assf|gnmen pro elmt ts t
nonzero residuals when any fault occurs in the system. {é‘he ¢ aiso develop €asy to periorm numerical 1ests 1o

more advanced functionality, like fault isolation (i.e., exac Ck'the existence of a sqluuon, and "?d'cat.e a possible
localization of faults) can be often achieved by designin pproach to solve the more involved fault isolation problem

a bank of such fault detectors [1]. The solution of th or periodic systems. Finally we djscuss shortly a possib!e
periodic fault detection problem has its main applicatior"f‘pprmJlCh based on frequency-weighted balanced truncation

in solving multirate fault detection problems in the moslto reduce th_e order of the_ detectors to_ allow an efficient
general setting. implementation and operation of the residual generator.

. . . Notation. For an N-periodic matrixX; we use system-
The fault detection problem for linear multirate sampled- . ally the script notation X' :— diag (Xy, X Xn)
data systems has been addressed recently by Fadali iélfich associates the block-d}agonj malt’iti’xtz thé cyjzli,c
and by Zhanget al. [3]. The proposed solutions rely on . .
L S ; . . . . matrix sequenceX;, i =1,..., N.

explicitly building time-invariant lifted representations of
the u_nderlying multirate systems find employing design 1. PERIODIC FAULT DETECTION PROBLEMS
techniques developed for standard linear systems. AIthoughWe consider periodic time-varying linear discrete-time
such an approach can be easily extended to the geneé%tems of the form
periodic case, still there are several difficulties which can
impede his usage for systems with high orders or largByz(k + 1) = Ayx(k) + Biu(k) + Bld(k) +B}:f(k)
periods. For example, building a lifted representation using y(k)=Crz(k) + D¥u(k) + Ded(k) + D,{f(k)
the lifting technique of [4] involves explicitly forming
many matrix products, thus this approach is complete

@)

I here z(k) € R™ is the system state vector with time-
unappropriate from numerical point of view. On the othe arying dimensiongy (k) is thep-dimensional measurement

hand, using the lifting technique proposed in [5] requireQUtlet vector,u(k) is the m,-dimensional plant control

manipulating large sparse matrices of a descriptor syste'HPUt vector,f (k) is them,-dimensional fault signal vector,

representation, which leads to computationally unacceptab"ilé]Ol d(k) is the md-dlmensmn_al d|sturban_ce _vec’For. WE.E
costs. Even the final step of turning the designed lifte ssume that the system matn_ces are periodic with period
representation of the detector into a periodic state spa > 1 a_n((ijkfar? sguare.and mvt()alrtlbIl;angrP: #’ n 'I.’N'
representation (e.g., by using the algorithm of [6]) can lea e periodic fault detection problenf ) for linear

to numerical difficulties in the case of high order systemsperiOdiC discrete-time system can be formulated as follows:
Recently, the fault detection problem withi. -optimal Periodic Fault Detection ProblemDetermine a periodic

disturbance attenuation has been considered for periO(#llr&ear residual generator (or detector) having the general

discrete-time systems [7] and a solution approach has beeh R R ,

proposed without employing lifting. Avoiding the above z(k +1) = Fp2(k) +H;i:y(k) + Hiu(k) @
mentioned difficulties related to lifting was also our main r(k) = Myz(k) + Liy(k) + Liu(k)
motivation to investigate an alternative approach to desig|,ch that fork > 0
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where for both (i) and (ii) we assume zero initial conditions Assume that the linear residual generator (2) has a
for the state variables (i.ex,(0) = 0 andz(0) = 0). lifted representation with the corresponding TFN(z).

The condition (iz) is also known as theweak fault Transcribing algebraically the conditidi), we get
detectabilitycondition (see [9]), and covers the most general B
case of non-zero residual signals in the faulty case, regard- R(2)G(2) =0 ©)
less when they asymptotically vanish or not. However, igyhere
practice we are often interested to obtain non-zero steady G(z) = { Gu(z) Ga(2) } @
state values of residual signals, when abrupt, but constant Inm, O ’

fault signals enter the system. The corresponding notion gfiie the fault detectability conditiofii) requires
strong fault detectabilitghus requires

~(9) o ,
We call the corresponding problem tperiodic strong fault where o a®
detection problem(PSFDP). By solving PSFDP we solve ng) (z)=| “f (2)
also PFDP, but the converse is evidently not true. 0

To derive algebraic conditions for the solution of PFDPrrom (6) it follows that for the existence of a detector it is
we reformulate the detector design problem in terms Qecessary that the number of independent measurements is
the transfer-function matrix(TFM) corresponding to the |arger than the number of independent disturbances. More-
associatecstacked lifted representatioof [5], which uses gyer, from (8) follows that each fault must act independently
the input-state-output behavior of the system over timgom the disturbances on the system.

intervals of lengthV, rather then 1. The lifted input, output A necessary and sufficient condition for the existence of

and state vectors are defined as a solution to the PFDF is the following one [10]:
a(h) = [uf'(hN+1)---uT(hN + N)|T, Theorem 1:For the periodic system (1) the PFDP is
d(h) = [dT(hN +1)---dT(hN + N)]T, solvable if and only if
f(h) = [fT(AN +1)--- fT(AN + N)]T, rank[G(z) G (2)] > rankG(z), i=1,....ms; (9)
gh) = [P (N + 1)y (AN + NI, ! ’
z(h) = [@T(hN+1)---2T(hN + N)|T. An equivalent form of (9) which appears in the works of
and the corresponding lifted system can be represented %S:‘/veral authors (see [11] and references therein) is
a time-invariant descriptor system of the form (notice the rank| G 4(z) Ggf)(z)] > rankGg(z), i=1,...,m; (10)

usage of script notation
g P ) In what follows, we prefer to use (9) as basic solvability

E%(h—i—l)zﬁi(h)JrB“”vj(h)+Bdcz(h)+l’>’ff~(h) 3) condition instead of (10) because the proposed compu-
y(h) =Cz(h) + D*u(h) + Dd(h) + D’ f(h) tational algorithm can be easily interpreted in terms of

where thepole pencilcorresponding to the periodic aircondition ).
P P P 9 P P A necessary and sufficient condition for the existence of

(Ax, Ek) a solution to the PSFDF is:
A, —-E; O - O ] Theorem 2:For the periodic system (1) the PSFDP is
0 — . . solvable if and only if for eacli =1,...,my
L S ' (@) rank[G(z) G (2)] > rankG(z)
A—z2E= : KT 4) ) i
- —Eno O (b) [G(z) G} (2)] andG(z) have the same zeros in
0 C Ava —Bva Pr(z)o? 1.Additionall to the condition (9) we need to
| —2Exy O -~ O An - y 9)

show that there exists a detect®(z) which solves the
is regular. For the lifted system the TFMs,(z), G4(2), PSFDF provided the TFM from the fault to the residual

Gys(z) from the control, disturbance, and fault inputs,signaIR(z)G;‘)(z) has no zero in: = 1. SinceR(z) can

respectively, to the system output are be always assimilated with a nullspace basiig{_)l()fz), this

_ = N\-lpe z condition is equivalent to require thaG(z) G}’ (z)] has

Ge(2) =C(zB - A)7B"+D ©) no additional zeros in = 1 as thoseaof(G()z).fTﬁle) ]proof

wherez stays foru, d or f. Let denote b)G?)(z) the TFM  of this assertion follows from th®emark after the proof

of the lifted system corresponding to thi¢h fault defined of Theorem 4 (see Section IV). L
as Designing a residual filter which solves the PFDP/PSFDP
ng)(z) - C(zE — g)—lgfyi 4+ pli by constructing explicitly the lifted representations is in

. . principe straightforward with the help of methods developed
whereB}:" and D,f" are thei-th columns of matrice§3,f for standard systems (see for example [12] or [13]). Since
andD};, respectively. R(z) must be a left annihilator o7(z), one possibility



to determineR(z) is to compute first a left minimal basis II; S(z)IIy
N(z) for the left nullspaceof G(z), and then to build a

Sy -1y O 0

rational and stable detector #&z) = X (z)N(z), where ; ! _

: ; O S —Th o
X (z) is chosen such thaR(z) is stable and the detector ~ T .
fulfills the fault detectability condition(ii) or (ii’). The S(z) = : o : (12)
main difficulty with this approach is that we must ensure for O Sna =T
the resultingR(z) to correspond to a lifted causal periodic —2Ty O -+ O Sy
system which must be realizable in the form (2). Thereforg,nere for k =1,...,N

constructing N(z) and choosingX (z) to correspond to

causal periodic realizations, with the additional constraint ko Tk
that the conditions (8) are fulfilled, appears to be non-trivial. Sk=| Cx Dy Dy
Moreover, even in the case when this approach is applicable, 0 Im, O

severe numerical difficulties are to be expected for systemsfollows that if Y (z) is a left nullspace basis faf(z),

E, O O
0O 00| @13)
0 00

A, BY B
; Tk:

with large periods and/or orders. then N (z) results as
In the next sections, we show that an equivalent ap- ~ o~
proach is possible for periodic systems without resorting to N(z) =Y ()W
manipulate explicitly lifted representations. The proposed — o
. . . _WhereW,, =
computational approach operates directly on the matrices Iptm,

of the original periodic state-space description (1) and Let @, and Z; be orthogonalN-periodic matrices de-
computes left annihilators directly in periodic minimaltermined using the algorithm proposed in [15] to reduce
state-space representations. All subsequent computationghe N-periodic pair (Sk,T) to the Kronecker-like form
determine a stable detector or to satisfy the detectabilityss,Tx) := (QrSkZr, QuTrZr+1), Where

constraints are performed on this representation and can be Bl | AT « "
done using reliable numerical techniques based on state- _ 0|0 A™ «
space computations as well. S =1 ol o 5 AL (14)
(0] \ o o0 (!
[1l. COMPUTATION OF LEFT ANNIHILATORS O|E =« %
. . . = O| 0 Ef «
In this section we propose a computational approach to F=1 ol o O E! (15)
determine a stable left annihilator for the periodic system 0 ‘ 0 0 Ok
Epa(k + 1) = Az (k) + Biu(k) + Bd(k) where: (a) the periodic systetf€”, A", B", *,*) is com-

k C D Dé 11) Ppletely reachable and” is invertible; (b) the periodic
{ZE,{H = [ Ok} z(k)+ L y ] u(k)+{ Ok} d(k) () system (€1, AL, x,C!, ) is completely observable ang'
is invertible; (c) the pole pencil (4) corresponding to the
corresponding to the lifted TFMZ(z) in (7). In terms of periodic pair(£;, A;*) is regular. Note that the triples
lited representations, this amounts to determine a periodi€”, A", B") and (&', A',C') specify the right and left
system (e.g., of the form (2)), whose lifted TFM(z) is a Kronecker structures of(z), respectively, while the pair
proper rational matrix whose columns represent a basis f6f"“’,.A"*/) specifies the finite and infinite zero structure
the left nullspace ofi(2) (i.e., N(2)G(z) = 0). of S(z). _ _ o
Our method exploits the simple fact [14] that(z) is a I_3y Explfoﬂmg t_he fme_structure_of the resultl_ng~per|od|c
left nullspace basis ofi(z) if and only if [M(z) | N(z)] Par (S, T%), it is possible to bring the pencS(z)2
is a left nullspace basis of the associated system matrix USiNg appropriate permutation matricélg andTl, in the
form S(z) = I305(z) 211y

m

A—zE B B Br|S(z)  x x
S(Z) = C DY Dd — _ @) O Sreg(z) "
O  Inm. O SE=10ol 0o o s (16)
o] o 0 Cl
Thus, to computeV(z) we can determine equivalently a h fore — I
left nullspace basi¥"(z) for S(z) and then obtainV(z) as Where, fore =, Tej’x ' I o
T _po
o O AT —EZ --. O
N(z)=Y(z
&) =¥ ){ IN(ptma) } S = o
0 A%y B

Consider now the permuted system matﬁa)(z) = —zE%, O --- O E%



. BT'ST'(Z) * : B Sr(z) * * gT
By construction 0 0 Smg(z)] has full row rank, ex o o Sres () i e
cepting possibly a finite set of values ofi.e., the invariant O 1) O Si(z) | B
l
zeros ofS(z)) and SC(ZZ) has full column rank. Thus, we o 0 o ct | D
can choose a left nullspadé(z) of S(z) in the form has full row rank. Therefore, we have that the subpencil

_ [S'(z) B'] has full row rank as well, and according to
Y(z)=[ 0 O —C[S'"(»)]" I] (17)  [5], the periodic system(&!, A, BL,C!, D) is completely
reachable. [ ]
The resulted left annihilator in (19) is in general not
N(z) = ?(Z)H3QW: —C'[S'(2)]'B' + D! (18) stable (i.e., some characteristic multipliers of the periodic
B _ matrix [E!]71Al may have moduli greater or equal to
where B' and D' result from a row partition compatible gne). To compute a stable left annihilator, we can perform

Then the nullspace aff(z) is

with (16) of . an additional transformation on the reduced periodic pair
B’ (Sk, Tk) using the transformation matri&, of the form
— Breg
HS QW = Bl
Dl
Partition now the columns aB. and D! conformably to
the dimensions ofi(k) andy(k), as where the identity matrices have dimensions compatible
Bl = [ HY H! ] , D.= [ LY Lt } with the block row structure of the reduced matricgsin

(14). Then the transformed pa(i@k, fk) = (UpSk, UpTy)
Then, a periodic realization falN (z) can be obtained by is given by
inspection as

BilAL *
EE(k+1) = Az(k)+ Hiy(k) + Hyu(k) -~ |oloar _
; 1 = k T,
g(k) = CLz(k)+ Liy(k) + Liu(k) (19) Sy 00 O AL+KCL| T, =T,  (20)

Si . . . - . 0|0 O C}
ince&’ is nonsingular, this periodic descriptor system can
be easily reduced to a standard one as in (2). Note that, thisThe periodic system representing the corresponding sta-
detector is obtained in general with time-varying state andle annihilator is defined by
output vector dimensions. _ —_ —u —y
To determine the left annihilator (19), we performed E’ix(ki—l) B Aﬂ’”“{f““”ﬁk““ (21)
exclusively orthogonal transformations on the system ma- glk) = Ci@k) + Liu(k) + Lyy(k)
trices. We can easily prove that all computed matrices amghere

exact for a slightly perturbed original system. It follows that A, =AL+ K, CL
the algorithm to compute the left annihilatorngmerically FZ = H! + KL}
stable H, =H!+ KLY

Proposition 1: The annihilator (19) is minimal. To obtain annihilators with the poles (characteristic mul-

Proof. By construction, the  periodic systemti liers) lying in a "good” domainC, of the complex
(&L, AL B CL DY) is completely observable, and thus we P ying 9 g P

have to prove only the reachability of this system. Consideorl"’“.]e _(e.g., |_qter|pr of the unit c.|rcle), we can solve a
the extended system pencil periodic stabilization or pole assignment problem. Note

that the poles of the detector are the eigenvalues of the
A-:E B* Bl O O matrix (Ely)~ (Al + KnCy) - (B) 7 (A} + K. CY).
C D DT In, 19) Therefore, by choosing appropriaf€; all poles can be
O Inm, O | O Inn, moved to arbitrary locations i€,. This is guaranteed by
This matrix has full row rank, excepting those values of

the observability of the periodic systeffi!, A’, x,C!, ).
z which belong to the unreachable eigenvalues of the IV. DETECTOR DESIGN ISSUES
pair (A — zE,[B* B]) (called also thenput decoupling A, Checking fault detectability
zerosof the periodic system [16]). Since these eigenvalues
appears in the subpendl..,(z) (being part of the invariant
zeros ofS(z)), the subpencil formed from the the last two
block rows of the transformed extended pencil

Se(z) =

Until now we focussed on requirement (i) by providing
a new numerical algorithm for computing a stable left
annihilator of the extended system (11). To be useful as
a residual generator, the computed annihilator must also
I, 211y (0] satisfy the requirement (ii) to generate non-zero residual

115 Q1T Se (2) 0 IN(p+ma) - signals in the case of faults occuring in the system. This



requirement is implicitly contained in condition (9) for the Remark: The zeros of this system are the additional
existence of a solution of the PFDP. zeros to those of7(z) which result when forming the real-
We will show that condition (9) can be simply checkedization of [ G(z) C?‘Sf)(z)]. Therefore, the above condition
from the results obtained by reducing the matrices of thig equivalent to the conditions of Theorem 2. O
periodic pair(Sk,T}) to the Kronecker-like formsS, and To perform this check, we can compute the zeros of the
Ty in (14) and (15), respectively. For the resulting periodiperiodic system &, Al, Bf ¢, ¢!, Df%) using the algorithm
orthogonal transformation matrig,, we compute for each of [17]. In the case when the annihilator is stable (or has

column index; and fork=1,..., N been already stabilized), a simpler test is to evalﬂéfﬁ(l)
N (i.e., the steady state gain). This can be done using an
B,ﬁ’ N efficient algorithm to compute gains as that one of [18].
St = Qu Dl | = Bl B. Solving fault isolation problems
o 5}{7 Fault isolation requires a complete decoupling of faults

to ensure that each residual sigmglk) is influenced only
where the row partitioning of the rightmost matrix above isyy the corresponding faulf; (k). Thus theperiodic fault
compatible with the row partitioning af;; in (14). Using  detection and isolation probleiPFDIP) can be formulated
the row permutationil; used to getS(z) in (16), we obtain 35 follows:

Periodic Fault Detection and Isolation ProblenDeter-
mine a periodic linear residual generator having the general
form (2) such that
(1) r(k)=0Iif f(k) =0 (fault-free case);

(13) ri(k) #0if fi(k)#0,fori=1,...,my
The condition (9) for the existence of a solution to the PFDP  (fault isolability),

*

fi_ |
387" = B

Dl

can be expressed as follows: where for both (i) and (ii) we assume zero initial conditions
Theorem 3:For the periodic system (1) the PFDP isfor the state vectors.
solvable if and only if A possible approach to solve the PFDIP is to design a
o bank of m; detectors, each of form (2), such that each
B+ . . . .
S A0, i=1,...,my (22) detector is sensible only to one fault and insensible to the
Dl rest of faults. To achieve this goal we can formally redefine

Proof: For the detectolR(z) = Y (z) in (17), condi- the rest of faults as disturbances and solve a standard PFDP
tion (9) is equivalent to (8), which can be expressed as for each fault. In this way, the resulting bank of detectors
behaves as a fault detection and isolation filter which solves

the PFDIP.
ij}(z) =Y (2) gji = (! [Sl(z)]*lgf’wﬁf’i £0 To formalize this approach, let partition and permute the
S columns of B/ and D] compatibly as

. Bl =Bl B'] B]=[Bl"Bl"]
where Gg,’]?(z) is the lifted TFM from the fault signalf; i i ) ,
to the residual signat. Since the corresponding periodicWhereka a”(; Dy, are the i-th C?LUm“S Off Mmatri-
system realizatiorfc!, A, B/, C!, D/7) is completely ob- ces Bj, and Dy, respectively, andB;* and D" are
servable, the condition that'")(z) is nonzero is (22). m  the rest of columns in these matrices. Let denote by

_ _ G}”(z) and G;l)(z) the TFMs of the lifted systems cor-
To chgck the eX|s.tence of a detector, we ha_ve_to verify 0”%sponding to the periodic systerf& A, B/, C, DY) and
condition (22). Smce the_ orthogonal matr@ is alwa_y_s (Ig’A’ Bfﬁ’c7fo,f), respectively. Define
accumulated, this check involves practically no additiona _
computations and can be seen as part of the design proce- ~(i)(z) _ Ggf)(z) é@(z) _
dure. Similar checks can be used to define different fault f ’ f
isolation sche.mes (see for ex‘?m!o'e (41, 19D The PFDIP can be solved if each fault can be completely
Theorem 4:For the periodic system (1) the

. . : . decoupled from the rest of faults, and therefore we can state
PSFDP is solvable if and only if the periodic Sys’tem|mmediatel the following solvability condition:
(&, AL BN ¢l DSP) has no zeros i = 1. y 9 y '

Proof: A fault detector which solves the PSFDP Theorem 5:For the periodic system (1) the PFDIP is

ensures that = 1 is not a zero ofG(jJZ (z) (otherwise solvable if andfonly f for sach=1,...,my )

an asymptotically vanishing residual signal results for arank|[G(z) GY(2) G{(2)] > rank[ G(2) G{)(2)] (23)
constant nonzero fault signal). Equivalently, this conditioThis theorem is the TFM based equivalent formulation of
says thatz = 1 is not a zero of the periodic systemTheorem 3 in [19]. To check fault isolability, conditions
(&L, AL B CL DR, m  similar to (22) can be checked.




C. Computing approximate detectors VI. ACKNOWLEDGMENTS

The detectors have generically orders which are compa- The work of the author has been performed in the frame-
rable to the orders of the underlying applications. Besidegork of the Swedish Strategic Research Foundation Grant
exact order reduction (e.g., using covers based techniquédatrix Pencil Computations in Computer-Aided Control
[13]), it is possible to try to use reduced order detectoBystem Design: Theory, Algorithms and Software Tools”.
approximations computed via model reduction techniques.
Since the resulting truncation error can be exactly evalu-

ated. such reduced order detectors can be useful providéa J. Gertler,Fault Detection and Diagnosis in Engineering Systems
’ New York: Marcel Dekker, 1998.

a_ppropriate thresholds reflecting this error are _emp|0yed- 4‘2] M. S. Fadali and H. E. Emara-Shabaik, “Timely robust fault detection
simple way to reduce the order of a detector with the lifted  for multirate linear systemsjnt. J. Contro| vol. 75, pp. 305-313,

i i i 2002.
TFM R(z) is to determine a reduced order detector with the[3] P. Zhang, S. X. Ding, and G. Z. W. uand D. Z. Zhou, “Fault detection

lifted TFM R(z) by solving the frequency-weighted model for multirate sampled-data systems with time delayt’ J. Control

REFERENCES

reduction problem vol. 75, p. 14571471, 2002.
~ [4] R. A. Meyer and C. S. Burrus, “A unified analysis of multirate and
|(R(2) — R(2))G(2)|loc = min periodically time-varying digital filters,IEEE Trans. Circuits Syst.

vol. 22, pp. 162-168, 1975.

- o [5] O. M. Grasselli and S. Longhi, “Finite zero structure of linear
Note thatR(Z) has been deSIQned such tﬁ%(tz)G(z) =0, periodic discrete-time systemslht. J. Systems Scivol. 22, pp.

and therefore using:(z) as frequency weighting appears a  1785-1806, 1991.

natural choice to force thak(z)G(z) ~ 0. [6] A. Varga, “Computation of minimal periodic realizations of transfer-

T | th b g ti bl th function matrices,1EEE Trans. Automat. Contrplol. 46, pp. 146—
0 solve the above approximation problem, the square- 149, 2004.

root and balancing-free method for frequency-weighted7] P. zhang, S. X. Ding, G. Z. Wang, and D. H. Zhou, “Fault detection
balanced truncation [20] can be extended to periodic sys- for linear discrete-time periodic systems&toc. of IFAC Symp.

. . . . SAFEPROCESS 2003, Washington, D.C., UB¥03, pp. 247-252.
tems along the lines of the algorithm described in [21]'[8] A. Varga, “New computational approach for the design of fault

Interestingly, any such projection based approach will not = detection and isolation filters,” itdvances in Automatic Conttol

find the trivial global solutionf%(z) =0, but rather will try ser. The Kluwer International Series in Engineering and Computer
to find luti hich . t ,th iginal detect Science, M. Voicu, Ed., vol. 754. Kluwer Academic Publishers,
0 TINnd a solution wnicn approximates the original detector. 2003, pp. 367-381.

[9] J. Chen and R. J. PattoRobust Model-Based Fault Diagnosis for
V. CONCLUSIONS Dynamic Systems Kluwer Academic Publishers, London, 1999.
. . [10] X. Ding and P. M. Frank, “Frequency domain approach and threshold
We proposed a numerically sound computational ap-  selector for robust model-based fault detection and isolatirt.
proach to design fault detectors for periodic systems. The = of IFAC Symp. SAFEPROCESS 1991, Baden-Baden, Gerrhaay.

- - . . 1] M. Nyberg, “Criterions for detectability and strong detectability of
main computatlonal mgredlent of the proposed approa P] faults in linear systemsJht. J. Contro| vol. 75, pp. 490-501, 2002.

is the computation of a left periodic annihilator of a[12] E. Frisk and M. Nyberg, “A minimal polynomial basis solution to
certain periodic system. To compute such an annihilator a residual generation for fault diagnosis in linear systerafomatica

: : vol. 37, pp. 1417-1424, 2001.
numerically stable algorithm based on orthogonal StrUCtur[?3] A. Varga, “On computing least order fault detectors using rational

preserving pencil reduction has been proposed. The main nullspace basesProc. of IFAC Symp. SAFEPROCESS’2003, Wash-
advantage of our approach over other possible techniques is ington D.C, 2003.

. o . 4] G. Verghese, P. Van Dooren, and T. Kailath, “Properties of the system
that the computation of the annihilator can entirely be donlé matrix of a generalized state-space systemt” J. Contro| vol. 30,

by manipulating state space matrices of the original periodic  pp. 235-243, 1979.

system (instead manipulating those of lifted time-invarianf5] A. Varga, “CO;nputation of Kronecker-llike forms of periodic matrix
. e . . . . pairs,” Proc. of MTNS'04, Leuven, Belgiyra004.

mode!s)._ The. r_esultmg annihilator is optamed directly iNy6] — “Computation of generalized inverses of periodic systems.”

a periodic minimal system representation. The proposed " proc. of CDC'04, Paradise Island, Bahamaz004.

approach is also applicable to descriptor periodic systeniy] —— “Stronly stable algorithms for computing periodic system

: : zeros,”Proc. of CDC’2003, Maui, Hawaji2003.
with smgular or even reCtangméEk" [18] ——, “Computation of transfer functions matrices of periodic sys-

An important problem which has not been addressed ' temsInt. J. Control vol. 76, pp. 1712—1723, 2003.
is the computation of least order detectors. We believid® M. HOl(J:and 'l°- CI- Mgef' “Azgo"gzgonz%%gce about FDI observers;’
. . . Int. J. Contro| vol. 76, pp. 295-298, .
tha’F thIS problem can b_e_ tackled u5|_ng extensions t_O tr[§0] A. Varga and B. D. O. Anderson, “Accuracy-enhancing methods
periodic case of the minimal dynamic covers techniques = for balancing-related frequency-weighted model and controller re-
employed in [13]. The computational problem of deter- 1 iu‘\i}'ony"ﬁgtﬂma“c(?tvo'- 3?; Pp. 9;9|—9%7' ?003} odic Svstems.”
.. .. . . varga, balanced truncation model reauction of periodic systems,
mining minimal order dynamic covers for standard stat& Proc. CDC'2000, Sydney, Australi2000, pp. 2379-2384.
space systems has been recently addressed in [22]. Thg ——, “Reliable algorithms for computing minimal dynamic covers”
proposed computational algorithm is essentially a modified  Proc. ‘9,\“1 CDQ'ZOI?&tM;U" ﬁavvtar’l"z‘?%-t dard controllability f
. T . 3 _—, umerically stable algorithnm T1or stanaara controllaniiity rorm
staircase reachability form computation as that proposed Ii determination,Electron. Lett, vol. 17, pp. 7475, 1981.
[23]. A similar algorithm for periodic systems has beer24] —— “Computation of Kalman decompositions of periodic systems,”
proposed recently [24], and this algorithm could serve European Journal of Controlol. 10, 2004.
as basis to develop a similar cover design algorithm for

periodic systems.



