Computation of generalized inverses of periodic systems
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Abstract—We address the numerically reliable computation pressed in terms of thigansfer-function matrix TFM) of
of generalized inverses of periodic systems. The underlying in- the associated lifted representation. A straightforward but
verses are defined via the corresponding lifted representations. numerically naive approach to compute periodic inverses

Structure preserving reduction of the associated system pencil . .
to a special Kronecker-like form is the main computational would be to apply first the method of [5] to the lifted

ingredient for the proposed approach_ This form can be com- representation and then to Compute a minimal realization
puted by employing exclusively orthogonal transformations. of the resulting TFM of the inverse to obtain a state-

For the computational algorit_hm of the generalized inverse, space periodic system description. This simple approach
the backward numerical stability can be proved. has several disadvantages. Firstly, the resulting TFM can be
improper and, at present, there exists no satisfactory algo-

) o rithm to convert a general descriptor system representation
Inverse systems have many important applications ifito a periodic one. Even in the case when the resulting

areas such as control theory, filtering and coding theongyerse is proper (thus, the realization algorithm of [6] can
The computation of system inverses for standard linege employed), the use of lifted representations with large
time-invariant systems is essentially equivalent to computgrger sparse matrices represent a computational challenge
generalized inverses of the associated transfer-function mgy large periods or state dimensions. Besides this, because
trices. We formulate an equivalent problem for the inversioghis method completely ignores the structure of the lifted
of discrete-time periodic systems in terms of the transfegystem matrices, there is no guarantee for a satisfactory
function matrix of the associated lifted representation.  umerical performance. For example, the strong numerical

For square and invertible periodic systems, the computapility of computations is not ensured even when applying
tation of inverses can be done by explicit formulas. Fopymerically stable algorithms in all computational steps.
non-square systems, explicit formulas can be employed only | what follows, we propose a numerically reliable
in the full-rank case to determine left or right inversesprocedure to construct generalized inverses which exploits
provided the system feedthrough matricBs have full and preserves the sparse structure of the lifted system
ranks. However, these direct formulas do not allow tenatrices and generates directly a state-space representation
arbitrarily choose the spurious poles which appear in thgf the inverse. This procedure relies on structure pre-
computed left or right inverses. In the more general case @brving orthogonal transformations to compute particular
periodic systems with transfer-function matrices of arbitrarkrgnecker-like form of the lifted system pencil. It can be
rank, no explicit formulas can be used. shown that the computational algorithm of the inverse is

The inversion problem for periodic systems has beegackward numerically stabland has a low computational
considered by several authors [1], [2], by deriving condicomplexity which is linear in the period and cubic in
tions for left/right invertibility. A constructive approach to the maximal problem dimensions. The resulting inverse
compute left/right inverses has been developed in [2], bas@g minimal, provided the initial description of the system
on a recursive procedure proposed in [3], which is similaf1) is minimal. Thus, the computational algorithm is com-
to Silverman’s structure algorithm [4]. The main advantagg|etely satisfactory according to the criteria we formulated
of this approach is that the resulting inverse system i [7]. In combination with stabilization algorithms for
already in a state-space form. Note that the existence Qériodic systems, the proposed procedure can also cope
equivalent procedures to determine inverses using liftinggith constraints related to the stability of the inverse. For
based approaches is mentioned in [2] as still an opeskample, stable inverses of minimum-phase systems can be
problem. easily constructed. A parameterization of all (1,2)-inverses

In this paper we address the computation of periodify terms of left and right annihilators can be employed to
week generalized inversggnown also as the (1,2)-inverses) address the computation of least order inverses.

Starting from the lifted-formulation of the prOblem. This Notation. For anN-periodiC matrixXi we use System-
formulation has the main theoretical advantage that thgically thescript notation

system inversion concepts related to compute various gen- )
eralized inverses (see for example [5]) can be easily ex- Xy = diag (Xp, Xy, Xpyna),

o to denote the block-diagonal matriX; associated to the
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Il. PRELIMINARIES we assume that the system (1) is minimal in that sense
We consider periodic time-varying descriptor systems dithis implies time-varying state dimensions and rectangular
the form descriptor matrices) then we have the following definitions
Era(k+1) = Aga(k)+ Byu(k) . 0]1: ;t);)les zteros an:j'mlrglmal indices of the TFM (4) in terms
(k) = Cra(k)+ Dru(k) 1 o © SYS em.ma rix (5) .

Y Definition 1: The polesof the transfer functiorivy,(z)
where the matricest, € R#s*™+1 A € RM#*™  of the minimal periodic system (1) are the zeros of the
By, € R#exme O € RPEX™ Dy € RP:*™k gre periodic  associated pole pencH, — zL;, defined in (3).
with period N > 1, and the dimensions fulfil the condition  Definition 2: Thetransmission zerosf the transfer func-

v = fozl i = fozl ny . By using the script notation, tion W (z) of the minimal periodic system (1) are the
the periodic system (1) will be alternatively denoted by thénvariant zeros of the associated stacked system pencil (5).
quintuple (E, Ak, B, Ck, Dy.). Definition 3: The left and right minimal indicesof the

To define the inverse of the periodic system (1), we defingansfer functioni?,(z) of the minimal periodic system (1)
first the TFM corresponding to the associagtaicked lifted are those of the associated stacked system pencil (5).
representatiorof [8], which uses the input-state-output be- |t follows from (6) that poles and zeros of the TFMs
havior of the system over time intervals of length rather  for gifferent sampling times, can only differ at= 0 and
then 1. For a given sampling tinie the corresponding/- , _ .
dimensional input vector’-dimensional output vector and  consider now the permuted system matlZBg( ) =

v-dimensional state vector are I, Py (2)1I
k 2

ug(h) = [T (k+hN)---uT(k+hN+N-—1)T,

v (h) = [yr(k+hN) --yT(k+hN+N-1)7, Sy, -Tpx O )

zp(h) = [2T(k+hN)---2T(k+hN+ N —1)]T. N O Sit1 Tt 0
whereM = "1 my andP = Y"1, pi. The correspond- Pilz) = : E B - : (7)
ing lifted system can be represented by a time-invariant o Sk+no —Trino
descriptor system of the form —2Tp4na O - O Sk

Lyxzg(h+1) = Fyag(h) + Grug (h) @ where fori =k, k+1,...,k+ N —1
yi (h) = Hyxg(h) + Jyup (h)
A; B; E;, O
whereGy, = By, H, = Ci, J. = Dy, and Si= [ C; D; ]7 T = { O O :l (8)
[ A -E, O - o

. The above definitions of zeros and minimal indices can
@) : be evidently given also in terms of this permuted pencil.

Fp—2Ly = “Bun.s O 3) By suitably redefinin_g the matrice_s_of the periodic pa_lir
(Sk, Tx), we can define for non-minimal systems special
0] o ApiN—2 —Erin_o types of zeros which, according to [8], characterize the

|—2Ek4n-1 O -+ O Agin_1 | reachability and observability properties.

Definition 4: Theinput decoupling zerosf the periodic

Assuming this square pencil is regular (i.e..(dgt-2Ly) # system (1) are the invariant zeros of the perfeci{z) in (7)

0), the TFM of the lifted system is

for
Wi(2) = Hi(2Lx — Fi) ™' G + Ji (4) Si=[A; Bi], Ti=[E O]
system (1) are the invariant zeros of the peii(z) in (7)
Fk - ZLk Gk f
Pi(z) = (5) for
Hi Tk S A; T E;
which both depend on the sampling timie Obviously o T o
Wiin(z) = Wi(2) and the TFMs at two successive values By extending the definitions of [8], the system (1) is
of k are related by the following relation [9] reachable if it has no input decoupling zeros, and is

= observableif it has no output decoupling zeros. Note that
Wii1(2) = { 0 IP—PK} Wi(2) { 0 = Imk} (6) all above definitions are valid for a specified time moment
w0 Invg—m, 0 k. We say that the system (1) smpletely reachabléf
To define poles and zeros of the periodic system (1}t is reachable for alk, andcompletely observablé it is
we need to assume the minimality of the system (1) anobservable for allc. The periodic system (1) isinimal
thus of the lifted realization (2). This is equivalent to thef it is completely reachable and completely observable.
notion of reachability and observability at finite and infiniteObviously, these definitions generalize those for standard
eigenvalues of the pencil (5), as introduced in [10]. Ifperiodic systems (i.e., witll, = I,,, ) [8].



I1l. COMPUTATION OF (1,2)-INVERSES reduce theN-periodic pair(Sk, 1)) to the Kronecker-like

We can define the (1,2)-inverses of the periodic systetfr?rm (Sk, T) = (QuSk Zr, QTiZy+1), Where

(1) in terms of the (1,2)-inverses of the associateds M 1o By | AL = *
rational TFMW(z). Specifically, a (1,2)-invers&’,(z) of s | SklSe | | O] O A « (13)
Wi.(2) must satisfy the first and second so-called Moore- 7% — | giQ ~lo|lo o A
Penrose relations (see e.g., [12]): olo o0 C}

1) Wi(2)Xk(2)Wi(2) = Wi(z) b Ol B *

2) Xu(2)Wi(2)Xk(z) = Xi(z) T, = | O Tk | 8 g qu bfl (14)
We denote a (1,2)-inverse (aweek generalized inverse o] o 0 ‘ 0 0 Ok

X () satisfying the above conditions 8§ (z). Note that, o : -
the left and right inverses frequently used in the control Where: (a) & is invertible and the perI(l)d_lc_ system
literature, are particular (1,2)-inverses of systems with full€;. A, By, *, %) is completely reachable; (i), is invert-

column rank or full row rank TFMs, respectively. ible and the periodic syste(},, A, *,C}, *) is completely
The computation of (1,2)-inverses Hf(z) can be done observable; (c) the pole pencil of the form (3) corresponding
using the following straightforward formula to the pair (£, A;) is regular. Note that the triples
(&, Az, Br) and (&, AL, CL) specify the right and left
Wi(z) = [0 In ] P (2) [ 0 } 7 ) Kronecker structures aPx(z), respectively, while the pair
Ip (£:7, A7) specifies the finite and infinite zero structure of
where Pt () is an (L,2)-inverse o2 (2). If we use the Py (z). Consider partitions compatible with (13) {6}, By
permuted system matri®,(z) = II; P, (z)II, in (7), then and Cy Z
(9) can be equivalently written as ~ *,lc ~ 1 —29
. _ QeBr=|—|, CiZr=[C,|C}]
Wi (z) =CP}(2)B, (10) k
B B 0 With appropriate permutation matricég and IL. it is
whereCy, = [0 I,,, ] and B, = .| In the case of a possible to rearrange the transformed per@ilP;(z)Z;

p
locally square system (i.ep;, = m,j an explicit inverse such that

can be immediately defined as a periodic descriptor system

—=11 —=12
_ — ~ P, (2)| P
Tiz(k+1) = Spz(k) — Bru(k) (11) Pi(2) == 1L Qx Py(2) 2,11, = %2(1 )| P (15)
y(k) = Cra(k) o g
Provided Dy, is invertible fork = 1,.... N, we can also WhereF (2) is the square and invertible pencil
express the above inverse in the more familiar form s -T. o O
_ 1 _ 1~ =12 =12
E@(k+1) = (Ay — ByD;'Cy)T(k) — By Dy tu(k) N O S Tep - 0
y(k) = D;'Cyz(k)+ D u(k) 12 L (2) = : . .. : :
—12 —=12
We will need the following result to compute (1,2)- 7?2 St N2 _EIQHJH
inverses of non-square systems (see e.g., [12]): 2T n1 O O Siina

Lemma 1:Let R(z) be a rational matrix of rank and
let IT; and I, permutation matrices such that

Ru1(z) R12(2)}
R21(2’) RQQ(Z)

and P,. = S§,, P, = S.. We define and partition
analogously

I, R(2)IL, = [ B, _  _
—, Ckzckzkﬂrz[ck\cllc]
k

) and we have immediately that
R7(z) O _ _
RT(2) =11, { 110( ) 0 } II;. Wi(z) = Py, (2)Bi

According to this lemma, the computation (ﬁg(z) The following result is straightforward.
amounts to isolate first a maximal rank submatrix/f z) Lemma 2:
and then to apply the above formula. This operation can be rankPy,(z) = rankﬁ}fl(z)
done by reducingP(z) to an appropriate Kronecker-like By applying now Lemma 1, we obtain
form from which a maximal rank regular sub-pencil can be
easily separated. L&D, and Z;, be orthogonalV-periodic Wit(z)=C
matrices determined using the algorithm proposed in [11] to

By = 11,08y =

where rank;;(z) = ¢. Then, an (1,2)-inverse dk(z) is

—11

[Py () |0
O |0

1

— —2 —11 iy
By = Ci[Py, (2)] 1Bk




It follows that a realization of this (1,2)-inverse &} (z) and transform it as follows

is defined by the periodic descriptor system LIL O, O . B
=12 —12 —1 0 I Pp ()22, 11,11, =
gk) = Cra(k) Pi(z) © | By
IV. PROPERTIES OF(1,2)-INVERSES 8 PkZ(Z) Pl* g
By exploiting the fine structure of the pdify., T%), it is ’f(lz)
. . — : ; . o (@) Cy. J (@)
possible to bring the penciP(z) in (15) using appropriate mmmememeee- S N =S
permutation matricesl; andIl, in the form Cr Cp? Cr | Ck
Pl () * B; Since P¢(z) has full column rank, it follows that
—= O  P%) * (@)
113 P Iy = k 17 Pl(z *
=19 o " piy|o | ) A
i (%)
(@) (@) Cy. \ o\l | mm “reg T
C C
where, forx = r, reg, I, e
. . has full column rank as well. Thus, the zeros Bf*’(z)
Af _Fk OT 0 are observable. The reachability of the zeros can be shown
O Apn—Ein o similarly. [
Pl(z) = : : From the properties of submatrices in the Kronecker-
0O Ar oo =BT o like form (13) and (14) we can check immediately the
—2Ef, vy O - 6 EZJ:\H existence of right (left) inverses and characterize some of

We h he followi iahtf d | their properties.
Pe a\{?t el'(')I'hOWItng stra.lg.torwar resfuttr.] inimal Proposition 3: The original system (1) is right (left)
foposition 1. 1n€ transmission z€ros ot e minimal, o ipje if the pair(Sk,Tx) has no right (left) Kronecker
periodic system (1) are the zeros of the subpeREft (z).
: . structure.
Proof: From the construction of the Kronecker-like

; . The followi It i icall Il f P -
form of the pair (S, Ty), the subpencil§ B Pr(z)] and sitionezo owing result is practically a corollary of Propo

1
([ Bi.(2) J have, respectively, full row and full column ranks Proposition 4: Any right (left) inverse of the form (16)
0

cl . . 2
r all = (finite and infinite). Therefore, the zeros of regularS COMPletely observable (reachable) provided the original

subpencil P[*/(z) represent the transmission zeros of th&yStem (1.) Is completely obseryablg (reachable)._
periodic system (1) (where the system pencil (5) looses its _100f: In the case of a right inverse, consider once
normal rank). again the extended pencil (18). Since the original system is

Note that in the case of a non-minimal system, the zeros §PMPIetely observable, this pencil has full column rank for

P/“(z) contains additionally the input and output decoudll k. Consider the transformed extended pencil

pling zeros of the system. ILO.JIL O Py | P
We can easily prove the following well known fact. { l%’“ ! s ] PE () 2,11, = kg()%]i
Proposition 2: The poles of the inverse system (16) Cr Cr

11

contains the transmission zeros of the original system. ] Pil(2)

Proof: We assume the original system is minimal Which has also full column rank. It follows th{t %i
Since the pole pencil of the inverse is the permuted leadingas full column rank too and thus the inverse system
diagonal block of (17), we have merely to show thais completely observable. The proof for a left inverse is

the system zeros, contained i “’(z), are completely completely analogous. [ |
reachable and Qbservable for the corresponding input andNote that in general, the resulting right (left) inverse
output matrices;, and(?ﬁ, where can be unreachable (unobservable) for a special choice of
Br the transformation matrices and this feature is the key to
Al g’ﬁeg determine least order inverses (see Section VI-C).
= k k
B = |—~| = Elk V. COMPUTATION OF STABLE (1,2)-INVERSES
k
gi If the periodic system (1) is minimum-phase (i.e., has no
B infinite zeros and all finite zeros are stable), we are often
Cilly = { ¢ ‘ C, } — { & ae ¢ ‘@i } interested to determine a stable (1,2)-inverse of it. From the

results of previous section, it follows that the poles of the

inverse always contain the system zeros, and therefore this
F,— 2L, Gy part of poles is fixed. The rest of poles is formed from the

Pi(z) = Hy Jk (18)  reunion of zeros of the subpenci¥ (z) and P} (z), and, as

0 Iy we will see, is freely assignable. These poles are sometimes

To check observability, consider the extended pencil



called the "spurious poles”, because they arise depending VI. SOME OPEN COMPUTATIONAL PROBLEMS
on the method used to determine the (1,2)-inverse.

) . ) A. Computation of delay inverses
Consider transformation matricés, andV,, of the form

The structure at infinity of the computed inverse provides
full information on the minimal number of delays necessary
at each output of the inverse to achieve a proper (or
causal) input-output behavior. In fact, this is the inversion
problem considered in [2], where the structure algorithm
of [3] is employed to determine the structure at infinity
and to construct explicitly a delay inverse. In the case
R F of our approach, the information on the infinite zeros
0 — { I | Fy ] can be obtained by examining the "fine” structure of the

periodic pair(A;“’, E,“’) resulting from the computational
I algorithm of [11]. The matrices of this pair are obtained in

_ _ ) ) ) the form
where the identity matrices have dimensions compati-

00 oo f o} oo f
ble with the block row structure of the reduced ma- A7 — [ AR Akf }’ E[9 — l:Ek By by ]
trix S, in (13). Then, the transformed paiS;, T},) := O 4 O Ej

(U SkVi, UsTi- V1) s given by where the pair(A°, Eg°), with A3° invertible, contains
the zeros structure at infinity (i.e., the infinite poles of

Uy

Vi =

I
0
0
0

o o~

Tl AT Tl
S BjjAj + B Fy, oo * the inverse), and the paifA}, E/), with E] invertible,
g Sk Sp = 0 0 Ay, * contains the finite zeros structure (i.e., the fixed finite
k= =2 (0] 0] O AL+ K3CL|’ ; ; i
0 |5 ko kk poles of the inverse). Moreover, the matrices of the pair
0 0 0 Ck (19) (A°, Ep*) are in special staircase forms from which the
) infinity structure can be extracted by inspection (Note: The
O | Ej * * details of this extraction need to be still worked out). The
= 0 le | O] O E « maximum multiplicity of infinite zeros gives the minimum
Ty = I (20) : ! .
ol O Ol 0 O E (or inherent) delay necessary to obtain a causal behavior
OO O O for the inverse system. A remaining computational aspect

is to obtain a standard system representation of the delay
whereS!2 = 5,” + 5,' F}, + K,.S.". The inverse periodic inverse by eliminating the infinite input decoupling zeros
system is defined by which arise after adding the delays at the outputs of the
inverse system. An alternative possible approach along the
Ti2%(k+1) = 8122(k) — Bla(k) 21) lines of discussions in [11] is to determine the delay inverse
k) = @,fi(k) by solving a model matching problem.

B. Parameterization of All (1,2)-Inverses

Following [12], all (1,2)-inverses of a matrixl/ with
coefficients in a field (e.g., the field of rational functions in
z) can be parameterized as

Wt = (XJ + NegX)(Yy" +YNL)

where

UrQrBy =

CoZiVe = [CL| C21:=[C, | Cs + CuFy | where W," = X[ Y, is ‘a full rank factorization of
any particular (1, 2) mverséVO of W, Nir and Ny are
To obtain inverses with the spurious poles lying in éasis matrices for the right and left nullspacesl¥f(i.e.,

"good” domainC, of the complex plane (e.g., stable do-WNr = 0 and N;W = 0), and X andY are arbitrary
main), we can solve two periodic pole assignment problemmatrices with appropriate dimensions. By applying this
For the transformed paitSk, 1)) the set of spurious poles parameterization to the generalized inverse of the lifted
of the inverse is formed from the reunion of the eigenvaluesFM W, (z) of a periodic system, we can obtain such a
of the matrices(E} )~ (Ay + ByFy) - (E7)"'(A7 + parameterization in terms of the (1,2)-inverse of the pencil
BrFl) and (EY)"Y(AY + K3OL)---(EH)~1(A] + Py(2) and possibly also in terms of periodic state-space
K3Ch). Thus, by choosing appropriate! and K3} all realizations. Note that multiplications and additions of lifted
non-zero spurious poles can be moved to arbitrary locdFMs correspond to series and parallel system couplings,
tions in C,. This is guaranteed by the reachability andespectively.
observability of the periodic systenis;, A}, By, *,*) and The main additional computational aspects to have such a
(&L, AL x,CL, %), respectively (see Section IIl). parameterization is the computation of periodic realizations



for the corresponding nullspaces. For the standard systetitme-varying state-, input-, and output -vector dimensions,
case, a reliable numerical algorithm has been proposed liaving associated lifted TFMs of arbitrary rank. A particular
[13] and recently extended to the periodic case [14]. emphasis has been put on reliably computing (1,2)-inverses,
) ) because of their relevance to many practical applications.
C. Computation of least order inverses The proposed approach provides flexibility to cope with
A main application of the above parameterization is twarious conditions on the spurious poles of the computed
determine (1,2)-inverses having least orders. Although th{d,2)-inverses. For instance, a stable (1,2)-inverse can be
problem in the general (non full rank) case appears to leasily computed whenever exists. An important advantage
open even for standard systems, the least order aspect cdrour computational approach to compute (1,2)-inverses
be potentially addressed by our approach for computing that periodic descriptor representations of inverses are
particular (right or left) least order inverses by extendingbtained directly, without explicitly manipulating the lifted
recently proposed techniques for standard systems (see fepresentations. In this way, computations with large di-
example [15]). The basic idea is to choose approprigte mensional sparse matrices or building of matrix products
and/or K, to make a maximum number of spurious polesare completely avoided.
of the inverse system (21) unobservable or unreachable. For IX. ACKNOWLEDGMENTS
example, for a fixed(, choosingF}, such that a maximum
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