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Abstract— We propose a numerically reliable computational
approach to design fault detection filters for periodic systems.
This approach is based on a new numerically stable algo-
rithm to compute least order annihilators without explicitly
building time-invariant lifted system representations. The main
computation in this algorithm is the orthogonal reduction of
a periodic matrix pair to a periodic Kronecker-like form,
from which the periodic realization of the detector is directly
obtained.

I. I NTRODUCTION

We develop a design procedure of residual generators
for periodic systems which provide two basic functions: (1)
generate zero residuals in the fault-free case; (2) generate
nonzero residuals when any fault occurs in the system. A
more advanced functionality, like fault isolation (i.e., exact
localization of faults) can be often achieved by designing
a bank of such fault detectors [1]. The solution of the
periodic fault detection problem has its main application
in solving multirate fault detection problems in the most
general setting.

The fault detection problem for linear multirate sampled-
data systems has been addressed recently by Fadali [2]
and by Zhanget al. [3]. The proposed solutions rely on
explicitly building time-invariant lifted representations of
the underlying multirate systems and employing design
techniques developed for standard linear systems. Although
such an approach can be easily extended to the general
periodic case, still there are several difficulties which can
impede his usage for systems with high orders or large
periods. For example, building a lifted representation using
the lifting technique of [4] involves explicitly forming
many matrix products, thus this approach is completely
unappropriate from numerical point of view. On the other
hand, using the lifting technique proposed in [5] requires
manipulating large sparse matrices of a descriptor system
representation, which leads to computationally unacceptable
costs. Even the final step of turning the designed lifted
representation of the detector into a periodic state space
representation (e.g., by using the algorithm of [6]) can lead
to numerical difficulties in the case of high order systems.

Recently, the fault detection problem withH∞-optimal
disturbance attenuation has been considered for periodic
discrete-time systems [7] and a solution approach has been
proposed without employing lifting. Avoiding the above
mentioned difficulties related to lifting was also our main
motivation to investigate an alternative approach to design
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periodic fault detectors directly in a minimal periodic state-
space representation. The proposed approach (see Section
II) is a generalization of the method proposed by the author
in [8] and involves, as main computational step, the deter-
mination of a left annihilator of a certain periodic system.
For this computation we developed a numerically stable
algorithm to compute left annihilators for periodic systems
(see Section III). The main computation in this algorithm
is the orthogonal reduction of a periodic matrix pair to
a Kronecker-like form, which allows to obtain, practically
without any additional computation, a left annihilator. A sta-
ble left annihilator can be obtained by solving additionally
a periodic stabilization or pole assignment problem.

We also develop easy to perform numerical tests to
check the existence of a solution, and indicate a possible
approach to solve the more involved fault isolation problem
for periodic systems. Finally we discuss shortly a possible
approach based on frequency-weighted balanced truncation
to reduce the order of the detectors to allow an efficient
implementation and operation of the residual generator.

Notation. For anN -periodic matrixXi we use system-
atically the script notationX := diag (X1, X2, . . . , XN ),
which associates the block-diagonal matrixX to the cyclic
matrix sequenceXi, i = 1, . . . , N .

II. PERIODIC FAULT DETECTION PROBLEMS

We consider periodic time-varying linear discrete-time
systems of the form

Ekx(k + 1)=Akx(k) + Bu
k u(k) + Bd

kd(k) + Bf
k f(k)

y(k)=Ckx(k) + Du
ku(k) + Dd

kd(k) + Df
kf(k)

(1)

where x(k) ∈ Rnk is the system state vector with time-
varying dimensions,y(k) is thep-dimensional measurement
output vector,u(k) is the mu-dimensional plant control
input vector,f(k) is themf -dimensional fault signal vector,
and d(k) is the md-dimensional disturbance vector. We
assume that the system matrices are periodic with period
N ≥ 1 andEk are square and invertible fork = 1, . . . , N .
The periodic fault detection problem(PFDP) for linear
periodic discrete-time system can be formulated as follows:

Periodic Fault Detection Problem:Determine a periodic
linear residual generator (or detector) having the general
form

x̂(k + 1) = Fkx̂(k) + Hy
ky(k) + Hu

k u(k)
r(k) = Mkx(k) + Ly

ky(k) + Lu
ku(k) (2)

such that fork ≥ 0
(i) r(k) = 0 if f(k) = 0 (fault-free case);

(ii) r(k) 6= 0 if fi(k) 6= 0, for i = 1, . . . ,mf

(fault detectability),



where for both (i) and (ii) we assume zero initial conditions
for the state variables (i.e.,x(0) = 0 and x̂(0) = 0).

The condition (ii) is also known as theweak fault
detectabilitycondition (see [9]), and covers the most general
case of non-zero residual signals in the faulty case, regard-
less when they asymptotically vanish or not. However, in
practice we are often interested to obtain non-zero steady
state values of residual signals, when abrupt, but constant
fault signals enter the system. The corresponding notion of
strong fault detectabilitythus requires

(ii′) r(k) 6= 0 if fi(k) 6= 0, i = 1, . . . , mf , for k →∞.

We call the corresponding problem theperiodic strong fault
detection problem(PSFDP). By solving PSFDP we solve
also PFDP, but the converse is evidently not true.

To derive algebraic conditions for the solution of PFDP,
we reformulate the detector design problem in terms of
the transfer-function matrix(TFM) corresponding to the
associatedstacked lifted representationof [5], which uses
the input-state-output behavior of the system over time
intervals of lengthN , rather then 1. The lifted input, output
and state vectors are defined as

ũ(h) = [uT (hN + 1) · · ·uT (hN + N)]T ,

d̃(h) = [dT (hN + 1) · · · dT (hN + N)]T ,

f̃(h) = [fT (hN + 1) · · · fT (hN + N)]T ,
ỹ(h) = [yT (hN + 1) · · · yT (hN + N)]T ,
x̃(h) = [xT (hN + 1) · · ·xT (hN + N)]T .

and the corresponding lifted system can be represented by
a time-invariant descriptor system of the form (notice the
usage of script notation)

Ẽx̃(h + 1) = Ãx̃(h) + Buũ(h) + Bdd̃(h) + Bf f̃(h)
ỹ(h) = Cx̃(h) +Duũ(h) +Ddd̃(h) +Df f̃(h)

(3)

where thepole pencilcorresponding to the periodic pair
(Ak, Ek)

Ã− zẼ =




A1 −E1 O · · · O

O
. . .

.. .
.. .

...
...

. . .
.. . −EN−2 O

O
.. . AN−1 −EN−1

−zEN O · · · O AN




(4)

is regular. For the lifted system the TFMsGu(z), Gd(z),
Gf (z) from the control, disturbance, and fault inputs,
respectively, to the system output are

Gx(z) = C(zẼ − Ã)−1Bx +Dx (5)

wherex stays foru, d or f . Let denote byG(i)
f (z) the TFM

of the lifted system corresponding to thei-th fault defined
as

G
(i)
f (z) = C(zẼ − Ã)−1Bf,i +Df,i

whereBf,i
k andDf,i

k are thei-th columns of matricesBf
k

andDf
k , respectively.

Assume that the linear residual generator (2) has a
lifted representation with the corresponding TFMR(z).
Transcribing algebraically the condition(i), we get

R(z)G(z) = 0 (6)

where

G(z) =
[

Gu(z) Gd(z)
INmu

O

]
, (7)

while the fault detectability condition(ii) requires

R(z)G̃(i)
f (z) 6= 0, i = 1, . . . ,mf (8)

where

G̃
(i)
f (z) =

[
G

(i)
f (z)
O

]

From (6) it follows that for the existence of a detector it is
necessary that the number of independent measurements is
larger than the number of independent disturbances. More-
over, from (8) follows that each fault must act independently
from the disturbances on the system.

A necessary and sufficient condition for the existence of
a solution to the PFDF is the following one [10]:

Theorem 1:For the periodic system (1) the PFDP is
solvable if and only if

rank[ G(z) G̃
(i)
f (z) ] > rankG(z), i = 1, . . . , mf (9)

An equivalent form of (9) which appears in the works of
several authors (see [11] and references therein) is

rank[Gd(z) G
(i)
f (z) ] > rankGd(z), i = 1, . . . , mf (10)

In what follows, we prefer to use (9) as basic solvability
condition instead of (10) because the proposed compu-
tational algorithm can be easily interpreted in terms of
condition (9).

A necessary and sufficient condition for the existence of
a solution to the PSFDF is:

Theorem 2:For the periodic system (1) the PSFDP is
solvable if and only if for eachi = 1, . . . ,mf

(a) rank[ G(z) G̃
(i)
f (z) ] > rankG(z)

(b) [ G(z) G̃
(i)
f (z) ] andG(z) have the same zeros in

z = 1.
Proof: Additionally to the condition (9) we need to

show that there exists a detectorR(z) which solves the
PSFDF provided the TFM from the fault to the residual
signal R(z)G̃(i)

f (z) has no zero inz = 1. SinceR(z) can
be always assimilated with a nullspace basis ofG(z), this
condition is equivalent to require that[ G(z) G̃

(i)
f (z) ] has

no additional zeros inz = 1 as those ofG(z). The proof
of this assertion follows from theRemark after the proof
of Theorem 4 (see Section IV).

Designing a residual filter which solves the PFDP/PSFDP
by constructing explicitly the lifted representations is in
principe straightforward with the help of methods developed
for standard systems (see for example [12] or [13]). Since
R(z) must be a left annihilator ofG(z), one possibility



to determineR(z) is to compute first a left minimal basis
N(z) for the left nullspaceof G(z), and then to build a
rational and stable detector asR(z) = X(z)N(z), where
X(z) is chosen such thatR(z) is stable and the detector
fulfills the fault detectability condition(ii) or (ii′). The
main difficulty with this approach is that we must ensure for
the resultingR(z) to correspond to a lifted causal periodic
system which must be realizable in the form (2). Therefore,
constructingN(z) and choosingX(z) to correspond to
causal periodic realizations, with the additional constraint
that the conditions (8) are fulfilled, appears to be non-trivial.
Moreover, even in the case when this approach is applicable,
severe numerical difficulties are to be expected for systems
with large periods and/or orders.

In the next sections, we show that an equivalent ap-
proach is possible for periodic systems without resorting to
manipulate explicitly lifted representations. The proposed
computational approach operates directly on the matrices
of the original periodic state-space description (1) and
computes left annihilators directly in periodic minimal
state-space representations. All subsequent computations to
determine a stable detector or to satisfy the detectability
constraints are performed on this representation and can be
done using reliable numerical techniques based on state-
space computations as well.

III. C OMPUTATION OF LEFT ANNIHILATORS

In this section we propose a computational approach to
determine a stable left annihilator for the periodic system

Ekx(k + 1) = Akx(k) + Bu
k u(k) + Bd

kd(k)[
y(k)
u(k)

]
=

[
Ck

0

]
x(k)+

[
Du

k

Imu

]
u(k)+

[
Dd

k

0

]
d(k) (11)

corresponding to the lifted TFMG(z) in (7). In terms of
lifted representations, this amounts to determine a periodic
system (e.g., of the form (2)), whose lifted TFMN(z) is a
proper rational matrix whose columns represent a basis for
the left nullspace ofG(z) (i.e., N(z)G(z) = 0).

Our method exploits the simple fact [14] thatN(z) is a
left nullspace basis ofG(z) if and only if [M(z) |N(z) ]
is a left nullspace basis of the associated system matrix

S(z) =




Ã− zẼ Bu Bd

C Du Dd

O INmu O




Thus, to computeN(z) we can determine equivalently a
left nullspace basisY (z) for S(z) and then obtainN(z) as

N(z) = Y (z)
[

O
IN(p+mu)

]

Consider now the permuted system matrix̃S(z) =

Π1S(z)Π2

S̃(z) =




S1 −T1 O · · · O
O S2 −T2 · · · O
...

. ..
. . .

. ..
...

O SN−1−TN−1

−zTN O · · · O SN




(12)

where for k =1, . . . , N

Sk =




Ak Bu
k Bd

k

Ck Du
k Dd

k

0 Imu 0


, Tk =




Ek O O
O O O
O O O


 (13)

It follows that if Ỹ (z) is a left nullspace basis for̃S(z),
thenN(z) results as

N(z) = Ỹ (z)W̃

whereW̃k =

[
O

Ip+mu

]
.

Let Qk and Zk be orthogonalN -periodic matrices de-
termined using the algorithm proposed in [15] to reduce
the N -periodic pair (Sk, Tk) to the Kronecker-like form
(Sk, T k) := (QkSkZk, QkTkZk+1), where

Sk =




Br
k Ar

k ∗ ∗
O O Areg

k ∗
O O O Al

k

O O O Cl
k


 (14)

T k =




O Er
k ∗ ∗

O O Ereg
k ∗

O O O El
k

O O O O


 (15)

where: (a) the periodic system(Er,Ar,Br, ∗, ∗) is com-
pletely reachable andEr is invertible; (b) the periodic
system (E l,Al, ∗, Cl, ∗) is completely observable andE l

is invertible; (c) the pole pencil (4) corresponding to the
periodic pair(Ereg

k , Areg
k ) is regular. Note that the triples

(Er,Ar,Br) and (E l,Al, Cl) specify the right and left
Kronecker structures ofS(z), respectively, while the pair
(Ereg,Areg) specifies the finite and infinite zero structure
of S(z).

By exploiting the fine structure of the resulting periodic
pair (Sk, T k), it is possible to bring the pencilQS̃(z)Z
using appropriate permutation matricesΠ3 and Π4 in the
form S(z) = Π3QS̃(z)ZΠ4

S(z) =




Br Sr(z) ∗ ∗
O O Sreg(z) ∗
O O O Sl(z)
O O O Cl


 (16)

where, forx = r, reg, l,

Sx(z) =




Ax
1 −Ex

1 O · · · O
O Ax

2 −Ex
2 · · · O

...
. . .

.. .
.. .

...
O Ax

N−1−Ex
N−1

−zEx
N O · · · O Ex

N






By construction
[
Br Sr(z) ∗
O O Sreg(z)

]
has full row rank, ex-

cepting possibly a finite set of values ofz (i.e., the invariant

zeros ofS(z)) and
[
Sl(z)
Cl

]
has full column rank. Thus, we

can choose a left nullspaceY (z) of S(z) in the form

Y (z) =
[

O O −Cl[Sl(z)]−1 I
]

(17)

Then the nullspace ofG(z) is

N(z) = Y (z)Π3QW̃ = −Cl[Sl(z)]−1Bl +Dl (18)

whereBl and Dl result from a row partition compatible
with (16) of

Π3QW̃ =




B̂r

Breg

Bl

Dl




Partition now the columns ofBl
k andDl

k conformably to
the dimensions ofu(k) andy(k), as

Bl
k =

[
Hy

k Hu
k

]
, Dl

k =
[

Ly
k Lu

k

]

Then, a periodic realization forN(z) can be obtained by
inspection as

El
kx(k + 1) = Al

kx(k) + Hy
ky(k) + Hu

k u(k)
y(k) = Cl

kx(k) + Ly
ky(k) + Lu

ku(k) (19)

SinceE l is nonsingular, this periodic descriptor system can
be easily reduced to a standard one as in (2). Note that, this
detector is obtained in general with time-varying state and
output vector dimensions.

To determine the left annihilator (19), we performed
exclusively orthogonal transformations on the system ma-
trices. We can easily prove that all computed matrices are
exact for a slightly perturbed original system. It follows that
the algorithm to compute the left annihilator isnumerically
stable.

Proposition 1: The annihilator (19) is minimal.
Proof: By construction, the periodic system

(E l,Al,Bl, Cl,Dl) is completely observable, and thus we
have to prove only the reachability of this system. Consider
the extended system pencil

Se(z) =




Ã− zẼ Bu Bd O O
C Du Dd INp O
O INmu O O INmu




This matrix has full row rank, excepting those values of
z which belong to the unreachable eigenvalues of the
pair (Ã − zẼ, [Bu Bd ]) (called also theinput decoupling
zerosof the periodic system [16]). Since these eigenvalues
appears in the subpencilSreg(z) (being part of the invariant
zeros ofS(z)), the subpencil formed from the the last two
block rows of the transformed extended pencil

Π3QΠ1Se(z)
[

Π2ZΠ4 O
O IN(p+mu)

]
=




Br Sr(z) ∗ ∗ B̂r

O O Sreg(z) ∗ Breg

O O O Sl(z) Bl

O O O Cl Dl




has full row rank. Therefore, we have that the subpencil
[ Sl(z) Bl ] has full row rank as well, and according to
[5], the periodic system(E l,Al,Bl, Cl,Dl) is completely
reachable.

The resulted left annihilator in (19) is in general not
stable (i.e., some characteristic multipliers of the periodic
matrix [El

k]−1Al
k may have moduli greater or equal to

one). To compute a stable left annihilator, we can perform
an additional transformation on the reduced periodic pair
(Sk, T k) using the transformation matrixUk of the form

Uk =




I 0 0 0
0 I 0 0
0 0 I Kk

0 0 0 I




where the identity matrices have dimensions compatible
with the block row structure of the reduced matricesSk in
(14). Then the transformed pair(Ŝk, T̂k) := (UkSk, UkT k)
is given by

Ŝk =




Br
kAr

k ∗ ∗
O O Areg

k ∗
O O O Al

k + KkCl
k

O O O Cl
k


, T̂k = T k (20)

The periodic system representing the corresponding sta-
ble annihilator is defined by

El
kx(k + 1) = A

l

kx(k) + H
u

ku(k) + H
y

ky(k)
y(k) = Cl

kx(k) + Lu
ku(k) + Ly

ky(k)
(21)

where
A

l

k = Al
k + KkCl

k

H
u

k = Hu
k + KkLu

k

H
y

k = Hu
k + KkLy

k

To obtain annihilators with the poles (characteristic mul-
tipliers) lying in a ”good” domain |Cg of the complex
plane (e.g., interior of the unit circle), we can solve a
periodic stabilization or pole assignment problem. Note
that the poles of the detector are the eigenvalues of the
matrix (El

N )−1(Al
N + KNCl

N ) · · · (El
1)
−1(Al

1 + K1C
l
1).

Therefore, by choosing appropriateKk all poles can be
moved to arbitrary locations in|Cg. This is guaranteed by
the observability of the periodic system(E l,Al, ∗, Cl, ∗).

IV. D ETECTOR DESIGN ISSUES

A. Checking fault detectability

Until now we focussed on requirement (i) by providing
a new numerical algorithm for computing a stable left
annihilator of the extended system (11). To be useful as
a residual generator, the computed annihilator must also
satisfy the requirement (ii) to generate non-zero residual
signals in the case of faults occuring in the system. This



requirement is implicitly contained in condition (9) for the
existence of a solution of the PFDP.

We will show that condition (9) can be simply checked
from the results obtained by reducing the matrices of the
periodic pair(Sk, Tk) to the Kronecker-like formsSk and
T k in (14) and (15), respectively. For the resulting periodic
orthogonal transformation matrixQk, we compute for each
column indexi and fork = 1, . . . , N

Sf,i
k := Qk




Bf,i
k

Df,i
k

O


 =




∗
∗

B̃f,i
k

D̃f,i
k




where the row partitioning of the rightmost matrix above is
compatible with the row partitioning ofSk in (14). Using
the row permutationΠ3 used to getS(z) in (16), we obtain

Π3Sf,i =




∗
∗
B̃f,i

D̃f,i




The condition (9) for the existence of a solution to the PFDP
can be expressed as follows:

Theorem 3:For the periodic system (1) the PFDP is
solvable if and only if

[
B̃f,i

D̃f,i

]
6= 0, i = 1, . . . , mf (22)

Proof: For the detectorR(z) = Y (z) in (17), condi-
tion (9) is equivalent to (8), which can be expressed as

G
(i)
rf (z) := Y (z)




∗
∗
B̃f,i

D̃f,i


 = −Cl[Sl(z)]−1B̃f,i+D̃f,i 6= 0

where G
(i)
rf (z) is the lifted TFM from the fault signalfi

to the residual signalr. Since the corresponding periodic
system realization(E l,Al, B̃f,i, Cl, D̃f,i) is completely ob-
servable, the condition thatG(i)

rf (z) is nonzero is (22).

To check the existence of a detector, we have to verify only
condition (22). Since the orthogonal matrixQ is always
accumulated, this check involves practically no additional
computations and can be seen as part of the design proce-
dure. Similar checks can be used to define different fault
isolation schemes (see for example [1], [9]).

Theorem 4:For the periodic system (1) the
PSFDP is solvable if and only if the periodic system
(E l,Al, B̃f,i, Cl, D̃f,i) has no zeros inz = 1.

Proof: A fault detector which solves the PSFDP
ensures thatz = 1 is not a zero ofG(i)

rf (z) (otherwise
an asymptotically vanishing residual signal results for a
constant nonzero fault signal). Equivalently, this condition
says thatz = 1 is not a zero of the periodic system
(E l,Al, B̃f,i, Cl, D̃f,i).

Remark: The zeros of this system are the additional
zeros to those ofG(z) which result when forming the real-
ization of [ G(z) G̃

(i)
f (z) ]. Therefore, the above condition

is equivalent to the conditions of Theorem 2.
To perform this check, we can compute the zeros of the

periodic system(E l,Al, B̃f,i, Cl, D̃f,i) using the algorithm
of [17]. In the case when the annihilator is stable (or has
been already stabilized), a simpler test is to evaluateG

(i)
rf (1)

(i.e., the steady state gain). This can be done using an
efficient algorithm to compute gains as that one of [18].

B. Solving fault isolation problems

Fault isolation requires a complete decoupling of faults
to ensure that each residual signalri(k) is influenced only
by the corresponding faultfi(k). Thus theperiodic fault
detection and isolation problem(PFDIP) can be formulated
as follows:

Periodic Fault Detection and Isolation Problem:Deter-
mine a periodic linear residual generator having the general
form (2) such that
(i) r(k) = 0 if f(k) = 0 (fault-free case);

(ii) ri(k) 6= 0 if fi(k) 6= 0, for i = 1, . . . ,mf

(fault isolability),
where for both (i) and (ii) we assume zero initial conditions
for the state vectors.

A possible approach to solve the PFDIP is to design a
bank of mf detectors, each of form (2), such that each
detector is sensible only to one fault and insensible to the
rest of faults. To achieve this goal we can formally redefine
the rest of faults as disturbances and solve a standard PFDP
for each fault. In this way, the resulting bank of detectors
behaves as a fault detection and isolation filter which solves
the PFDIP.

To formalize this approach, let partition and permute the
columns ofBf

k andDf
k compatibly as

Bf
k = [Bf,i

k Bf,i
k ] Bf

k = [Bf,i
k Bf,i

k ]

where Bf,i
k and Df,i

k are the i-th columns of matri-

ces Bf
k and Df

k , respectively, andBf,i
k and Df,i

k are
the rest of columns in these matrices. Let denote by

G
(i)
f (z) and G

(i)
f (z) the TFMs of the lifted systems cor-

responding to the periodic systems(E ,A,Bf,i, C,Df,i) and
(E ,A,Bf,i, C,Df,i), respectively. Define

G̃
(i)
f (z) =

[
G

(i)
f (z)
O

]
, G̃

(i)
f (z) =

[
G

(i)
f (z)
O

]

The PFDIP can be solved if each fault can be completely
decoupled from the rest of faults, and therefore we can state
immediately the following solvability condition:

Theorem 5:For the periodic system (1) the PFDIP is
solvable if and only if for eachi = 1, . . . ,mf

rank[ G(z) G̃
(i)
f (z) G̃

(i)
f (z) ] > rank[ G(z) G̃

(i)
f (z) ] (23)

This theorem is the TFM based equivalent formulation of
Theorem 3 in [19]. To check fault isolability, conditions
similar to (22) can be checked.



C. Computing approximate detectors

The detectors have generically orders which are compa-
rable to the orders of the underlying applications. Besides
exact order reduction (e.g., using covers based techniques
[13]), it is possible to try to use reduced order detector
approximations computed via model reduction techniques.
Since the resulting truncation error can be exactly evalu-
ated, such reduced order detectors can be useful provided
appropriate thresholds reflecting this error are employed. A
simple way to reduce the order of a detector with the lifted
TFM R(z) is to determine a reduced order detector with the
lifted TFM R̃(z) by solving the frequency-weighted model
reduction problem

‖(R(z)− R̃(z))G(z)‖∞ = min

Note thatR(z) has been designed such thatR(z)G(z) = 0,
and therefore usingG(z) as frequency weighting appears a
natural choice to force that̃R(z)G(z) ≈ 0.

To solve the above approximation problem, the square-
root and balancing-free method for frequency-weighted
balanced truncation [20] can be extended to periodic sys-
tems along the lines of the algorithm described in [21].
Interestingly, any such projection based approach will not
find the trivial global solutionR̃(z) = 0, but rather will try
to find a solution which approximates the original detector.

V. CONCLUSIONS

We proposed a numerically sound computational ap-
proach to design fault detectors for periodic systems. The
main computational ingredient of the proposed approach
is the computation of a left periodic annihilator of a
certain periodic system. To compute such an annihilator a
numerically stable algorithm based on orthogonal structure
preserving pencil reduction has been proposed. The main
advantage of our approach over other possible techniques is
that the computation of the annihilator can entirely be done
by manipulating state space matrices of the original periodic
system (instead manipulating those of lifted time-invariant
models). The resulting annihilator is obtained directly in
a periodic minimal system representation. The proposed
approach is also applicable to descriptor periodic systems
with singular or even rectangularEk.

An important problem which has not been addressed
is the computation of least order detectors. We believe
that this problem can be tackled using extensions to the
periodic case of the minimal dynamic covers techniques
employed in [13]. The computational problem of deter-
mining minimal order dynamic covers for standard state
space systems has been recently addressed in [22]. The
proposed computational algorithm is essentially a modified
staircase reachability form computation as that proposed in
[23]. A similar algorithm for periodic systems has been
proposed recently [24], and this algorithm could serve
as basis to develop a similar cover design algorithm for
periodic systems.
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