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Abstract— We address the numerically reliable computation
of generalized inverses of periodic systems. The underlying in-
verses are defined via the corresponding lifted representations.
Structure preserving reduction of the associated system pencil
to a special Kronecker-like form is the main computational
ingredient for the proposed approach. This form can be com-
puted by employing exclusively orthogonal transformations.
For the computational algorithm of the generalized inverse,
the backward numerical stability can be proved.

I. I NTRODUCTION

Inverse systems have many important applications in
areas such as control theory, filtering and coding theory.
The computation of system inverses for standard linear
time-invariant systems is essentially equivalent to compute
generalized inverses of the associated transfer-function ma-
trices. We formulate an equivalent problem for the inversion
of discrete-time periodic systems in terms of the transfer-
function matrix of the associated lifted representation.

For square and invertible periodic systems, the compu-
tation of inverses can be done by explicit formulas. For
non-square systems, explicit formulas can be employed only
in the full-rank case to determine left or right inverses,
provided the system feedthrough matricesDk have full
ranks. However, these direct formulas do not allow to
arbitrarily choose the spurious poles which appear in the
computed left or right inverses. In the more general case of
periodic systems with transfer-function matrices of arbitrary
rank, no explicit formulas can be used.

The inversion problem for periodic systems has been
considered by several authors [1], [2], by deriving condi-
tions for left/right invertibility. A constructive approach to
compute left/right inverses has been developed in [2], based
on a recursive procedure proposed in [3], which is similar
to Silverman’s structure algorithm [4]. The main advantage
of this approach is that the resulting inverse system is
already in a state-space form. Note that the existence of
equivalent procedures to determine inverses using lifting-
based approaches is mentioned in [2] as still an open
problem.

In this paper we address the computation of periodic
week generalized inverses(known also as the (1,2)-inverses)
starting from the lifted-formulation of the problem. This
formulation has the main theoretical advantage that the
system inversion concepts related to compute various gen-
eralized inverses (see for example [5]) can be easily ex-
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pressed in terms of thetransfer-function matrix(TFM) of
the associated lifted representation. A straightforward but
numerically naive approach to compute periodic inverses
would be to apply first the method of [5] to the lifted
representation and then to compute a minimal realization
of the resulting TFM of the inverse to obtain a state-
space periodic system description. This simple approach
has several disadvantages. Firstly, the resulting TFM can be
improper and, at present, there exists no satisfactory algo-
rithm to convert a general descriptor system representation
into a periodic one. Even in the case when the resulting
inverse is proper (thus, the realization algorithm of [6] can
be employed), the use of lifted representations with large
order sparse matrices represent a computational challenge
for large periods or state dimensions. Besides this, because
this method completely ignores the structure of the lifted
system matrices, there is no guarantee for a satisfactory
numerical performance. For example, the strong numerical
stability of computations is not ensured even when applying
numerically stable algorithms in all computational steps.

In what follows, we propose a numerically reliable
procedure to construct generalized inverses which exploits
and preserves the sparse structure of the lifted system
matrices and generates directly a state-space representation
of the inverse. This procedure relies on structure pre-
serving orthogonal transformations to compute particular
Kronecker-like form of the lifted system pencil. It can be
shown that the computational algorithm of the inverse is
backward numerically stableand has a low computational
complexity which is linear in the period and cubic in
the maximal problem dimensions. The resulting inverse
is minimal, provided the initial description of the system
(1) is minimal. Thus, the computational algorithm is com-
pletely satisfactory according to the criteria we formulated
in [7]. In combination with stabilization algorithms for
periodic systems, the proposed procedure can also cope
with constraints related to the stability of the inverse. For
example, stable inverses of minimum-phase systems can be
easily constructed. A parameterization of all (1,2)-inverses
in terms of left and right annihilators can be employed to
address the computation of least order inverses.

Notation. For anN -periodic matrixXi we use system-
atically thescript notation

Xk := diag (Xk, Xk+1, . . . , Xk+N−1),

to denote the block-diagonal matrixXk associated to the
cyclic matrix sequenceXi, i = k, . . . , k + N−1 starting at
time momentk.



II. PRELIMINARIES

We consider periodic time-varying descriptor systems of
the form

Ekx(k + 1) = Akx(k) + Bku(k)
y(k) = Ckx(k) + Dku(k) (1)

where the matricesEk ∈ Rµk×nk+1 , Ak ∈ Rµk×nk ,
Bk ∈ Rµk×mk , Ck ∈ Rpk×nk , Dk ∈ Rpk×mk are periodic
with periodN ≥ 1, and the dimensions fulfil the condition
ν =

∑N
k=1 µk =

∑N
k=1 nk . By using the script notation,

the periodic system (1) will be alternatively denoted by the
quintuple(Ek,Ak,Bk, Ck,Dk).

To define the inverse of the periodic system (1), we define
first the TFM corresponding to the associatedstacked lifted
representationof [8], which uses the input-state-output be-
havior of the system over time intervals of lengthN , rather
then 1. For a given sampling timek, the correspondingM -
dimensional input vector,P -dimensional output vector and
ν-dimensional state vector are

uS
k (h) = [uT (k + hN) · · ·uT (k + hN + N − 1)]T ,

yS
k (h) = [yT (k + hN) · · · yT (k + hN + N − 1)]T ,

xS
k (h) = [xT (k + hN) · · ·xT (k + hN + N − 1)]T .

whereM =
∑N

k=1 mk andP =
∑N

k=1 pk. The correspond-
ing lifted system can be represented by a time-invariant
descriptor system of the form

LkxS
k (h + 1) = FkxS

k (h) + GkuS
k (h)

yS
k (h) = HkxS

k (h) + JkuS
k (h) (2)

whereGk = Bk, Hk = Ck, Jk = Dk, and

Fk−zLk =




Ak −Ek O · · · O

O
. . .

. . .
.. .

...
...

. . .
. . .−Ek+N−3 O

O
. . . Ak+N−2 −Ek+N−2

−zEk+N−1 O · · · O Ak+N−1




(3)

Assuming this square pencil is regular (i.e., det(Fk−zLk) 6≡
0), the TFM of the lifted system is

Wk(z) = Hk(zLk − Fk)−1Gk + Jk (4)

and the associated system pencil is defined as

Pk(z) =
[

Fk − zLk Gk

Hk Jk

]
, (5)

which both depend on the sampling timek. Obviously
Wk+N (z) = Wk(z) and the TFMs at two successive values
of k are related by the following relation [9]

Wk+1(z) =
[

0 IP−pk

zIpk
0

]
Wk(z)

[
0 z−1Imk

IM−mk
0

]
(6)

To define poles and zeros of the periodic system (1),
we need to assume the minimality of the system (1) and
thus of the lifted realization (2). This is equivalent to the
notion of reachability and observability at finite and infinite
eigenvalues of the pencil (5), as introduced in [10]. If

we assume that the system (1) is minimal in that sense
(this implies time-varying state dimensions and rectangular
descriptor matrices) then we have the following definitions
of poles, zeros and minimal indices of the TFM (4) in terms
of the system matrix (5).

Definition 1: The poles of the transfer functionWk(z)
of the minimal periodic system (1) are the zeros of the
associated pole pencilFk − zLk defined in (3).

Definition 2: The transmission zerosof the transfer func-
tion Wk(z) of the minimal periodic system (1) are the
invariant zeros of the associated stacked system pencil (5).

Definition 3: The left and right minimal indicesof the
transfer functionWk(z) of the minimal periodic system (1)
are those of the associated stacked system pencil (5).

It follows from (6) that poles and zeros of the TFMs
for different sampling times, can only differ atz = 0 and
z = ∞.

Consider now the permuted system matrix̃Pk(z) =
Π1Pk(z)Π2

P̃k(z) =




Sk −Tk O · · · O
O Sk+1−Tk+1 · · · O
...

. ..
. . .

. . .
...

O Sk+N−2−Tk+N−2

−zTk+N−1 O · · · O Sk+N−1




(7)

where for i =k, k + 1, . . . , k + N − 1

Si =
[

Ai Bi

Ci Di

]
, Ti =

[
Ei O
O O

]
(8)

The above definitions of zeros and minimal indices can
be evidently given also in terms of this permuted pencil.
By suitably redefining the matrices of the periodic pair
(Sk, Tk), we can define for non-minimal systems special
types of zeros which, according to [8], characterize the
reachability and observability properties.

Definition 4: The input decoupling zerosof the periodic
system (1) are the invariant zeros of the pencilP̃k(z) in (7)
for

Si :=
[

Ai Bi

]
, Ti :=

[
Ei O

]
Definition 5: Theoutput decoupling zerosof the periodic

system (1) are the invariant zeros of the pencilP̃k(z) in (7)
for

Si :=
[

Ai

Ci

]
, Ti :=

[
Ei

O

]

By extending the definitions of [8], the system (1) is
reachable if it has no input decoupling zeros, and is
observableif it has no output decoupling zeros. Note that
all above definitions are valid for a specified time moment
k. We say that the system (1) iscompletely reachableif
it is reachable for allk, andcompletely observableif it is
observable for allk. The periodic system (1) isminimal
if it is completely reachable and completely observable.
Obviously, these definitions generalize those for standard
periodic systems (i.e., withEk = Ink+1 ) [8].



III. C OMPUTATION OF (1,2)-INVERSES

We can define the (1,2)-inverses of the periodic system
(1) in terms of the (1,2)-inverses of the associatedP ×M
rational TFMWk(z). Specifically, a (1,2)-inverseXk(z) of
Wk(z) must satisfy the first and second so-called Moore-
Penrose relations (see e.g., [12]):

1) Wk(z)Xk(z)Wk(z) = Wk(z)
2) Xk(z)Wk(z)Xk(z) = Xk(z)

We denote a (1,2)-inverse (orweek generalized inverse)
Xk(z) satisfying the above conditions asW+

k (z). Note that,
the left and right inverses, frequently used in the control
literature, are particular (1,2)-inverses of systems with full
column rank or full row rank TFMs, respectively.

The computation of (1,2)-inverses ofWk(z) can be done
using the following straightforward formula

W+
k (z) =

[
0 IM

]
P+

k (z)
[

0
IP

]
, (9)

where P+
k (z) is an (1,2)-inverse ofPk(z). If we use the

permuted system matrix̃Pk(z) = Π1Pk(z)Π2 in (7), then
(9) can be equivalently written as

W+
k (z) = C̃P̃+

k (z)B̃, (10)

whereC̃k = [ 0 Imk
] and B̃k =

[
0

Ipk

]
. In the case of a

locally square system (i.e.,pk = mk), an explicit inverse
can be immediately defined as a periodic descriptor system

Tkx̃(k + 1) = Skx̃(k)− B̃kũ(k)
ỹ(k) = C̃kx̃(k)

(11)

ProvidedDk is invertible for k = 1, . . . , N , we can also
express the above inverse in the more familiar form

Ekx(k + 1) = (Ak −BkD−1
k Ck)x(k)−BkD−1

k ũ(k)
ỹ(k) = D−1

k Ckx(k) + D−1
k ũ(k)

(12)
We will need the following result to compute (1,2)-

inverses of non-square systems (see e.g., [12]):
Lemma 1:Let R(z) be a rational matrix of rank̀ and

let Πl andΠr permutation matrices such that

ΠlR(z)Πr =
[

R11(z) R12(z)
R21(z) R22(z)

]

where rankR11(z) = `. Then, an (1,2)-inverse ofR(z) is

R+(z) = Πr

[
R−1

11 (z) 0
0 0

]
Πl.

According to this lemma, the computation of̃P+
k (z)

amounts to isolate first a maximal rank submatrix ofP̃k(z)
and then to apply the above formula. This operation can be
done by reducingP̃k(z) to an appropriate Kronecker-like
form from which a maximal rank regular sub-pencil can be
easily separated. LetQk andZk be orthogonalN -periodic
matrices determined using the algorithm proposed in [11] to

reduce theN -periodic pair(Sk, Tk) to the Kronecker-like
form (Sk, T k) := (QkSkZk, QkTkZk+1), where

Sk =

[
S

11

k S
12

k

0 S
22

k

]
=




Br
k Ar

k ∗ ∗
O O Areg

k ∗
O O O Al

k

O O O Cl
k


 (13)

T k =

[
O T

12

k

O O

]
=




O Er
k ∗ ∗

O O Ereg
k ∗

O O O El
k

O O O O


 (14)

where: (a) Er
k is invertible and the periodic system

(Er
k ,Ar

k,Br
k, ∗, ∗) is completely reachable; (b)E l

k is invert-
ible and the periodic system(E l

k,Ar
l , ∗, Cl

k, ∗) is completely
observable; (c) the pole pencil of the form (3) corresponding
to the pair (Ereg

k ,Areg
k ) is regular. Note that the triples

(Er
k ,Ar

k,Br
k) and (E l

k,Al
k, Cl

k) specify the right and left
Kronecker structures ofPk(z), respectively, while the pair
(Ereg

k ,Areg
k ) specifies the finite and infinite zero structure of

Pk(z). Consider partitions compatible with (13) forQkB̃k

and C̃kZk

QkB̃k =

[
B

1

k

B
2

k

]
, C̃kZk = [ C

1

k | C
2

k ]

With appropriate permutation matricesΠl and Πr it is
possible to rearrange the transformed pencilQkP̃k(z)Zk

such that

P k(z) := ΠlQkP̃k(z)ZkΠr =

[
P

11

k (z) P
12

k

P
21

k O

]
(15)

whereP
11

k (z) is the square and invertible pencil

P
11

k (z) =




S
12

k −T
12

k O · · · O

O S
12

k+1 −T
12

k+1 · · · O
...

.. .
. ..

. ..
...

O S
12

k+N−2−T
12

k+N−2

−zT
12

k+N−1 O · · · O S
12

k+N−1




and P
12

k = S11

k , P
21

k = S22

k . We define and partition
analogously

Bk = ΠlQkB̃k =

[
B1

k

B2

k

]
, Ck = C̃kZkΠr = [ C2

k | C
1

k ]

and we have immediately that

W+
k (z) = CkP

+

k (z)Bk

The following result is straightforward.
Lemma 2:

rankP k(z) = rankP
11

k (z)
By applying now Lemma 1, we obtain

W+
k (z) = Ck

[
[P

11

k (z)]−1 O
O O

]
Bk = C2

k[P
11

k (z)]−1B1

k



It follows that a realization of this (1,2)-inverse ofWk(z)
is defined by the periodic descriptor system

T
12

k x(k + 1) = S
12

k x(k)−B
1

ku(k)
y(k) = C

2

kx(k)
(16)

IV. PROPERTIES OF(1,2)-INVERSES

By exploiting the fine structure of the pair(Sk, T k), it is
possible to bring the pencilP k(z) in (15) using appropriate
permutation matricesΠ3 andΠ4 in the form

Π3P k(z)Π4 =




P r
k (z) ∗ ∗ Br

k

O P reg
k (z) ∗ O

O O P l
k(z) O

O O Cl
k O


 (17)

where, forx = r, reg, l,

P x
k (z) =




Ax
k −Ex

k O · · · O
O Ax

k+1−Ex
k+1 · · · O

...
. ..

.. .
. . .

...
O Ax

k+N−2−Ex
k+N−2

−zEx
k+N−1 O · · · O Ex

k+N−1




We have the following straightforward result.
Proposition 1: The transmission zeros of the minimal

periodic system (1) are the zeros of the subpencilP reg
k (z).

Proof: From the construction of the Kronecker-like
form of the pair(Sk, Tk), the subpencils[Br

k P r
k (z) ] and[

P l
k(z)
Cl

k

]
have, respectively, full row and full column ranks

for all z (finite and infinite). Therefore, the zeros of regular
subpencilP reg

k (z) represent the transmission zeros of the
periodic system (1) (where the system pencil (5) looses its
normal rank).
Note that in the case of a non-minimal system, the zeros of
P reg

k (z) contains additionally the input and output decou-
pling zeros of the system.

We can easily prove the following well known fact.
Proposition 2: The poles of the inverse system (16)

contains the transmission zeros of the original system.
Proof: We assume the original system is minimal.

Since the pole pencil of the inverse is the permuted leading
diagonal block of (17), we have merely to show that
the system zeros, contained inP reg

k (z), are completely
reachable and observable for the corresponding input and
output matricesB̂1

k and Ĉ2
k, where

Π3Bk =

[
B̂1

k

B2

k

]
=




B̂r
k

B̂reg
k

B̂l
k

B2

k




CkΠ4 =
[
Ĉ2

k C1

k

]
=

[
Ĉr

k Ĉreg
k Ĉl

k C1

k

]

To check observability, consider the extended pencil

P e
k (z) =




Fk − zLk Gk

Hk Jk

0 IM


 (18)

and transform it as follows[
Π3ΠlQkΠ1 O

O IM

]
P e

k (z)Π2ZkΠrΠ4 =




P r
k (z) ∗ ∗ Br

k

O P reg
k (z) ∗ O

O O P l
k(z) O

O O Cl
k O

Ĉr
k Ĉreg

k Ĉl
k C1

k




SinceP e
k (z) has full column rank, it follows that




P r
k (z) ∗
O P reg

k (z)
Ĉr

k Ĉreg
k




has full column rank as well. Thus, the zeros ofP reg
k (z)

are observable. The reachability of the zeros can be shown
similarly.

From the properties of submatrices in the Kronecker-
like form (13) and (14) we can check immediately the
existence of right (left) inverses and characterize some of
their properties.

Proposition 3: The original system (1) is right (left)
invertible if the pair(Sk, T k) has no right (left) Kronecker
structure.

The following result is practically a corollary of Propo-
sition 2.

Proposition 4: Any right (left) inverse of the form (16)
is completely observable (reachable) provided the original
system (1) is completely observable (reachable).

Proof: In the case of a right inverse, consider once
again the extended pencil (18). Since the original system is
completely observable, this pencil has full column rank for
all k. Consider the transformed extended pencil
[

ΠlQkΠ1 O
O IM

]
P e

k (z)Π2ZkΠr =

[
P

11

k (z) P
12

k

C2

k C1

k

]

which has also full column rank. It follows that
[

P
11
k (z)
C2

k

]

has full column rank too and thus the inverse system
is completely observable. The proof for a left inverse is
completely analogous.

Note that in general, the resulting right (left) inverse
can be unreachable (unobservable) for a special choice of
the transformation matrices and this feature is the key to
determine least order inverses (see Section VI-C).

V. COMPUTATION OF STABLE (1,2)-INVERSES

If the periodic system (1) is minimum-phase (i.e., has no
infinite zeros and all finite zeros are stable), we are often
interested to determine a stable (1,2)-inverse of it. From the
results of previous section, it follows that the poles of the
inverse always contain the system zeros, and therefore this
part of poles is fixed. The rest of poles is formed from the
reunion of zeros of the subpencilsP r

k (z) andP l
k(z), and, as

we will see, is freely assignable. These poles are sometimes



called the ”spurious poles”, because they arise depending
on the method used to determine the (1,2)-inverse.

Consider transformation matricesUk andVk of the form

Uk =




I 0 0 K1
k

0 I 0 K2
k

0 0 I K3
k

0 0 0 I


 :=

[
I Kk

0 I

]

Vk =




I F 1
k F 2

k F 3
k

0 I 0 0
0 0 I 0
0 0 0 I


 :=

[
I Fk

0 I

]

where the identity matrices have dimensions compati-
ble with the block row structure of the reduced ma-
trix Sk in (13). Then, the transformed pair(Ŝk, T̂k) :=
(UkSkVk, UkT kVk+1) is given by

Ŝk =

[
S

11

k Ŝ12
k

0 S
22

k

]
=




Br
kAr

k + Br
kF 1

k ∗ ∗
O O Areg

k ∗
O O O Al

k + K3
kCl

k

O O O Cl
k


,

(19)

T̂k =
[

O T̂ 12
k

O O

]
=




O Er
k ∗ ∗

O O Ereg
k ∗

O O O El
k

O O O O


 (20)

whereŜ12
k = S

12

k + S
11

k Fk + KkS
22

k . The inverse periodic
system is defined by

T̂ 12
k x̂(k + 1) = Ŝ12

k x̂(k)− B̂1
kû(k)

ŷ(k) = Ĉ2
k x̂(k)

(21)

where

UkQkB̃k =

[
B̂1

k

B̂2
k

]
:=

[
B

1

k + KkB
2

k

B
2

k

]

C̃kZkVk = [ Ĉ1
k | Ĉ2

k ] := [ C
1

k | C
2

k + C
1

kFk ]

To obtain inverses with the spurious poles lying in a
”good” domain |Cg of the complex plane (e.g., stable do-
main), we can solve two periodic pole assignment problems.
For the transformed pair(Ŝk, T̂k) the set of spurious poles
of the inverse is formed from the reunion of the eigenvalues
of the matrices(Er

N )−1(Ar
N + Br

NF 1
N ) · · · (Er

1)−1(Ar
1 +

Br
1F 1

1 ) and (El
N )−1(Al

N + K3
NCl

N ) · · · (El
1)
−1(Al

1 +
K3

1Cl
1). Thus, by choosing appropriateF 1

k and K3
k all

non-zero spurious poles can be moved to arbitrary loca-
tions in |Cg. This is guaranteed by the reachability and
observability of the periodic systems(Er

k ,Ar
k,Br

k, ∗, ∗) and
(E l

k,Al
k, ∗, Cl

k, ∗), respectively (see Section III).

VI. SOME OPEN COMPUTATIONAL PROBLEMS

A. Computation of delay inverses

The structure at infinity of the computed inverse provides
full information on the minimal number of delays necessary
at each output of the inverse to achieve a proper (or
causal) input-output behavior. In fact, this is the inversion
problem considered in [2], where the structure algorithm
of [3] is employed to determine the structure at infinity
and to construct explicitly a delay inverse. In the case
of our approach, the information on the infinite zeros
can be obtained by examining the ”fine” structure of the
periodic pair(Areg

k , Ereg
k ) resulting from the computational

algorithm of [11]. The matrices of this pair are obtained in
the form

Areg
k =

[
A∞k A∞f

k

O Af
k

]
, Ereg

k =
[

E∞
k E∞f

k

O Ef
k

]

where the pair(A∞k , E∞
k ), with A∞k invertible, contains

the zeros structure at infinity (i.e., the infinite poles of
the inverse), and the pair(Af

k , Ef
k ), with Ef

k invertible,
contains the finite zeros structure (i.e., the fixed finite
poles of the inverse). Moreover, the matrices of the pair
(A∞k , E∞

k ) are in special staircase forms from which the
infinity structure can be extracted by inspection (Note: The
details of this extraction need to be still worked out). The
maximum multiplicity of infinite zeros gives the minimum
(or inherent) delay necessary to obtain a causal behavior
for the inverse system. A remaining computational aspect
is to obtain a standard system representation of the delay
inverse by eliminating the infinite input decoupling zeros
which arise after adding the delays at the outputs of the
inverse system. An alternative possible approach along the
lines of discussions in [11] is to determine the delay inverse
by solving a model matching problem.

B. Parameterization of All (1,2)-Inverses

Following [12], all (1,2)-inverses of a matrixW with
coefficients in a field (e.g., the field of rational functions in
z) can be parameterized as

W+ = (X+
0 + NRX)(Y +

0 + Y NL)

where W̃+
0 = X+

0 Y +
0 is a full rank factorization of

any particular (1,2)-inversẽW+
0 of W , NR and NL are

basis matrices for the right and left nullspaces ofW (i.e.,
WNR = 0 and NLW = 0), and X and Y are arbitrary
matrices with appropriate dimensions. By applying this
parameterization to the generalized inverse of the lifted
TFM Wk(z) of a periodic system, we can obtain such a
parameterization in terms of the (1,2)-inverse of the pencil
Pk(z) and possibly also in terms of periodic state-space
realizations. Note that multiplications and additions of lifted
TFMs correspond to series and parallel system couplings,
respectively.

The main additional computational aspects to have such a
parameterization is the computation of periodic realizations



for the corresponding nullspaces. For the standard systems
case, a reliable numerical algorithm has been proposed in
[13] and recently extended to the periodic case [14].

C. Computation of least order inverses

A main application of the above parameterization is to
determine (1,2)-inverses having least orders. Although this
problem in the general (non full rank) case appears to be
open even for standard systems, the least order aspect can
be potentially addressed by our approach for computing
particular (right or left) least order inverses by extending
recently proposed techniques for standard systems (see for
example [15]). The basic idea is to choose appropriateFk

and/orKk to make a maximum number of spurious poles
of the inverse system (21) unobservable or unreachable. For
example, for a fixedKk, choosingFk such that a maximum
number of spurious poles corresponding to the pair(Ar

k +
Br

kF 1
k , Er

k) becomes unreachable can be reformulated as
a minimal order periodic dynamic cover design problem.
The computational problem of determining minimal order
dynamic covers for standard state space systems has been
recently addressed in [16]. The proposed computational
algorithm is essentially a modified staircase reachability
form computation as that proposed in [17]. A similar
algorithm for periodic systems has been proposed recently
[18], and this algorithm could serve as basis to develop a
similar cover design algorithm for periodic systems.

VII. N UMERICAL ISSUES

The proposed computational approach to compute (1,2)-
inverses relies on the reduction to the Kronecker-like form
of a periodic pair by using a structure preserving numeri-
cally stable algorithm [11]. From the reduced pair, a (1,2)-
inverse can be obtained simply by inspection, without any
additional computation. Thus, the algorithm to compute a
(1,2)-inverse isbackward numerically stable. The overall
computational complexity of this algorithm is at most
O(Nq3), where q is an upper bound for the problem
dimensionsµk + pk and nk + mk [11]. Thus this is a
satisfactory algorithm along the lines of requirements which
we formulated in [7].

To obtain inverses with stable spurious poles, eigenvalue
placement problems can be solved by using stabilization or
pole assignment techniques for periodic descriptor systems
with time-varying state and input dimensions. However, at
present there is no reliable numerical algorithm developed
for this computation. As an alternative approach, we can
transform the underlying periodic descriptor systems into
standard periodic systems and apply the algorithm of [19]
which can address problems with time-varying dimensions

VIII. C ONCLUSIONS

We proposed a numerically reliable method to compute
(1,2)-generalized inverses of periodic systems. The pro-
posed method is completely general, being applicable to
both standard as well as descriptor periodic systems with

time-varying state-, input-, and output -vector dimensions,
having associated lifted TFMs of arbitrary rank. A particular
emphasis has been put on reliably computing (1,2)-inverses,
because of their relevance to many practical applications.
The proposed approach provides flexibility to cope with
various conditions on the spurious poles of the computed
(1,2)-inverses. For instance, a stable (1,2)-inverse can be
easily computed whenever exists. An important advantage
of our computational approach to compute (1,2)-inverses
is that periodic descriptor representations of inverses are
obtained directly, without explicitly manipulating the lifted
representations. In this way, computations with large di-
mensional sparse matrices or building of matrix products
are completely avoided.
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