
Finite Automata Approximations with Error Bounds for Systems
with Quantized Actuation and Measurement: A Case Study

Danielle C. Tarraf1 Alexandre Megretski2 Munther A. Dahleh3

Abstract— We consider stable, discrete time, first order LTI
systems with finite input alphabets and quantized outputs. We
propose an algorithm for generating deterministic finite state
machine approximations of these systems with computable
bounds on approximation error, and we describe the conditions
under which the bounds are valid.

I. INTRODUCTION

The results presented in this paper represent our first
step towards investigating the use of deterministic finite
state machines (FSMs) to approximate analog-state systems
with quantized actuation and measurement in a manner that
allows us to quantify the approximation error. In particular,
we consider a simple case study where the plant we
attempt to approximate consists of a discrete time, internally
stable, first order LTI system with finite input alphabet and
quantized output.

Systems with quantized measurement and actuation are
practically important: The ubiquitous presence of digital
computers in modern control systems has imposed on us
the study of systems involving interacting continuous and
discrete dynamics. Thus the field of hybrid systems has
emerged as an active field of research, and the need for
a systematic method to deal with these systems has been
recognized and pursued.

In [1], Elia and Mitter consider the problem of quadratic
stabilization of a single input single output LTI system with
discrete actuation and measurement. They characterize the
coarsest logarithmic state quantizer that allows stabilization
and design a corresponding output feedback controller.
In [2], Lunze et.al. consider autonomous systems with
quantized outputs. They derive sufficient conditions for an
exact representation as deterministic automata to exist, and
describe how to partition the state space for that purpose.
In [3], Lafferriere et.al. introduce a class of hybrid systems,
referred to as O-minimal systems, for which successive
refinement of an initial partition on the state space provably
terminates and results in a finite bisimulation. In [4], Raisch
and O’Young consider systems with discrete actuation and
measurement and construct finite nondeterministic automata
approximations by mapping strings of measurement and
control symbols to automata states. They show that the
behavior set of the approximating automata contains that

1 Department of Mechanical Engineering, Massachusetts Institute of
Technology, dtarraf@mit.edu

2 Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, ameg@mit.edu

3 Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, dahleh@mit.edu

of the original system and qualitatively prove that as the
length of the strings increases, the approximation behavior
becomes ’closer’ to the original behavior. No quantitative
measure of approximation accuracy or convergence results
are given.

Our objective and approach are different in that we
consider the system components, such as the quantizer, to
be fixed and we do not insist on finding exact or almost
exact discrete approximations. The results by Megretski in
[5] show that the existing robust control framework can
be extended to the discrete setup. Hence, we consider any
approximating model with error bounds that are computable
and sufficiently small for the task at hand (analysis or
synthesis) to be good enough.

II. PROBLEM STATEMENT

Consider a discrete-time, analog-state system P with
finite input and output alphabets, having the structure shown
in Fig. 1. H is a stable first order system (|a| < 1):

H :

{
x(t + 1) = ax(t) + u(t)
v(t) = x(t)

(1)

� �� H Q

P

v(t) y(t)∈Yu(t)∈U

Fig. 1. Analog-State System with Finite Inputs and Quantized Outputs

The input of the system is restricted to take on integer
values, u(t) ∈ U = {−k, . . . ,−1, 0, 1, . . . , k} for some
finite k. Q is a given uniform quantizer with quantization
step l:

Q : y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...

−l if −3l
2 < v(t) ≤

−l
2

0 if − l
2 < v(t) < l

2

l if l
2 ≤ v(t) < 3l

2

...

(2)

The initial state of H is assumed to lie in compact set
I = [−k

1−|a| ,
k

1−|a|], which is an invariant subset of the state

43rd IEEE Conference on Decision and Control
December 14-17, 2004
Atlantis, Paradise Island, Bahamas

0-7803-8682-5/04/$20.00 ©2004 IEEE

WeA02.2

1436

�

�
� �M

∆

z(t)=u(t)w(t)

u(t)∈U ỹ(t)∈Y

Fig. 2. Uncertain Finite State Machine Representation of P

space. The output y(t) takes on a finite number of successive
values in Y ⊂ {. . . ,−l, 0, l, . . .}.

Under these assumptions, we seek to answer the fol-
lowing question: Is it possible to construct an ’uncertain
deterministic finite state machine’ M and a corresponding
uncertainty block ∆ having ’small gain’, such that the
system consisting of the feedback interconnection of M and
∆ (Fig. 2) asymptotically predicts the output of plant P ?
The terms in quotations are precisely defined in Section
III. In this setup, the input z(t) to ∆ is assumed to be
z(t) = u(t), and the output of ∆ is restricted to a binary
alphabet set w(t) ∈ {0, 1}.

The results presented in this paper are an algorithm to
generate a machine M and to verify whether the resulting ∆
satisfies a given gain bound when both M and the original
plant P start out with zero initial conditions. It is also
shown that when ∆ satisfies a given gain bound for zero
initial conditions, it does so for arbitrary initial conditions
provided the plant and the machine are ’externally stable’,
a notion that is defined in Section III. On the negative side
(but not surprisingly), it is shown that when the original
plant is not externally stable, it is not possible to generate
machines for which the corresponding uncertainty block ∆
has arbitrarily small gain in this setup.

III. PRELIMINARY DEFINITIONS

A. Uncertain Deterministic Finite State Machines

We begin by precisely defining what we mean by an
”uncertain deterministic finite state machine”.

Definition 1: An uncertain deterministic finite state ma-
chine M is a set of finite alphabets {U ,W ,Y,Z,S} and a
set of maps {f : S ×U ×W → S, h : S → Y, g : S ×U →
Z}.
U and W are finite alphabet sets of possible instantaneous

values of the control and disturbance inputs, respectively.
Thus input signals u and w are understood to be strings over
alphabets U and W . Similarly, Y and Z are finite alphabet
sets of possible instantaneous values of the measurement
and cost outputs, respectively. S is the (finite) set of states
of the finite state machine. f is the state transition function.
h and g are the output functions. h is understood to define a
partition on S, while g is an arbitrary memoryless function
of the state and control inputs.

Even though the state transitions of M corresponding to
a particular input (u(t), w(t)) ∈ U × W are deterministic,
M is ’uncertain’ because it is driven by a disturbance input
w that we do not measure, predict or control.

B. System Gain

In this section, a discrete-time ’system’ is understood to
mean a dynamical system that is amenable to a state-space
representation of the form:

S :

{
x(t + 1) = f(x(t), u(t))
y(t) = h(x(t))

(3)

Consider a discrete-time system S whose input u and output
y are sequences over finite input and output alphabets U and
Y , respectively. U and Y are assumed to be subsets of the
set of integers containing 0.

Definition 2: S is said to be gain-bounded if there exists
finite non-negative constants C and γ such that

T∑
t=0

|y(t)| ≤ C + γ

T∑
t=0

|u(t)| (4)

holds for all time T ≥ 0, for all initial conditions of the
system and for all admissible input sequences.

For a gain-bounded system, the greatest lower bound of
γ is called the system gain and denoted by γo.

C. External Stability

Consider again a discrete-time system S with finite input
and output alphabets as described above.

Definition 3: S is said to be externally stable if the
following two conditions are satisfied:

(a) S is gain bounded
(b) There exists a finite time T > 0 such that for any

input {u(t)}∞t=0 and for any two initial conditions
x(0) = xo

1 and x(0) = xo
2, the corresponding

outputs {y1(t)}∞t=0 and {y2(t)}∞t=0 satisfy y1(t) =
y2(t) for all t ≥ T .

Thus, we are calling a system externally stable if it
eventually forgets its past without blowing up in the process.

Remark: It is easy to construct a plant where H is a
nicely stable system but plant P is not externally stable.
For instance, the case where a = 0.5, l = 4 and k = 5 is
one such system.

IV. THE APPROXIMATION ALGORITHM

The first algorithm presented in this paper, which is
described in this Section, takes a plant P (Fig.1) and an
integer parameter m (to be described shortly) as its inputs
and generates an uncertain deterministic finite state machine
M (Definition 1). The second algorithm presented in this
paper, which is described in Section V, verifies whether the
uncertainty block ∆ associated with machine M and plant
P satisfies a given gain bound when both M and P start
out with zero initial conditions.

1437

A. Overview of the Algorithm

Define the state of the machine at time t to be

x̃(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u(t − 1)
...

u(t − m)
y(t)

y(t − 1)
...

y(t − m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

for all feasible pairs of input/output sequences of the plant
P , for some positive integer m. Since the input and output
alphabets are finite by assumption, the resulting state set
Sf , Sf ⊂ Um × Ym+1, is also finite. The state transitions
corresponding to a given value of u(t) are not expected to
be unique in general, since we are losing information due
to quantization and due to restriction of the memory of
the machine to a finite length snapshot of the past. Hence,
the machine MND described so far has non-deterministic
state transitions that can be described by a state transition
function fND : Sf × U → P(Sf) \ ∅, where P(Sf) is
the power set of Sf . This machine can be converted to
a deterministic machine by introducing an additional input,
disturbance input w, that is assumed to drive the non-unique
transitions. If for every pair (s, u) ∈ S ×U , fND(s, u) is a
set of cardinality two at most, a binary alphabet W = {0, 1}
is sufficient for this purpose. The resulting machine is an
uncertain deterministic finite state machine as in Definition
1.

B. Details of the Algorithm

The algorithm for generating an approximating FSM
model M consists of the following steps:

1) Selection of m

Larger values of m should allow us to construct
approximations of P where the machine M has
more states and the uncertainty block ∆ is smaller.
However, there are practical limitations to how large
m can be made before the computations involved
become infeasible.

2) Generation of the set of feasible states
A state si = (u1,i, . . . , um,i, y0,i, y1,i, . . . , ym,i)

′ is
feasible if there exists at least one state xo ∈ I

such that Q(xo) = ym,i, Q(axo + um,i) = ym−1,i,
. . . ,Q(amxo +am−1um,i + . . .+u1,i) = y0,i. The set
of feasible states is denoted by Sf .

3) Generation of the 1-step state transitions
For every possible input value uj ∈ U
and for every feasible machine state si,
any feasible state of the form sk =
(uj , u1,i, . . . , um−1,i, yk, y0,i, . . . , ym−1,i)

′ for some
yk ∈ Y is a potential end state for the transition.
Hence in general, the 1-step transitions corresponding
to a given state and input are not unique. Function
fND describes these non-deterministic transitions.

4) Conversion to a deterministic machine
To deal with the ambiguous transitions, we introduce
an additional input, w ∈ W = {0, 1} thus converting
the machine to one with deterministic state transitions,
described by function f defined as follows:

f
.
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(s, u, 0) = sk

f(s, u, 1) = sk if fND(s, u) = {sk}

f(s, u, 0) = sk

f(s, u, 1) = sl if fND(s, u) = {sk, sl}
(6)

5) State aggregation
The last step is to aggregate indistinguishable states.
Two machine states are said to be indistinguish-
able if their corresponding outputs and their one-
step transitions are identical. Formally, si and sj are
indistinguishable if (i) h(si) = y0,i and h(sj) = y0,j

are equal and (ii) f(si, u, w) = f(sj , u, w) for all
(u, w) ∈ U ×W . In this case, the two states can be
collapsed into one and the input/output behavior of
the resulting machine is identical to the original one.

The uncertain deterministic finite state machine generated
by this algorithm is an approximate model M of plant P .
Note that beyond step (2), the computations involve only
the discrete-state system, whether for determining the 1-
step state transitions or for aggregating the states. This
could have positive consequences beyond this simple case
study, as we are not having to compute the images of entire
subsets of the continuous state space. Also, note that the
elements of W = {0, 1} and fND(s, u) = {sk, sl} are
arbitrarily matched in step (4) of this algorithm. This could
be potentially improved in later work. Finally, the sparsity
of the (transition) matrices involved could be potentially
exploited in step (5) when dealing with large machines.

C. Properties of the Algorithm

In order for this approach to be acceptable, it should
allow us to construct machines that meet the minimum
requirements that 1 ≤ card(fND(s, u)) ≤ 2. This is shown
to be the case in this section.

Proposition 1: For any input uj ∈ U and for any feasible
state si, there exists at least one value yk ∈ Y such that
state sk = (uj , u1,i, . . . , um−1,i, yk, y0,i, . . . , ym−1,i)

′ is
also feasible.

Proof: Since si is a feasible state, there exists some xi ∈
I such that Q(xi) = ym,i, . . . ,Q(amxi +am−1um,i + . . .+
u1,i) = y0,i. Let xk = axi + um,i and let yk = Q(amxk +
am−1um−1,i+. . .+uj). xk ∈ I and amxk+am−1um−1,i+
. . . + uj ∈ I since I is invariant. Moreover, xk satisfies
Q(xk) = ym−1,i, . . . , Q(amxk +am−1um−1,i+ . . .+uj) =
yk by construction.

Given a plant P , let Sp be the set of all potential states of
the machine for a particular choice of m, Sp = Um×Ym+1.
Define the following relation on Sp: si ∈ Sp and sj ∈ Sp

are related, si ◦ sj , if u1,i = u1,j , . . . , um,i = um,j , y1,i =

1438

y1,j , . . . , ym,i = ym,j . That is, si and sj are related if
they ”remember” the same pair of input/output strings of
length m. This relation is clearly symmetric, reflexive and
transitive, and hence defines a partition on Sp consisting
of ne = card(U)mcard(Y)m equivalence classes, Sp =
∪ne

i=1Ei.

Proposition 2: At most two elements in each equivalence
class Ei are feasible states of the machine.

Proof: Suppose that three elements in equivalence class
Ei, say s1, s2, and s3, are feasible states. Then there exists
at least three states of the original system, say x1, x2 and
x3, all in I , such that:

Q(amx1 + am−1um,1 + . . . + u1,1) = y0,1 (7)

Q(amx2 + am−1um,2 + . . . + u1,2) = y0,2 (8)

Q(amx3 + am−1um,3 + . . . + u1,3) = y0,3 (9)

where y0,1, y0,2 and y0,3 are distinct. Two of the arguments
of Q must fall at a distance of more than one quantizer
interval apart, say those corresponding to x1 and x3:

|(amx1 + . . . + u1,1) − (amx3 + . . . + u1,3)| > l (10)

We also have that:

|(am−1x1 + . . .+u2,1)− (am−1x3 + . . .+u2,3)| < l (11)

since y1,1 = y1,3 by assumption. Thus we have that
|am−1(x1 − x3)| < l and |am(x1 − x3)| > l, which is
impossible when |a| < 1.

Corollary 1: For any input u(t) ∈ U , the machine,
starting from any state x̃(t) ∈ Sf , can transition to at most
two states.

V. DESCRIPTION OF UNCERTAINTY

In fact, what is driving the non-unique transitions of the
finite state machine MND described in the previous section
are the unmodeled dynamics. The unmodeled dynamics are
lumped into an uncertainty block ∆ whose binary output
is w, the disturbance input to M , and whose structure is
given in Fig. 3. The boolean comparator is a memoryless
system that outputs 0 when its inputs are equal and outputs
1 otherwise. It is clear that ∆ is not a finite state machine
in general, but is rather a system with complicated discrete
and continuous dynamics that we do not want to explicitly
model. Uncertainty set D is a set of systems mapping u →
w to which uncertainty block ∆ belongs. What we seek is
to characterize D by finding some gain constraints that are
satisfied by the input/output behavior of all its elements. A
procedure for computing conservative constraints that hold
for all inputs and for zero initial conditions is presented
in this section, as well as conditions under which these
constraints hold for all initial conditions.

�
�

�
�

�

�

�.

�

�
�

�

u boolean
comparator

∆

P

M
ỹ

y

w

0

Fig. 3. The structure of ∆

A. The Intuition Behind this Description

The structure and connectivity of the states of machine
MND provide some information about the constraints that
govern the input/output behavior of ∆. For a given feasible
state si of MND and a given input value uj ∈ U , if the
one-step state transition fND(si, uj) is a singleton, then we
know for sure that the output of the machine M generated
by the approximation algorithm and the output of the
original system P have to match. Hence, the corresponding
output of ∆ is a 0. On the other hand, if fND(si, uj) is a
pair of states, then two possibilities exist: either the outputs
of M and P match (output of ∆ is 0), or they do not match
(output of ∆ is 1). Moreover, it is not the case that transition
to one of the end states always corresponds to a mismatch
and transition to the other end state always corresponds
to a match. Thus, in the absence of other information,
we assume that in the worst case scenario, transition to
either end state always results in a mismatch. We can
then formulate conservative constraints on the input/output
behavior of ∆ by searching through the simple cycles1

of MND to find the cycle corresponding to the worst
possible (i.e. highest) ratio of cumulative error because of
mismatched outputs to cumulative input required to drive
the machine through the cycle. Let the ratio corresponding
to the worst cycle be γ and let N be the least common
multiple of the lengths of all simple cycles with at least
one possible mismatch. The following inequality holds for
any non-negative integer τ :

Nτ∑
t=0

|w(t)| ≤ γ

Nτ∑
t=0

|u(t)| (12)

(12) implies a constraint of the form (4), since we have:

T∑
t=0

|w(t)| ≤
Nτ0∑
t=0

|u(t)| +
T∑

Nτ0+1

|w(t)| (13)

for some non-negative integer τ0 (τ0 > T
N
−1). Hence, (12)

implies (14):

T∑
t=0

|w(t)| ≤ C + γ

T∑
t=0

|u(t)| (14)

1A simple cycle is one that doesn’t repeat any (state,input) pair except
for the first and last

1439

for all T ≥ 0 and for some positive constant C, C < N .

B. Computing a Gain Bound for Zero Initial Conditions

A brute force search through all simple cycles of MND

in order to compute an upper bound for the gain of ∆ is
practically infeasible for all but the simplest machines. To
get around this issue, we propose the following algorithm
based on the analysis theorem presented in [5]. This algo-
rithm does not explicitly compute a gain bound for ∆ as
described in the previous section. Rather, it allows us to
verify whether a given value of γ is a valid gain bound by
checking feasibility of a corresponding linear program.

Consider the subset SLP of S2
f defined as follows:

SLP
.
= {(s, s+) ∈ S2

f |∃u ∈ U s.t. s+ ∈ fND(s, u)} (15)

Define two integer-valued functions on SLP ; the control
cost, ũ, defined by the rule:

ũ(s, s+)
.
= {u|s+ ∈ fND(s, u)} (16)

and the approximation penalty, w̃, defined by the rule:

w̃(s, s+)
.
=

{
0 if fND(s, ũ) = {s+}
1 otherwise

(17)

Given a value of γ whose validity we wish to verify, we
search for a real-valued storage function V on Sf , positive
and bounded, such that inequality (18) holds for every pair
of states (s, s+) ∈ SLP :

γ|ũ(s, s+)| − w̃(s, s+) ≥ V (s+) − V (s) (18)

This involves solving a linear program in V . If a solution
exists, we would have succeeded in proving that when the
plant P and the approximating machine M both start out
with zero initial conditions, all the corresponding pairs of
input/output signals of ∆ satisfy the following inequality:

T∑
t=0

|w(t)| ≤ V (x̃(0)) + γ

T∑
t=0

|u(t)| (19)

On the other hand, if the linear program turns out to be
infeasible, that does not necessarily indicate that γ is not a
valid gain bound for ∆; we can only conclude that we are
unable to prove that γ is a valid gain bound.

C. Validity of the Gain Bound for Arbitrary Initial Condi-
tions

Consider the setup in Fig. 4 where S1 is understood to
be an arbitrary discrete-time system as defined in Section
III and S2 is understood to be a deterministic finite state
machine with state set S.

Theorem 1: Suppose there exists non-negative constants
C and γ such that for every input string {u(t)}∞t=0, the
output of S1 corresponding to initial condition x(0) = xo

and the output of S2 corresponding to initial condition

∆
y2(t)∈Y

y1(t)∈Y

w(t)∈{0,1}
comparator

boolean

S2

S1

u(t)∈U �

.�

�
�

�

�

�
�

�
�

Fig. 4. The error system of S1 and S2

x̃(0) = so are such that the following inequality is satisfied
for all T ≥ 0:

T∑
t=0

w(t) ≤ C + γ

T∑
t=0

|u(t)| (20)

A sufficient condition for γ to be a valid gain bound for ∆
is that S1 and S2 are externally stable.

Proof: Let {wo(t)}∞t=0 be the output of ∆ corresponding
to input {u(t)}∞t=0 and initial conditions (xo, so), and let
{w∗(t)}∞t=0 be the output of ∆ corresponding to the same
input and an arbitrary pair of initial conditions, say (x∗, s∗).
S1 and S2 are externally stable, hence there exists finite
times T1 and T2 after which the initial state is forgotten, in
the sense described in Definition 3. Thus, wo(t) and w∗(t)
are identical for all times t ≥ τ , where τ = max(T1, T2).
Let C′ = C + τ . All valid input/output signals of ∆ thus
satisfy (20) when constant C is replaced by C′.

Theorem 2: If S1 is gain-bounded but not externally
stable, it is not possible to find a machine S2 such that
the gain of system ∆ is arbitrarily small.

Proof: Suppose this is not true: then for every γε, there
exists a machine S2,ε such that γε is a valid gain bound
for the resulting system ∆. Since S1 is externally unstable
but gain-bounded, there exists a pair of values of the initial
state, say xo and x∗, an input sequence {uo∗(t)}∞t=0 and
a finite positive constant τ such that for any t > 0, there
exists at least one to ∈ [t, t+ τ] at which the corresponding
outputs, yo(to) and y∗(to) are not equal. Let τo be the
smallest such value of τ . Let {wo(t)}∞t=0 and {w∗(t)}∞t=0

be the outputs of ∆ corresponding to input {uo∗(t)}∞t=0,
to some initial state (say so ∈ S) of S2 and to initial
states xo and x∗ of S1, respectively. By assumption, both
pairs of input/output signals ({uo∗(t)}∞t=0, {w

o(t)}∞t=0) and
({uo∗(t)}∞t=0, {w

∗(t)}∞t=0) satisfy inequality (20). Hence
we have:

∞∑
t=0

(|wo(t)| + |w∗(t)| − 2γε|u
o∗(t)|) ≤ 2C (21)

Since wo(t) and w∗(t) have to differ for at least one to ∈
[t, t + τo], for any t ≥ 0, we also have:

t+τo∑
t

(|wo(t)| + |w∗(t)|) ≥ 1 (22)

1440

TABLE I

SIMULATION RESULTS: L=2, K=1

a = 0.551 a = 0.612 a = 0.671

m 2 3 5
nfeas 47 155 2723
nagg 13 19 115

γ 1 1 1

which leads to a contradiction when γε < 1
2k(τo+1) .

VI. SIMULATION RESULTS

We implemented the algorithms and ran simulations in
order to check whether we could construct, for a given plant
P , an approximate FSM model M such that the gain of
the corresponding ∆ is bounded by 1. The results of these
simulations for the case where the quantization interval
is l = 2 and the input alphabet is U = {−1, 0, 1} are
presented in Table I. nfeas is the number of feasible states
of the machine and nagg is the number of reduced states
after aggregation. The machines reported correspond to the
smallest value of m for which a gain bound of γ = 1 could
be verified. The simulations show that larger values of m

are needed for plants with larger values of |a| in order to
guarantee similar gain bounds for ∆. This is to be expected
since systems with larger values of |a| are less stable (in-
ternally) and hence remember their pasts longer. Moreover,
the simulations indicate that a large computational effort
is typically needed for state aggregation, highlighting the
importance of computationally efficient aggregation algo-
rithms and/or suggesting that alternative approaches where
we build up some of the states of the machine as needed
might be more practical. We also ran simulations in which
we applied randomly generated input sequences of length
10, 000 to the original system, starting from a zero initial
condition, and to the machine generated by this algorithm
again starting from a zero initial state and with disturbance
input w identically 0. We directly compared the outputs of
the two systems to get a feel for how well the machines
are approximating the original systems ’on average’. The
approximate models seemed to perform better than expected
(with the values of the computed ’average gains’, computed
as the ratio of cumulative error to cumulative input, being
only about 10 to 20% of the verified gain bounds), hence
confirming the belief that the gain bounds we are computing
are conservative.

VII. CONCLUSIONS AND FUTURE WORK

We considered a simple case study of a stable first
order plant with quantized input and output. We presented
two algorithms, one for generating a deterministic finite
state machine M that approximates the original plant, and
another that verifies whether the resulting uncertainty block
∆ satisfies a given gain bound. The system consisting of
the feedback interconnection of M and ∆ asymptotically
predicts the output of the original plant if the plant and
the machine both start out with zero initial states. We
identified a property, external stability, that guarantees that
the machine M remains an equally good approximation
of the original plant when the plant and the machine are
arbitrarily initialized. We also showed that when the plant
is not externally stable, it is not possible to find a pair
(M, ∆) where ∆ has arbitrarily small gain and the feedback
interconnection of M and ∆ asymptotically predicts the
output of the plant regardless of initial conditions.

In this paper, we did not address the issue of how to
formally verify external stability of a given system, or the
lack thereof. This question will be addressed in future work.
Alternative approaches that would allow us to find less
conservative gain bounds will also be explored. Another
research direction is in investigating alternative frameworks
that would enable us to approximate systems that are gain
bounded but not externally stable to an arbitrary degree of
accuracy. Future work will also focus on moving beyond
this simple case study to systems where this approach could
be of more practical value (for instance, when the internal
dynamics are nonlinear or hybrid). We hope to be able
to identify interesting classes of systems for which this
approach is feasible. Finally, another research effort will
be in the direction of finding more efficient computational
algorithms for state aggregation and system analysis, since
the systems we expect to be dealing with will be large, as
the simulations for this simple case study indicate.

REFERENCES

[1] N. Elia and S.K. Mitter, ”Stabilization of Linear Systems with
Limited Information”, IEEE Transactions on Automatic Control, vol.
46, no. 9, September 2001, pp. 1384-1400.

[2] J. Lunze, B. Nixdorf and J. Schröder, ”Deterministic Discrete-Event
Representation of Continuous-variable Systems, Automatica, vol. 35,
March 1999, pp. 395-406.

[3] G. Lafferriere, G. Pappas and S. Sastry, ”O-Minimal Hybrid Sys-
tems”, Mathematics of Control, Signals and Systems, vol. 13, no. 1,
March 2000, pp. 1-21.

[4] J. Raisch and S.D. O’Young, ”Discrete Approximation and Su-
pervisory Control of Continuous Systems”, IEEE Transactions on
Automatic Control, vol. 43, no. 4, April 1998, pp. 569-573.

[5] A. Megretski, ”Robustness of Finite State Automata”, in Proceedings
of the Mohammed Dahleh Memorial Symposium, Santa Barbara, CA,
February 2002.

1441

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Helvetica
 /Helvetica-Bold
 /Times-Bold
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

