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Abstract— We consider multiplayer repeated matrix games
in which several players seek to increase their individual
rewards by updating their strategies based on limited infor-
mation. One body of work assumes that players can measure
the actions of other players, but do not have access to the
utility functions of other players. In this case, well known
strategy update mechanisms such as Fictitious Play (FP) and
Gradient Play (GP) provide convergence to Nash equilibria in
certain special classes of games. Recent work by the authors
introduced “dynamic” versions of FP and GP, where players
use derivative action to process and respond to the information
available to them. These mechanisms, calledderivative action
FP and derivative Action GP, lead to behavior converging to
Nash equilibria in a significantly larger set of games than
standard FP and GP provide. In this paper, we consider the
case where playersdo not have access to opposing actions. As
before, players do not have access to opposing player utility
functions. Furthermore, a player’s access to its own utility
function is restricted to the measuredutility at each round of
the repeated game—structural parameters of its own utility
remain unknown. Our main result is to show that derivative
action FP and GP can be adapted to the utility measurement
case to yield the same dynamics (in continuous-time and up to
a coordinate transformation) as though players could measure
other player actions. The transformation holds for both two-
player games as well as in multiplayer games with a specific
utility structure. The implication is that many of the stability
and convergence properties obtained under derivative action
FP and GP can be extended to the utility measurement case.

I. OVERVIEW

There is a substantial body of literature on the topic
of learning in games and the related topic of evolutionary
games. This includes several recent monographs [1], [2],
[3], [4], [5]. At issue in much of this work is understanding
the limiting behavior of interacting players that adapt their
strategies given incomplete information. Of particular con-
cern is whether player strategies will converge to a Nash
equilibrium. In this regard, many strategy update mecha-
nisms have been analyzed and a variety of convergence—
and non-convergence—results have been obtained.

Our particular concern in this paper is how one may
overcome non-convergence properties that are exhibited by
a broad class of strategy update mechanisms. To motivate
this problem, consider a multiplayer repeated matrix game
in which players have access to the actions taken by other
players. Playersdo not have access to the strategies that
generated these actions. Nor do players have access to
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the utility functions of other players. Let us presume that
each player keeps a running histogram of the actions of
the other players. Call these running averages “empirical
frequencies”. The paper [6] showed that if players use
strategies that are functions of thecurrent valueof the
empirical frequencies, then convergence to a (mixed) Nash
equilibrium cannot occur. The result strongly relies on
utility functions not being shared among players. This non-
convergence result is reminiscent of earlier results, such
as [7], that established non-convergence for certain special
classes of strategy update mechanisms.

Recent work by the authors [8], [9], showed that it is
possible to overcome this lack of convergence by processing
the empirical frequencies in a “dynamic” manner, i.e., by
allowing strategies to depend on the evolution of the em-
pirical frequencies, and not just their current values. From
a control theory perspective, this is akin to using dynamic
feedback versus static feedback. These papers showed that
the use of “derivative action” can lead to Nash equilibria
in situations that other strategic update mechanisms can
not. Derivative action can be interpreted as a device for
approximate anticipation of opposing player moves. Indeed,
such an interpretation was taken in [10], which established
convergence to Nash equilibrium in zero-sum games that
used forecasts based on averaging over intervals.

The papers [8], [9] considered acontinuous-timeversion
of repeated games and assumed that players can mea-
sure the actions of other players. This paper analyzes the
discrete-time case and uses dynamical systems methods
of stochastic approximation as in [11], [12] to establish
positive probabilities of convergence to Nash equilibria
in discrete-timeunder certain conditions. These conditions
admit the possibility of establishing convergence in the
derivative action case when convergence was impossible
in other approaches. This paper goes on to consider the
more restrictive case where players can only measure the
reward received at each stage. Players do not have access
to the actions of other players, nor do they have access
to the structural parameters of their own utility functions.
In this more restrictive setting, the paper presents derivative
action versions of utility measurement processing and again
establishes positive probability of convergence to Nash
equilibria in discrete-time under certain conditions.

Notation

— For i ∈ {1, 2, . . . , n}, −i denotes the complementary
set{1, . . . , i− 1, i + 1, . . . , n}.

— Boldface1 denotes the vector

(
1
...
1

)
∈ Rn.



— ∆(n) denotes the simplex inRn, i.e.,{
s ∈ Rn|s ≥ 0 componentwise, and1T s = 1

}
.

— Int(∆(n)) denotes the set of interior points of a
simplex, i.e.,s > 0 componentwise.

— For ε > 0, ∆ε(n) denotes the set{
s ∈ Rn|s ≥ ε componentwise, and1T s = 1

}
.

— ΠK : Rn → K denotes the projection to the convex
K ⊂ Rn,

ΠK [x] = arg min
s∈K

|x− s| ,

where|·| denotes the usual 2-norm inRn.
— xi denotes theith component of the vectorx. The

convention will be to reserve subscripts for indexing
the players of a game.

— vi ∈ ∆(n) denotes theith vertex of the simplex∆(n),
i.e., the vector whoseith term equals 1 and remaining
terms equal 0.

— H : Int(∆(n)) → R denotes the entropy function

H(s) = −sT log(s).

— σ : Rn → ∆(n) denotes the “logit” or “soft-max”
function

(σ(x))i =
exi

ex1 + · · ·+ exn .

II. SETUP

This section outlines our framework and notation for
learning in games. A suitable reference is [1].

A. Matrix Games and Smoothed Best Response

We consider a multiplayer game with playersP1, ...,PnP,
wherenP is the number of players. In the non-repeated (one-
shot) game, each player,Pi, generates a random action,
ai ∈ {1, ...,mi}, according to the player’sstrategy, pi,
which is a probability distribution in∆(mi). Each player
receives a real-valued reward according to itsutility function
Ui(a), which is evaluated on the total action profilea =
(a1, ..., anP). These utility functions may be extended to
the product space of probability distributions in the usual
way by identifying

Ui(p) def= Ep[Ui(a)],

wherep = (p1, . . . , pnP) denotes the total strategy profile.
Define the “smoothed” utility function,

Ui(p) = Ep[Ui(a)] + τH(pi),

The entropy termτH(pi) may be viewed as aτ -weighted
reward for randomization. Other interpretations, including
connections to information theory, are discussed in [13].

We will usep−i to denote the collection of strategies of
playersother thanplayerPi, i.e.,

p−i = (p1, . . . , pi−1, pi+1, . . . , pnP).

With this notation, we will sometimes write a strategy
profile p as (pi, p−i). Similarly, we may writeUi(p) as
Ui(pi, p−i) andUi(p) asUi(pi, p−i),

Using the above notation, a strategy profilep∗ is called
a Nash equilibriumif, for all i ∈ {1, ..., nP},

Ui(p∗i , p
∗
−i) ≥ Ui(pi, p

∗
−i), ∀ pi ∈ ∆(mi).

For τ = 0, a Nash equilibrium isstrict if the above holds
with strict inequalities, and a Nash equilibrium iscompletely
mixed if p∗i ∈ Int(∆(mi)) for all i ∈ {1, ..., nP}.

Define thebest responsefunction as

βi(p−i) = arg max
s∈∆(mi)

Ui(s, p−i).

In caseτ = 0, then βi(·) may be multi-valued. In the
smoothed case,τ > 0, then the best response function may
be written explicitly as follows. DefineGi(p−i) as themi-
dimensional vector

Gi(p−i) =

 Ui(v1, p−i)
...

Ui(vmi , p−i)

 .

The jth component ofGi(p−i) may be interpreted as the
expected reward to playerPi when using actionj given
that other players use strategiesp−i. The vectorGi(·) is
also the gradient

Gi(p−i) = ∇pi
Ui(pi, p−i).

In terms ofGi(·), the (single-valued) best response function
is given by the logit or soft-max function (see Notation)

βi(p−i) = σ(
1
τ

Gi(p−i)).

B. Repeated Matrix Games with Restricted Information

Suppose now that the game is sequentially repeated over
stagesk ∈ {0, 1, 2, . . . }. At each stage,k, playerPi uses its
current strategy,pi(k), to generate its current action,ai(k).
Again, each player receives a reward,Ui(a(k)), according
to its utility function evaluated on the total current action
profile.

Player strategies,pi(k), are updated, or adapted, at each
stage according to the information available to playerPi

over times {0, . . . , k − 1}. Two commonly investigated
informational assumptions are:

• At each stage, playerPi can observe the actions of
other players,a−i(k), and knows the structural form
of its own utility function,Ui(·).

-or-
• Player Pi can only measure the realized value,

Ui(a(k)), of its own utility.

The second assumption is a more stringent restriction of
information, and this scenario will be the ultimate focus of
this paper.



C. Fictitious Play (FP) and Gradient Play (GP)

Define theempirical frequency, qi(·), to be the running
averages of the actions of players, i.e.,

qi(k + 1) = qi(k) +
1

k + 1
(vai(k) − qi(k)),

where actions,ai(k), are generated as random outcomes to
the evolving strategies,pi(k).

In the scenario where player actions are public knowl-
edge, then empirical frequencies are also public knowledge,
and hence these can be used as part of processes that define
the strategiespi(k). We will review two such processes.

The first process is smoothfictitious play(FP). Usingτ >
0, a players’s strategy is the best response to the observed
empirical frequencies, i.e.,

pi(k) = βi(q−i(k)).

The second process isgradient play (GP), in which a
player’s strategy is

pi(k) = Π∆ε
[qi(k) + Gi(q−i(k))],

for some smallε > 0. The interpretation of gradient play
is that the strategy is updated according to the evolving
gradient of the non-smoothed (τ = 0) utility. In order to
impose some level of “exploration”, the projection is to
∆ε which lies in the interior of the original simplex. Such
exploration will be used to obtain the desired discrete-time
convergence properties from continuous-time analysis.

III. R EVIEW OF DERIVATIVE ACTION PLAY

In this section, we first review the continuous-time
“derivative action” versions of FP and GP introduced in
[8], [9]. We will go on to define discrete-time versions
of derivative action FP and GP and establish certain
probabilistic convergence properties that are derived from
a combination of the local stability analysis in [9] and
results from the dynamical systems method of stochastic
approximation (e.g., [11], [12]). These tools show that one
can infer certain probabilistic convergence properties of
stochastic discrete-time iterations by analyzing appropriate
deterministic continuous-time equations.

The continuous-time version of FP is

q̇i = −qi + βi(q−i), (1)

It is straightforward to see that the only stationary points of
(1) are Nash equilibria of the smoothed matrix game. The
continuous-time version of GP is

q̇i = −qi + Π∆ε [qi + Gi(q−i)]. (2)

Assume that all Nash equilibria of the non-smoothed matrix
game are either strict or completely mixed. Then for suffi-
ciently smallε, the stationary points of (2) are either 1) the
original completely mixed Nash equilibria or 2) vertices of
∆ε that are of orderε distance from the original strict Nash
equilibria.

A. Derivative Action FP

An interpretation of continuous-time FP is that the state-
variable,qi(t), evolves as a low-pass filtered version of the
continuous-time strategy, i.e.,pi(t) = βi(q−i(t)). Derivative
action FP seeks to exploit thederivative, q̇−i(t), in defining
a player’s strategy,pi(t). Ideally, this would take the form

pi(t) = βi(q−i(t) + γq̇−i(t)).

Derivative action may be viewed as an anticipatory best
response, since

βi(q−i(t) + γq̇−i(t)) ≈ βi(q−i(t + γ))

In caseγ = 1, derivative action also has the interpretation
of an attempt to “invert” the low-pass filter dynamics that
map strategies into empirical frequencies.

The non-idealized case recognizes that exact derivative
measurements are not available. Accordingly, references [8],
[9], use the following approximate differentiator implemen-
tation,

q̇i = −qi + βi(q−i + γṙ−i)
ṙi = λ(qi − ri) (3)

with λ > 0. The intent is that for largeλ, ri closely
tracks qi, and so ṙi may be a good approximation for
q̇i. It turns out such intuition need not hold, because the
ability to reconstruct the derivativėqi depends on the
secondderivative magnitudëqi. The implication is that the
asymptotic convergence of the idealized situation might
not be “recovered” using an approximate differentiator
implementation.

We now state a result that characterizes under what
conditions the approximate differentiator implementation
(3) maintains local asymptotic stability. An important im-
plication is that approximate differentiator FP can lead to a
Nash equilibrium even when standard FP fails to converge.

Define

q(t) = (q1(t), ..., qnP(t)), r(t) = (r1(t), ..., rnP(t)).

Clearly, (q∗, q∗) is a stationary point of the dynamics (3)
if and only if q∗ is a Nash equilibrium of the smoothed
matrix game. Sinceqi(t) and ri(t) are probability distri-
butions for all t ≥ 0 (assuming of courseqi(0) and ri(0)
are probability distributions), we can write the deviation
(q(t)− q∗, r(t)− q∗) asN δx, for someδx, whereN is a
block diagonal matrix with each block being an orthonormal
matrix whose columns span the null space of a row vector
1T of appropriate dimension. Linearizing the dynamics of
(q(t), r(t)) around(q∗, q∗) results in

d

dt
δx =

(
−I + (1 + γλ)D −γλD

λI −λI

)
δx, (4)

for some matrixD with −I +D being the Jacobian matrix
of the linearization of standard FP (1) aroundq∗. The
following result from [9] establishes that the linearized



dynamics (4) can be locally stable with a suitable derivative
gain γ when the linearization of standard FP is unstable.

Theorem 3.1 ([9]): Consider a multiplayer game with a
Nash equilibrium p∗ under derivative action FP described
by (3). Assume that D in (4) is non-singular. Let ai + jbi

denote the eigenvalues of −I + D. The linearization (4) is
asymptotically stable for large λ > 0 if and only if

1) maxi ai < 1−γ
γ , if maxi ai < 0;

2) maxi
ai

a2
i +b2i

< γ
1−γ < 1

maxi ai
, if maxi ai ≥ 0.

Condition 1 in Theorem 3.1 implies that the linearization
of standard FP is asymptotically stable. In this case, any
0 < γ < 1 renders the derivative action FP linearization (4)
stable. Condition 2 implies that derivative action FP may
have a stable linearization in situations where standard FP
does not.

B. Derivative Action GP

In the spirit of the prior modification of FP, we now
define a derivative action version of GP. First, note that
the gradient functionsGi(p−i) can be extended beyond the
product space of probability distributions to a domain that
includes allRn (of appropriate dimension). In this case, the
gradient loses its “expected value” interpretation. With this
extension, derivative action GP is defined as

q̇i = −qi + Π∆ε
[qi + γGi(q−i + ṙ−i)]

ṙi = λ(qi − ri). (5)

The following result is a straightforward generalization of
a similar result stated in [9].

Theorem 3.2:Consider a multiplayer game under deriva-
tive action GP described by (5) with a completely mixed
Nash equilibrium p∗ satisfying p∗i > ε1 (element-by-
element). Assume that the Jacobian matrix M̃ of the lin-
earization of standard GP (2) around p∗ is non-singular. Let
ai + jbi denote the eigenvalues of M̃. The linearization of
(5) around (p∗, p∗) is asymptotically stable for large λ > 0
if and only if

max
i
{ai/(a2

i + b2
i )} < γ < 1/ max

i
{ai}.

Note that the trace of the Jacobian matrix̃M of the
linearization of standard GP (2) vanishes, and so no com-
pletely mixed equilibrium can be asymptotically stable
under standard GP (2). Theorem 3.2 shows that the use of
derivative action in GP renders a mixed Nash equilibrium
locally asymptotically stable in a large class of games.

C. Discrete Time Algorithms and Positive Probabilities of
Convergence

The stability results presented in the previous section
revealed that continuous-time approximate derivative action
FP may render a Nash equilibrium locally stable even
though the same Nash equilibrium may be unstable under
standard FP. Similar statements hold for GP. The implication
of such local stability for the corresponding discrete-time
dynamics is convergence to Nash equilibrium with positive

probability provided that an attainability condition is satis-
fied, as established in [11], [14]. It turns out that the ran-
domization induced by either the entropy terms in derivative
action FP (τ > 0) or the exploration parameter in derivative
action GP (ε > 0) will assure the attainability condition in
discrete-time versions of approximate derivative action FP
and GP, respectively.

Define

qi(k + 1) = qi(k) +
1

k + 1
(vai(k) − qi(k)),

ri(k + 1) = ri(k) +
λ

k + 1
(qi(k)− ri(k)), (6)

where actions,ai(k), are generated as random outcomes
to the evolving strategies,pi(k). The discrete-time approx-
imate derivative action FP strategy is

pi(k) = βi(q−i(k) + γλ(q−i(k)− r−i(k))). (7)

whereas the approximate derivative action gradient play
strategy is

pi(k) = Π∆ε [qi(k) + γGi(q−i(k) + λ(q−i(k)− r−i(k)))].
(8)

The following theorem is a direct consequence of Proposi-
tion 7.5 of [11].

Theorem 3.3:

1) Consider a multiplayer game under discrete-time ap-
proximate derivative action FP, described by (6) and
(7), with a Nash equilibrium p∗. Let γ and λ sat-
isfy the stability conditions of Theorem 3.1. Then the
random sequence (qi(k), ri(k)) converges to (p∗, p∗)
with non-zero probability.

2) Consider a multiplayer game under discrete-time ap-
proximate derivative action GP, described by (6) and
(8), with a completely mixed Nash equilibrium p∗

satisfying p∗i > ε1 (element-by-element). Let γ and
λ satisfy the stability conditions of Theorem 3.2.
Then the random sequence (qi(k), ri(k)) converges to
(p∗, p∗) with non-zero probability.

IV. D ERIVATIVE ACTION ON UTILITY MEASUREMENTS

A. Utility Measurement Processing

We now analyze the case where players donot have
access to each other’s actions. Rather, at each stage, a player
only measures the reward received at that stage. Players are
not even aware of which players influence their reward.
Rather than track empirical frequencies, the “bookkeeping”
done by each player is an estimate of the average reward
obtained when using a specific action.

More precisely, the utility measurement framework pro-
ceeds as follows. At stagek, player Pi plays an action
ai(k) ∈ {1, . . . ,mi}, according to the current strategy
pi(k) and receives the rewardUi(a(k)), where a(k) =
(a1(k), . . . , anP(k)) is the overall action profile. Upon ob-
serving Ui(a(k)), player Pi updates an estimate of the



average utility received for usingai(k) as follows (see [15]):

U
`
i(k + 1) ={
U

`
i(k) + 1

(k+1)p`
i(k)

(Ui(ai(k))− U
`
i(k)), if ai(k) = `;

U
`
i(k), otherwise

(9)

where p`
i(k) is the `th component of pi(k), i.e.,

Prob[ai(k) = `], andU
`

i(k) represents playerPi’s estimate
of the average reward over time for using action` ∈
{1, . . . ,mi}.

In anticipation of “derivative action” on utility measure-
ments, we also define

W i(k + 1) = W i(k) +
λ

k + 1
(U i(k)−W i(k)), (10)

whereU i(k) = (U
1

i (k), . . . , U
mi

i (k)) andλ > 0.
We will investigate two forms of utility measurement

processing.
The first isutility measurement derivative action FP. At

time k, the strategy of playerPi is

pi(k) = σ

(
1
τ

(
U i(k) + γλ(U i(k)−W i(k))

))
, (11)

for someγ > 0 andτ > 0.
The second isutility measurement derivative action GP.

At time k, the strategy of playerPi is

pi(k) = Π∆ε
[qi(k)+γ(U i(k)+λ(U i(k)−W i(k)))], (12)

for some small exploration rateε > 0, and where

qi(k + 1) = qi(k) +
1

k + 1
(vai(k) − qi(k)). (13)

Note that in utility measurement derivative action GP, each
player computes the empirical frequencies ofits own ac-
tions, but still does not observe the actions of other players.

B. Special Case: Pairwise Structured Utility Functions

We will now show that a under certain utility function
structure, the resulting ODE analysis of utility measurement
processing leads to the same equations (up to a change
of coordinates) as the case where players could construct
empirical frequencies. The implication is that the utility
measurement versions inherit similar probabilistic conver-
gence properties as their empirical frequency measurement
counterparts.

Assumption 4.1:The (non-smoothed) utility functions
Ui(pi, p−i) have the form

Ui(pi, p−i) =
∑
j 6=i

pT
i Mijpj ,

for matrices Mij .
Assumption 4.1 imposes a “pairwise” structure in the

utility functions, i.e., the total utility is the sum of pairwise
interactions with other players. In the case of two players,
Assumption 4.1 is satisfied trivially.

1) Utility Measurement Derivative Action FP Analysis:
The following theorem states that under the structure of
Assumption 4.1, utility measurement derivative action FP
inherits the same convergence properties as its “action
measurement” counterpart.

Theorem 4.1:Let p∗ be a Nash equilibrium of a smoothed
(τ > 0) mutliplayer game with a utility structure as in
Assumption 4.1. Let p(k) = (p1(k), ..., pnP(k)) be the
strategy profile generated by utility measurement deriva-
tive action FP, described by (9), (10), and (11). If (p∗, p∗)
is a locally asymptotically stable equilibrium of (3), then
Prob [limk→∞ p(k) = p∗] > 0.

The necessary and sufficient conditions for the local
asymptotic stability of (p∗, p∗) of (3) for large λ are
provided in Theorem 3.1. We note thatglobal asymptotic
stability would imply almost sure convergence to the Nash
equilibrium [11].

The proof of Theorem 4.1 relies on showing that the
differential equations suggested by Proposition 7.5 of [11]
are identical, up to a coordinate transformation, to those of
(3).

Towards this end, we first compute

E
[
U

`

i(k + 1)− U
`

i(k)|U(k),W (k)
]

=
1

k + 1

 ∑
a:ai=`

Ui(a)
∏
j 6=i

p
aj

j (k)− U
`

i(k)


and

E
[
W i(k + 1)−W i(k)|U(k),W (k)

]
=

λ

k + 1
(U i(k)−W i(k)),

where

U(k) = (U1(k), ..., UnP(k)),

W (k) = (W 1(k), ...,WnP(k)).

These lead to the differential equations (for̀ ∈
{1, . . . ,mi})

U̇
`

i = −U
`

i +
∑

a:ai=`

Ui(a)
∏
j 6=i

σaj

(
1
τ

(U j + γẆ j)
)

,

Ẇ i = λ(U i −W i). (14)

The stationary points of (14) satisfy

U
∗
i = W

∗
i =


∑

a:ai=1 Ui(a)
∏

j 6=i σaj ( 1
τ U

∗
j )

...∑
a:ai=mi

Ui(a)
∏

j 6=i σaj ( 1
τ U

∗
j
)

 .

Therefore, the corresponding stationary strategies, defined
asp∗i = σ(U

∗
i /τ), satisfy

p∗i = σ

1
τ


∑

a:ai=1 Ui(a)
∏

j 6=i(p
∗
j )

aj

...∑
a:ai=mi

Ui(a)
∏

j 6=i(p
∗
j )

aj


 ,



which corresponds to a Nash equilibrium of the smoothed
game.

Under Assumption 4.1, it is possible to simplify (14) to

U̇ i = −U i +
∑
j 6=i

Mijσ

(
1
τ

(U j + γλ(U j −W j))
)

Ẇ i = λ(U i −W i) (15)

Assumption 4.1 also implies that (3) may be written as

q̇i = −qi + σ

1
τ

∑
j 6=i

Mij(qj + γλ(qj − rj))


ṙi = λ(qi − ri). (16)

Local asymptotic stability of (16) now implies local asymp-
totic of (15) through the identification

U i ↔
∑
j 6=i

Mijqj and W i ↔
∑
j 6=i

Mijrj .

2) Utility Measurement Derivative Action GP Analysis:
The following theorem states that under the structure of
Assumption 4.1, utility measurement derivative action GP
inherits the same convergence properties as its “action
measurement” counterpart. This theorem is analogous to
Theorem 4.1.

Theorem 4.2:Let p∗ be a Nash equilibrium of a non-
smoothed (τ = 0) multiplayer game with a utility structure
as in Assumption 4.1. Let p(k) = (p1(k), ..., pnP(k)) be the
strategy profile generated by utility measurement derivative
action GP, described by (9), (10), (12), and (13). Assume that
p∗ is completely mixed and satisfies p∗i > ε1. If (p∗, p∗)
is a locally asymptotically stable equilibrium of (5), then
Prob [limk→∞ p(k) = p∗] > 0.

Necessary and sufficient conditions for the local asymp-
totic stability of(p∗, p∗) of (5) are provided in Theorem 3.2.
As before, global asymptotic stability would imply almost
sure convergence to the Nash equilibrium [11].

As before, the proof of Theorem 4.2 relies on analyzing
the differential equations suggested by Proposition 7.5 of
[11], which are

q̇i = pi − qi

U̇
`

i = −U
`

i +
∑

a:ai=`

Ui(a)Πj 6=ip
aj

i

Ẇ i = λ(U i −W i), (17)

where

pi = Π∆ε [qi + γ(U i + λ(U i −W i))].

Note that the only empirical frequencies used by a player
are its own.

Using Assumption 4.1 leads to the simplification,

q̇i = pi − qi

U̇ i = −U i +
∑
j 6=i

Mijpj

Ẇ i = λ(U i −W i) (18)

One can show that local asymptotic stability of (5)
implies local asymptotic stability of (18). The argument is
more involved than a immediate identification, because (18)
is of higher order. However, the dimensionality of (18) is
effectively reduced because the quantity

∑
j 6=i Mijqj −U i

decays exponentially.

V. CONCLUDING REMARKS

This paper has shown how multiple players using only
local utility measurements can evolve towards a mixed strat-
egy Nash equilibrium in a repeated game setting through
the use of derivative action. Two (of several) unresolved
issues in this framework are 1) whether the local stability
of derivative action is actually globally attractive in the
case of a unique Nash equilibrium and 2) if other simple
mechanisms complementary to derivative action can lead to
similar or stronger convergence results.
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