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Abstract- We study the distribuled averaging problem on 
an arbitrary nelwork with a gossip constraint, which means 
that no node communicates nith more than one neighbour in 
every time slot. We consider algorithms which are linear iter- 
ations, where each iteration is described by a random matrix 
picked i i d .  fmm some distribution. We derive conditions that 
this distribution must satisfy so that the sequence of iterations 
converges to the vcctor of averages in different senses. 

We then analyze a simple asynchronous randomized gossip 
algorithm for averaging, and show that the problem of optimiz- 
ing the parameters of this algorithm for fastest convergence is 
a semi-dcfinite program. Finally we study the relation between 
Markov chains and the averaging problem, and relate the 
averaging time of the algorithm to the mixing time or a related 
Markov chain on the graph. 

I. INTRODUCTION 

We consider a network G on n nodes with edge set .E, 
where each edge { i , j }  E C is an unordered pair of distinct 
nodes. The set of neighbours of node i is denoted N, = 
( j l { i . j }  E E}. A node i can communicate with node j 
only if j f Ni. We will assume that the network graph B 
is connected. 

A gossip constraint on the communication protocol 
means the following. In a given time slot, each node can 
communicate with only one of its neighbours. This can 
be accomplished, for example, if only one pair of nodes 
communicates in a time slot. Another way to do this is by 
ensuring that the set of exchanges in a time slot is described 
by a rnotchirzg on the graph C, i.e., the set of edges { i : j }  
along which communication occurs (in a time slot) is such 
that no two edges have a node in common. 

A variety of problems can be studied in the context of 
communication on a graph with a gossip constraint, such 
as fast information exchange, or distributed computation. In 
this paper, we will be interested in the averaging problem, 
which is the following. Every node i holds an initial scalar 
value z i  (0) E R. We want to compute the average 5, = 
( l /n)  Cy=l ~ ~ ( 0 )  at every node, via a gossip algorithm. 

Distributed averaging via gossip can be accomplished in 
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many ways. One simple solution is flooding, where every 
node maintains a table of initial node values for all nodes, 
initialized with its own initial value. Each node updates 
its table with information from its neighbours (obeying the 
gossip constraint). After a finite number of steps, every 
node knows the initial value of every other node and so 
can compule the average, or indeed a y  function of the 
initial values. However each node needs to maintain n- 
dimensional state. 

In this paper, we are interested in algorithms described 
by linear iterations. Let ~ ( 0 )  = (zi(O):, . . zn(0)) denote 
the vector of initial values on the network. We want an 
algorithm where each iteration is of the form z(t + 1) = 
lV(t)x(t) ,  and z( t )  converges to the vector of averages 
zavel, where 1 E R" is the vector of all ones. 

Now let us consider the gossip constraint. Suppose that a t  
every time step, a pair of nodes communicates and averages. 
If nodes i and j (connected by an edge) average, this is  
described by the equation x ( t  + 1 )  = W i j z ( t } ,  where 

To study convergence of this gossiping scheme means 
studying the convergence of 

sit) = @(t)Z(O) 

to za,..,l, where 

@(t )  = IY( t )W[t  - 1). . . W ( 0 )  

is a product of matrices of the form ( I ) .  This product must 
converge to 11*/n for convergence of ~ ( t ) .  

One simple way to choose the sequence W ( t )  i s  to 
periodically repeat a finite sequence IVl: 1 4 ' ~ ~ .  . . , IVk. If  
W = n:=l IVi, then the sequence of iterations converges 
if I V t  4 l l T / n  as n 4 30. The rate of convergence will 
depend upon the order in which the exchanges take place, 
and in this case maximizing the rate of convergence is a hard 
combinatorial problem of finding the order of exchange that 
leads to the fastest-averaging IV. 

In this paper, we choose the sequence of matrices W ( t )  
by a raidomi:ed method. At every time slot, one of the 
allowed averaging matrices is chosen at random according 
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to some probability distribution. The problem then is to 
characterize necessary and sufficient conditions on this 
distribution under which the iterations converge to x,l, 
where convergence now means the convergence of the 
sequence of raildoin vectors ~ ( t ) .  In this paper, we study the 
question of when, and at what rare, a (randomized) gossip 
algorithm converges to rhe vector of averages, and how 
long it takes to converge to a given level of accuracy with 
high probability. We also investigate the problem of finding 
the fastest converging algorithm of a class of gossiping 
algorithms. 

The distributed averaging problem with the gossip con- 
straint arises in the context of estimation and information 
exchange in sensor networks, ad-hoc wireless networks, 
peer-to-peer networks, and other distributed networks like 
social networks, where there is a need for inter-node in- 
formation exchange in the absence of a centralized com- 
putational entity. ([KDG03] and references therein contain 
many examples of such situations). Gossiping reduces the 
number of operations per node per time slot, reducing 
power consumption per node, and the total number of 
transmissions in a given time slot (reducing interference), 
which makes it particutarly well-suited for comniunication 
in wireless networks. This work is a first step towards design 
and analysis of distributed randomized algorithms in  such 
a set up; it also establishes a connection to the well-studied 
Markov chain mixing time problem. For further work on 
this topic, see [BGPS04b] and [BGPS04a]. [BGPS04b] 
contains results regarding mixing times of random walks on 
geomctric random graphs (which are used to model wireless 
sensor nets), while [BGPS04a] discusses averaging time 
results for other types of networks, as well as describes 
a distributed method to converge to the optima1 averaging 
algorithm on an arhitrary graph. 

A. Related Work 

The recent work [KDG03J studies the gossip-constrained 
averaging problem for the special case of the complete 
graph. A randomized gossiping algorithm is proposed which 
is shown to converge to the vector of averages on the 
complete graph. However, the method of analysis used does 
not easily and cleanly extend to an arbitrary network graph. 

The problem of fast distributed averaging without the 
gossip constraint on an arbitrary graph is studicd in [XB03]; 
here, the matrices W ( t )  are constant, i.e., W ( t )  = 1Y for 
all t. It is shown that the problem of finding the (constant) 
LV matrix that converges fastest to l l T / n  can be written 
as a semidefinite program (under a symmetry constraint), 
and can therefore be solved numeiicaIly. 

Distributed averaging has also been studied in the context 
of distributed load balancing ([RSW98]), where nodes (pro- 
cessors) exchange tokens in order to uniformly distribute 
tokens over all the processors in the network (the number 
of tokens is constrained to be integral, so exact averaging i s  

not possible). An analysis based on Markov chains is used 
to obtain bounds on the time required to achieve averaging 
upto a certain accuracy. However, each iteration is governed 
either by a constant stochastic matrix, or a fixed sequence 
of matchings is considered. This differs from our work (in 
addirion to the integral constraint) in that we consider an 
arbitrary sequence W(t) drawn IID from some distribution, 
and try to characterize the properties the distribution must 
possess for convergence. 

An interesting result regarding products of random matri- 
ces is found in [EKN90]. The authors prove the following 
result on a sequence of ilerations x ( t  + 1) = TV(t)rc(t), 
where the W ( t )  belong to a finite set of paracontracting 
matrices (icy W(t)x  # 2 H IlW(t)xll < 11x11). If X = {i : 
Wi appear infinitely often in the sequence W ( t ) } ,  and for 
i E T, IH(TVi) denotes the eigenspace of 14’2 associated with 
eigenvalue 1, then the sequence of vectors ~ ( t )  has a limit 
z* E niE17-I(Wri). This result can be used to find conditions 
for convergence of distributed averaging algorithm. 

B. Urgaiiizatioir 

The remainder of the paper is organized as follows. In 311, 
we study convergence of a randomized gossip algorithm in 
expectation and second moment, and give a lower bound on 
the running time. In $nI, we analyze a simple decentralized 
gossip algorithm, which turns out to have a beautiful 
property: the rate of convergence in expectation and second 
moment are governed by the same parameter. In SIV, we 
show that the problem of choosing the parameters to find 
the fastest converging algorithm is a semidefinite program. 
Finally, in §V, we relate the averaging time of a randomized 
gossip algorithm to the mixing time of a Markov chain 
associated with the algorithm. 

11. CONVERGENCE OF GOSSIP-CONSTRAINED 
AVERAGING 

In this section, we will study the convergence of random- 
ized gossip algorithms. We will not restrict ourselves here 
to any particular algorithm; but rather consider convergence 
of the iteration governed by a product of random matrices, 
each of which satisfies certain (gossip-based) constraints 
described below. 

The vector of estimates is updated as 

z(t + 1) = W(t)x(t):  
where each W(t) must satisfy the following constraints 
imposed by the gossip criterion and the graph topology. 

If nodes i and j are not connected by an edge, then 
IV,(t) must be zero. Further, since every node can commu- 
nicate with only one of its neighbours per time slot, each 
column of W ( t )  can have only one non-zero entry other 
than the diagonal entry. 

The iteration intends to compute the average, and there- 
fore must preserve sums: this means that lTIV(t) = IT, 
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where 1 denotcs the vector of all ones. Also, the vector 
of averages must be a fixed point of the iteration, i.e., 

matrices W are identically distributed we will shorten 
E[W(t )TW(t )]  to EITVTMJ]. Since y(t) 1 1 ,  

IV(t)l = 1. 
y ( t  - l ) T E [ W W ] y ( t  - 1) 5 A,(EIW%])lly(t - 1)11? 

We will consider matrices W(t) drawn i i d .  (independent (8’1 ,-, 
identically distributed) from some distribution on the set of 
non-negative matrices satisfying the above constraints, and 
investigate the behaviour of the estimate z( t ) :  

Repeatedly conditioning and using (S), we finally obtain 
the bound 

z ( t )  = IV(t - I)TV(t - a )  ’ ‘ I,l’(O)z(O) 
= r$(t - l)s(O). 

If z ( t )  must converge to the vector of averages %x(O) 
for every initial condition x(O), we must have that 

1 IT  
Iim #( t )  = -. 

t-m n 

A. Comergence in expectation 

Let the mean of the (i.i.d.) matrices W ( t )  be denoted by - 
TV. We have 

t 

(3)  

1 1 T .  --t so d ( t )  converges in  expectation to if 1.V + $. The 
conditions on I.r/ for this to happen are stated in [XB03]; 
they are 

From this, we see that the second moment of the error 
y(t) converges to 0 at a rate governed by X$(EIWT1lJ]). 
This means that any scheme of choosing the W ( t )  which 
corresponds to a E[WTW] with second largest eigenvalue 
strictly less than 1 (and, of course with p(E[1V] - l l r / n )  
less than 1) provably converges in the second-moment. 

C. High pr~ba6iIity bounds 

We have so far analyzed the convergence of a randomized 
gossip algorithm in the first and second moment. In this 
subsection, we study the running time of an algorithm, ie, 
after how many steps can we say that the value of a(t) is 
close to ~ ~ ~ . ~ l  with high probability ( i .e, ,  for a large fraction 
of sample paths). For this, we will first need to define the 
E-averagiiig tifile (IKDG031) 

The E-averaging time of an algorithm i s  the smallest 
integer Ta, ,e(~)  such that for any initial value ~ ( 0 )  

I T V  = lT. (4) (10) 

11T 

- 
for all t 2 Tave. 11’1 = 1. ( 5 )  

(6 )  Thus, the averaging time is the smallest time for which, 
on any sample path, the values at the nodes are all  close 

Based on this definirion, we State the following theorem: 

of any random- 
ized gossip algorithm with symmetric 14’ = E[l.I/] is lower 
bounded as 

p p -  -) < 1. 
n 

where d.1 is the ’eectra1 radius Of a The first two to the average value with probability greater than 1 - 
conditions will be automatically satisfied by V, since it 
is the expected value of matrices each of which satisfies 
this property. nerefore ,  if we pick any distribution on the 
IY(t) whose mean satisfies (6), the sequence of estimates 
will converge in expected value 10 the vector of averages. 

Z‘keoJ-eftj 1: The averaging time 

( 1  1) 
0.5 log E - I  -- In fact, if is invertible, by considering the mmingale Tave(E) 2 

W !$(t)z(O), we can obtain almost sure convergence of l0gAmax(W)-1* 
x(t) to 2 ,  = z,,~. However neither result tells us the rare 
at which z ( t )  converges to z,. 

B. Coiivergerrce of second inoinefzt 

Due to space constraints, we do not include the proof of 
the theorem; the proof is identical to the proof of the lower 
bound in Theorem 2, with the only difference being that 
Amax is replaced by AT. 

We now proceed in the next section to describe and 
investigate the perfomance of a specific gossiping scheme. TO obtain the rate of convergence of s( t )  10 zm, we Will 

investigate the rate at which the error y ( t )  = z ( t )  - zcc 
converges to 0. Observe that y ( t )  I 1 and y ( t  + 1)  = 
W 7 ( t ) g ( t ) ,  so that 

In this section we analyze a simple gossip algorithm for 
E[y(t)Ty(t)ly(t-l)] = y(t-l)TE[l.l/(t-l)Tllr(t-l)ly(t-l).which p(EIIVTiti]) can be evaluated easily, and therefore 

(7) chosen to be small. The algorithm is motivated by the 
Since W ( t )  is doubly stochastic, so is lV(t )r lV(t) ,  and following observation: since exchanges between nodes are 
rherefore EIIY(t)TllT(t)] is doubly slochastic. Since the inherently ansynchronous, almost surely at any instant only 

I n .  ALGORITHM 
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onc pair of nodes is exchanging information. We therefore 
increment time by one every time a pair of nodes exchanges 
information. 

The algorithm, denoted A, is as follows. At every time 
step, an edge { i . j }  is chosen with probability Pij, where 
Pij is a probability distribution on the edges of the graph. 
Node i and node j then average their values, k., the W ( t )  
describing the iteration is of the form lVij (where Wij is I -  

as before). The algorithni is parametrized 
by the variables Pij, the probabilities with which edges are 
chosen for averaging. 

(e* - e j ) ( e i - e j I T  
2 

A. First and secoiid rizuriieirt coiivergeirce 

The expected value = S[W] is given by 

{ i  j}E& 

Note that also lies on the graph (i .e.,  Fij = 0 if there 
is no edge between i and j ) ,  since it is the expectation 
of inatrices each of which satisfies this constraint. This 
matrix V governs convergence in expectation. Specifically, 
for fastest convergence in  expectation, we should choose E 
to have the smallest possible p ( m  - l l T / n ) .  

Now we will find EIIVTIV]. For each t (since W ( t )  is 
syiiimetri c), 

= l V ( t ) .  

(Each \Vivi, is actually a projection matrix onto the subspace 
zi = sj.) So the expected value is the same as v, i.e., 

E[lVTIV] = = pijrvq. ( 1  3) 
I i , j W  

Observe that this implies that is positive semidefinite, 
since it is also the expected value of positive semidefinite 
matrices WTW.  So the spectral radius of - l lT /n ,  
which governs the rate of convergence of E[s ( t ) ] ,  is simply 
the second Iargest eigenvalue of p. 

From ( I  3), we see that for this algorithm, the conditions 
for convergence of the expectation are necessary and suffi- 
cient for convergence in the second moment as well. In fact, 
the rate of convergence of the expected value is governed 
by the same parameter as the rate of convergence of the 
second moment, i.e., Az(w)! That is, there is no trade-off 
betwcen the convergence in expected value and second mo- 
ment, and both can be simultaneously optimized for fastest 
convergence. We will return to optimizing the algorithm for 
fastest convergence after analyzing the averaging time for 
this particular algorithm. 

B. Aiidysis of averaging t h e  

We state the following theorem regarding the averaging 
time for our algorithm. Due to lack of space, we omit the 
proof, which can be found in a longer version of this paper 
[BGPS04a]. 

Theorem 2: The averaging time T,,e(~) of A is bounded 
as 

Again, the averaging time is related to the second largest 
eigenvalue of w: the smaller Xz(5?7), the smaller the lower 
and upper bounds on the averaging time. 

Iv. OPTIMIZING FOR FASTEST CONVERGENCE 

To find the characterizing the algorithm with fastest 
convergence, we need to find the with the smallest A2 

which can be decomposed into a convex combination of 
Wijs, From (IZ), this is the optimization problem 

minimize A2 (E Pij W i j )  

subject to CIi , j lEE Pij = 1 (14) 
ej 2 0: 

where the optimization variables are the probabilities on 
the edges Pij. Note that the objective function, which is  
the second largest eigenvalue of a doubly stochastic matrix, 
is a convex function on the set of symmetric matrices. Since 
each of the IVij is symmetric, the doubly stochastic matrix 
is symmetric as well. The constraints are all h e a r  con- 
straints, and so the optimization problem above is convex. 

This problem can be easily reformulated as the following 
semidefinite program: 

minimize s 
subject to (zIi,jlEE fijM7ij)  - llT/n 5 SI, (15) 

C j i , j ) E E  Pij =z 1, pij 2 0. 

For general background on SDPs, eigenvalue optimiza- 
tion, and associated interior-point methods for soIving these 
problems, see, for example, [BV03], [WSVOO], [LO96], 
[Ove92], and references therein. Interior-point methods can 
be used to soIve problems for large graphs with upto 
a thousand edges or so; [XBO3] describes a subgradient 
method for a closely related problem that can he used 
to solve this problem for very large graphs, with upto a 
hundred thousand edges. 

Thus given a graph topology, we can solve the semidef- 
inite program (15) to find the probability distribution on 
the edges that yields the fastest convergence for this class 
of randomized gossip algorithms. [BGPS04a] shows how 
to arrive at this optimal distribution via a completely dis- 
tributed algorithm, using the subgradient method. 
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v. RELATION TO MARKOV CHAINS 

In this section we explore the relation between averaging 
and mixing of Markov chains. First we look at the relation 
between the fastest mixing Markov chain problem [BDX04] 
and (14). 

Recall that the incidence matrix for a graph with n nodes 
and m edges, 3 E R n x m  has entries Bij = 1 if edge j 
starts from vertex i ,  -I if  it ends on i ,  and 0 otherwise, 
where directions are arbitrarily assigned to the edges. Then 

1 
PijI*lTij = 1 - -Bdiag(P)B*: 

2 (16) 
{ i ; j } E E  

where diag(P) E RmX” is the diagonal matrix with 
entries Pij. Thus the optimization problem (14) is closely 
related to the fastest-mixing Markov chain problem, which 
can be written as 

minimize Amax(I - B diag(P)BT) 
subject to zIi,j)cE pij = 1 (17) 

Pij 2 0. 

Let Xp = I - B diag(P)BT, then the objective function 
in (17) is Xmax(Xp), while in (14), it is A2(L(I+Xp)) = 

lie between 0 and 1. So the problem of finding the fastest 
averaging algorithm of class A can be equivalently stated 
as the problem of finding the fastest mixing Markov chain 
on the graph with a positive-semidefinite transition matrix. 

- Now consider the averaging algorithm A with E[TY] = 
FIT as in (12), and a Markov chain A4 on with w as its 
probability transition matrix. The dependence of the.inixing 
time of M and the averaging time of A on Xz(w) (since 
1Y 0) relates them in the following sense: the smaller 
the mixing time of JW, the smaller the averaging time of A 
and vice versa. 

We make this connection precise in the following Theo- 
rem 3. This relation allows us to import techniques for de- 
signing fast mixing Markov chains to design good averaging 
algorithms in situations where it may not be easy or feasible 
to solve ( l 4 j  (for example, in a distributed setting). Well- 
known heuristics such as Metropolis-Hastings for obtaining 

Xmax($(I + X p ) ) ,  since the eigenvalues of 3 5(1 + X p )  all 

- 

Since we are interesied in high probability guarantees for 
the averaging algorithm, we will consider E which is of the 
form l /nd,  where 8 is a positive constant. We are now ready 
to state the following result: 

Theorem 3: The averaging time of the gossip algorithm 
A is related 10 the mixing time of the Markov chain with 
transition matrix E [ ~ v ]  = TV as 

% e ( t )  = Q(1ogn + Tmix(c)). 

Pmo$ Let c = l/ns. It is shown in [KSSVOO] 
that TaVe(t) = Rjlogn) for < 1/2, and we al- 

), so that 

Tave(€) = logn f Q( l o g n  ). We will first show 
log X”i7)-1 

that TaVo(c) = R(logn + Tmix(c)). There are two cases to 
consider: (i) Xmu(w) 5 a; and (ii) X,,(m) > a.’ Case 
(;): In this case, by Lemma 1, Tmir(e) = O(logn), Fur- 

= O(1ogn). It follows that ‘Ta>Fe(~) = 

Q(Iogn + Tmix(t)). Case (ii): From Lemma 1, since 
X,(w) > 1/4, we get 

ready know that Taw(€)  = n( log Ama:{v,rl-l lo n- 

lo n 
ther, log Am:(w)-l 

To conclude that = R(1ogn -t Tmix(c)), it suffices 
to show that l o ~ A ~ = ( m ) - ~  = O(1 - Ama(w)). By the 
continuity and monotonicity of log(.), there exist c1: c2 < 0, 
such that for z E [O, $1, 

c1z 5 log(1 - z) 5 c2z. 

Since A m w ( i T )  > 1/4, we get 

I0g(Amax(W))-1 = O((1 - Amax(W)-l)). (21) 

Now we will show that TaVe(c) = O(logn+T,,,(~)), which 
will give us our result. Again we consider the same two 
cases. If X2 < 1/4, then - l ogXz(v )  1 iog(3). By (2), this 
gives T,,,(E) 5 O(1ogn). But by Lemma 1 Tmix(m) = 
O(1ogn). Hence, for hnaX(W) I 1 / 4 ,  

Tax(€) = O(logn + Tmix(e))-  (22) 

If Xma*(P) > 1/4, then using the fact that log(1 +x) 5 2, 

( 2 )  and Lemma 1 .  we get 

fast mixing Markov chains c-m help in obtaining fast 
averaging algorithms. 

1 ,  L. 

Recall the definition of the mixing time. For any node 
- + I .  The mixing time is 

(18) 

36 log R 

1 - Az(1.v) 
I- Ttnix(t) A* ( W) 
5 12(logn + Tmix(E))? 

Taw(€) I i define Ai(t) = iCj”=, 
defined as 

3 
T,i,(c) = supinf(t : A,(t’) 5 E for all t’ 2 t ) .  

i 

Recall also the following well known results (see for 
example, the survey [Gur00]). 

of a Markov chain P: 

and again T,,,(t) = U(1ogn + T&(E)).  Combining the 
Leriirna I ;  The following are bounds on the mixing time results gives us the theorem, 
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VI. CONCLUSJON 

We have analyzed the convergence of a general random- 
ized gossip algorithm, and derived conditions under which 
an algorithm converges. We have found the associated rates 
of convergence and given a lower bound on lhe running 
time of any such algorithm. We then describe and study the 
convergence propenies of a specific gossip algorithm. We 
show that optimizing the performance of the algorithm Icads 
to the same problem for different kinds of convergence, and 
show that this is in fact a semidefinite program. Finally, 
we explore the relation between Markov chains and the 
randomized gossip problem, and relate the averaging time 
to the mixing time of an associated Markov chain. 
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