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Abstract— This paper presents analysis and application of
steering control laws for a network of self-propelled, planar
particles. We explore together the two stably controlled group
motions, parallel motion and circular motion, for modeling
and design purposes. We show that a previously considered
control law simultaneously stabilizes both parallel and circu-
lar group motion, leading to bistability and hysteresis. We
also present behavior primitives that enable piecewise-linear
network trajectory tracking.

I. INTRODUCTION

Collective motion is a compelling phenomenon whether
observed in nature or in an engineering application. Two
quantities that distinguish coordinated motion in a spa-
tial network are the group linear and angular momentum.
Parallel translation is characterized by large linear and
small angular momentum about the center of mass, whereas
rotation about a fixed center of mass has small linear
and large angular momentum. Individual control laws that
stabilize these two types of group motion are useful from
both modeling and design perspectives.

Of particular interest for modeling purposes is a control
law that stabilizes both parallel and circular group motions
for the same control parameters, i.e. a bistable system.
Bistability is responsible for a hysteresis behavior that has
been observed in discrete simulations of fish schools as
a function of a relative alignment coupling parameter [4].
These fish schooling results suggest that gyroscopic turning
forces, i.e. those derived from vector potentials, may be
better suited for a continuous model of this phenomenon
than forces derived from scalar potentials. Another moti-
vation for considering gyroscopic or steering controls is
an analogy with coupled phase oscillators [11]. Powerful,
analytical results exist for the synchronization of identical,
sinusoidally coupled oscillators [12].

In addition to the modeling objectives, feedback laws
that produce collective motion of particle groups have en-
gineering applications such as unmanned sensor networks.
For example, autonomous underwater vehicles (AUVs) are
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used to collect oceanographic measurements in formations
that maximize the information intake, see e.g. [10]. A
complementary approach to adaptive sampling is to identify
a sensor coverage metric and design controls that maximize
this objective, e.g. [3]. These approaches emphasize optimal
trajectories; the coordination may be explicit as with artifi-
cial potentials or implicit as with strategies that minimize
redundant coverage.

In this paper, we consider a kinematic model of identical,
all-to-all coupled, planar particles. In a sensor network
application, this represents an all-to-all communication
topology. The particles move at constant speed and are
subject to steering controls as described in Section II. We
explore feedback controls that stabilize parallel and circular
collective motion for modeling and design purposes. In
Section III, we present stability results for a previously
considered two particle steering control law, showing that
it yields a bistable system: i.e. there is a parameter range
for which the control law stabilizes both parallel and
circular motion. In Section IV, we describe a procedure for
piecewise-linear formation trajectory tracking using control
laws that stabilize parallel or circular motion as building
blocks. We plan to extend these results in the future along
both the modeling and design themes.

II. PARTICLE MODEL

We study a continuous-time, kinematic model ofN
identical, self-propelled particles subject to planar steering
controls, following [6], [7]. In complex notation, the model
is given by

ṙk = eiθk (1)

θ̇k = uk, (2)

wherer k ∈ R2 andθk ∈ S1 are the position and heading of
the kth particle. Unless otherwise indicated,k = 1, . . . ,N.
The steering control law is denoted byuk. If we define the
relative position and orientation variables,r jk = r j − r k and
θ jk = θ j −θk, then the control,uk, can be decomposed into
relative spacing and alignment terms, i.e.

uk = uspac
k (r jk,θ jk)+ualign

k (θ jk). (3)

The alignment control is a function of the relative orienta-
tion, θ jk, whereas the spacing control is function of both
the relative position,r jk, and orientation,θ jk.



Throughout the paper, we consider relative alignment
control of the form,

ualign
k =

K
N

N

∑
j=1

sinθ jk, (4)

where K ∈ R is a control gain. The gainK plays an
important role in the paper: we present new analysis for
|K| = O(1) in Section III and apply previous results for
|K| � 0 in Section IV.

Global convergence results for the model (1)-(2) are
presented in [11]. In this earlier work, we provide feedback
controls to stabilize parallel and circular collective motion
by considering the singularly perturbed system,

ṙ k = eiθk (5)

εθ̇k = εuspac
k (r jk,θ jk)+

1
N

N

∑
j=1

sinθ jk, (6)

whereε = 1
K is a small parameter. This approach decouples

the spacing and alignment control terms into slow and fast
time scales, respectively. The fast subsystem has the form
of a network of coupled phase oscillators, i.e.

θ̇k = ωk +
sgn(K)

N

N

∑
j=1

sinθ jk, (7)

where all oscillators have the same natural frequency,ωk =
ωo. In a coordinate frame rotating atωo, ωk = 0.

Watanabe and Strogatz, [12], utilize a coordinate trans-
formation to deduceN− 3 constants of motion for the
model (7). Consequently, they prove that the oscillators
synchronize forK > 0 and converge (anti-synchronize) to an
incoherent state forK < 0. In the particle model, the param-
eter K drives the group linear momentum to its maximum
for K > 0 and to zero forK < 0 [11]. This corresponds to
parallel motion and rotation about a fixed center of mass,
respectively. In the slow time scale, spacing controls refine
these two types of trajectories. We provide spacing controls
that support the design of network trajectory tracking in
Section IV.

III. BISTABLE CONTROL LAW

In this section, we study a two particle system, i.e.
N = 2, of the form (1)-(4) with|K|= O(1). We consider a
rectilinear control law that was presented with convergence
results in [6]. Using complex notation, the spacing controls
are given by

uspac
1 =−<

r21

ρ
, ieiθ1 >

(
<

r21

ρ
,eiθ1 > + f (ρ)

)
(8)

uspac
2 =−<

r12

ρ
, ieiθ2 >

(
<

r12

ρ
,eiθ2 > + f (ρ)

)
, (9)

where< ·, ·> is the scalar product andρ = ‖r12‖= ‖r21‖.
The function f (ρ) is defined as in [6],

f (ρ) = 1−
(

ρo

ρ

)2

, (10)

Fig. 1. Shape coordinates for a two particle system, whereρ = ‖r21‖,
from [6].

whereρo > 0 is a constant spacing parameter. The first terms
in the parentheses in (8)-(9) are zero for either clockwise
or counter-clockwise rotation of the particle pair about its
center of mass. The second terms are zero for the relative
spacingρ = ρo.

Using the shape coordinates illustrated in Figure 1, the
system with the spacing controls (8)-(9) becomes

ρ̇ = sinφ2−sinφ1 (11)

φ̇1 = −sinφ1cosφ1 + f (ρ)cosφ1 (12)

+
K
2

sin(φ2−φ1)+
1
ρ

(cosφ2−cosφ1)

φ̇2 = −sinφ2cosφ2− f (ρ)cosφ2 (13)

+
K
2

sin(φ1−φ2)+
1
ρ

(cosφ2−cosφ1),

whereφ1,φ2 ∈ S1 [6]. This control law is specified entirely
in terms of the relative distance and orientation coordinates,
ρ, φ1, and φ2. As shown in [6], there are only two types
of relative equilibria of the system: parallel and circular
motion. The parallel motion can be divided into two cate-
gories: translation perpendicular to the baseline vector,r12,
and leader-follower motion with arbitrary separation.

The fixed points for the system (11)-(13) that correspond
to these relative equilibria are given as follows:(ρo,0,0)
and (ρo,π,π) produce parallel translation perpendicular to
the baseline vector,r12, with ‖r12‖ = ρo; (ρ2,π,0) and
(ρ2,0,π) produce clockwise and counter-clockwise rotation
about the center of mass at radius,ρ2, determined by the
roots of f (ρ2)− 2

ρ2
= 0; and(ρ, π

2 , π

2 ) and (ρ, 3π

2 , 3π

2 ) pro-
duce a leader-follower formation at an arbitrary separation
distance,ρ. In the next section, we determine the local
stability of these relative equilibria using linearization about
each fixed point.

A. Linear Stability Analysis

We derive the stability properties of the three relative
equilibria of the two particle control law (8)-(9) as a
function of the control gain,K, by linearizing (11)-(13) at
the corresponding fixed points. Starting with the parallel
relative equilibrium, the characteristic polynomial of the



Jacobian evaluated at either(ρo,0,0) or (ρo,π,π) is

(λ1 +1)(λ 2 +(1+K)λ +
4
ρo

) = 0, (14)

where the roots of the quadratic term areλ2 and λ3. Thus
we haveλ1 =−1. In addition, forK >−1, ℜ(λ2,3) < 0; at
K =−1, ℜ(λ2,3) = 0; and forK <−1, ℜ(λ2,3) > 0.

Similarly, the characteristic polynomial for both circular
relative equilibria, i.e.(ρ2,π,0) and (ρ2,0,π), is given by

(λ1 +1−K)(λ 2 +λ +4g(ρo)) = 0, (15)

where

g(ρo) =
ρ2

o

ρ2
2

+
1

ρ2
2

> 0, (16)

and the roots of the quadratic term in (15) areλ2 and λ3.
Thus we haveℜ(λ2,3) < 0. In addition, forK < 1, λ1 < 0;
at K = 1, λ1 = 0; and forK > 1, λ1 > 0.

Lastly, the characteristic polynomial for the leader-
follower relative equilibria, i.e.(ρ, π

2 , π

2 ) or (ρ, 3π

2 , 3π

2 ), is
given by

λ1

(
λ

2 +(K−2)λ +
1
2

(h(ρ)−K)
)

= 0, (17)

where
h(ρ) = 1− f 2(ρ)+

2
ρ

f (ρ), (18)

and the roots of the quadratic term in (17) areλ2 and λ3.
Thus we haveλ1 = 0. In addition, forK < 2, ℜ(λ2,3) > 0.

Proposition 1: The two particle control law, (8)-(9), is a
bistable system for|K|< 1 and the two stable equilibria are
parallel and circular motion.

Proof: Parallel motion is asymptotically stable forK >
−1 because the Jacobian is a Hurwitz matrix. It is unstable
for K <−1 becauseℜ(λ2,3) > 0. Similarly, circular motion
is asymptotically stable forK < 1 because the Jacobian is
a Hurwitz matrix. It is unstable forK > 1 becauseλ1 > 0.
Finally, the leader-follower motion is unstable forK < 2
becauseℜ(λ2,3) > 0.

Remark 1:We can classify the bifurcations that occur at
K =±1. For the parallel relative equilibria, we observe that
a pair of complex eigenvalues,λ2 and λ3, passes through
the imaginary axis asK decreases throughK = −1. We
conclude from the results of the Lyapunov analysis below
that this is a subcritical Hopf bifurcation. For the circular
relative equilibria, we observe thatλ1 ∈ R passes through
zero asK increases throughK = 1 which yields a saddle-
node bifurcation.

B. Lyapunov Analysis

For the control law (8)-(9), we show almost global
convergence to the set of parallel relative equilibria with
K > 1 and almost global convergence to the set of circular
relative equilibria withK <−1. Using the results of [6], we
consider the Lyapunov function,

V =− log(cos(φ2−φ1)+1)+F(ρ), (19)

Fig. 2. Hysteresis characteristics of the two particle control law for
|K| = O(1). The horizontal solid (dashed) lines indicate stable (unstable)
relative equilibria. The grey box indicates the bistable region.

where f (ρ) = dF
dρ

and |φ2−φ1| 6= π. The time derivative of
V along the solutions of (11)-(13) is

V̇ =− sin2(φ1−φ2)
cos(φ2−φ1)+1

(K +cos(φ1 +φ2)) , (20)

which is non-positive forK > 1 and non-negative forK <
−1. For K > 1, the Lasalle invariance principle can be
used to prove that all solutions converge either to the set
of parallel relative equilibria, whereV is minimum, or to
the set of (unstable) circular or leader-follower equilibria.
Likewise, forK <−1, the functionW = e−V is nonincreas-
ing along the solutions, and the Lasalle invariance principle
can be used to prove that all bounded solutions converge
either to the set of circular relative equilibria, whereW
is minimum, or to the set of (unstable) parallel or leader-
follower equilibria.

Remark 2:The almost global convergence to parallel
equilibria for K > 1 and to circular equilibria forK <−1,
combined with the bistability of the parallel and circular
equilibria in the parameter rangeK ∈ [−1,1] causes a
hysteresis behavior under slow variation ofK = 0(1) [8].
The hysteresis characteristics are illustrated in Figure 2.

IV. TRAJECTORY TRACKING

In this section we apply previous results for the design
of feedback control laws for parallel and circular collective
motion [11]. In particular, we use feedback controls in
conjunction with impulsive controls to achieve trajectory
tracking of the center of mass of the network. The admis-
sible reference inputs are piecewise-linear paths. Note that
we use different controls for parallel vs. circular control as
opposed to the single control law of Section III.

A. Collective Motion Feedback Controls

The collective motion feedback controls are based on the
singularly perturbed model, (5)-(6). In [11], we provide
feedback control laws to stabilize parallel and circular
collective motion. The feedback control laws are separated
into relative spacing and alignment control terms, as in
(3). Both parallel and circular controllers use the alignment
control given in (4), withK � 0 andK � 0, respectively. In
this section, we provide spacing controls that are applicable
to trajectory tracking.



1) Parallel Motion: For K � 0, all particle headings
asymptotically synchronize (to first order) in the fast time
scale [11]. The design of a controller that stabilizes ap-
proximate uniform relative spacing is given in [11] and is
summarized below.

The slow manifold of (6) is given by

θk = θ1 + ε
(
uspac

k −uspac
1

)
+O(ε2), (21)

whereε = 1
K > 0. Substituting (21) into (5) gives the slow

dynamics

ṙk = eiθ1
(
1+ ε i(uspac

k −uspac
1 )

)
+O(ε2). (22)

Solving for ṙ k j = ṙ k− ṙ j , we obtain the slow dynamics for
the particle spacing, which are given by

ṙ k j = ε ieiθ1

(
uspac

k −uspac
j

)
+O(ε2). (23)

To design the formation spacing control we follow the
approach developed in [1]. Consider the following interpar-
ticle scalar potential,

UI (rk j) = log‖rk j‖+
ρo

‖rk j‖
, (24)

which is an even function ofr k j. Using
∂ rk j
∂ rk

= 1, the
gradient of this potential is given by

∇UI (rk j) =
(

1
‖rk j‖

− ρo

‖r k j‖2

)
r k j

‖r k j‖
. (25)

We define the formation spacing control in terms of the
negative of this gradient, i.e.

uspac
k =−

N

∑
j 6=k

< ∇UI (rk j), ieiθk > . (26)

Consider the following Lyapunov function candidate,

U =
N

∑
k=1

N

∑
j>k

UI (r k j). (27)

Using (21)-(26), the time-derivative ofU (limited to first
order terms inε) is,

U̇ =−ε

N

∑
k=1

(
uspac

k

)2
, (28)

where we used the property that∇UI (r k j) is an odd function
of rk j.

Proposition 2: The steering control law of the form (3),
with uspac

k given by (26) andualign
k given by (4) withK � 0,

stabilizes parallel motion with spacings that minimize the
potential (27).

Proof: Parallel motion with approximate uniform
spacing corresponds to the set of relative equilibria of
(5)-(6) and (26), characterized byΓ = {(r k,θk) | θk =
θ1, U(r k j)min, k = 1, . . . ,N}. Exponential stability ofΓ for
the singularly perturbed system follows from exponential
stability of the set of synchronized statesθk = θ1 for the fast
dynamics (7) withK > 0 and exponential stability of the set

Fig. 3. Shape coordinates used for the circular feedback control, where
ρk = ‖r̃k‖ andR is the center of mass of the group, after [6].

of formations that minimizeU for the slow dynamics (23).
Linearization at any of these equilibria shows neutral modes
in the directions tangent to the set of equilibria (symmetry
directions) and stable modes in the transverse directions.

2) Circular Motion: Setting K � 0 in (4) drives the
particle phases in the fast time scale to the incoherent state,
or balanced manifold, which corresponds to zero linear
momentum [11]. Therefore, in the slow time scale, the
spacing controls may utilize the center of mass as a fixed
beacon. The spacing controls are subject to the constraint
of preserving zero total linear momentum. As described in
[11], spacing controls which preserve exact invariance of
the balanced manifold,uspac

k , are generated by projection
of the so-called balanced controls,ubal

k . Simulations show
that even in the absence of projection, the balanced controls
achieve near-invariance of the balanced manifold, which is
sufficient for the trajectory tracking objective.

The particles move in a circular trajectory about the
center of mass,R = 1

N ∑N
j=1 r j . We define the vector from

the center of mass to particlek by r̃ k = rk−R, and its
magnitude byρk = ‖r̃k‖, as shown in Figure 3. Consider the
following balanced control, which is a variant of a single
particle/beacon control law from [6],

ubal
k =− f (ρk) <

r̃k

ρk
, ieiθk >−<

r̃k

ρk
,eiθk >, (29)

where f (ρk) is given by

f (ρk) = 1−
(

ρo

ρk

)2

. (30)

In shape coordinates, the dynamics for particlek are

ρ̇k = sinφk (31)

φ̇k = −
(

f (ρk)−
1
ρk

)
cosφk−sinφk cosφk. (32)

Convergence results for a system similar to (31)-(32) are
presented in [6]. A Lyapunov function candidate for the
system ofN particles is the sum of individual functions,VI ,
given by

VI (ρk,φk) =− log(|cosφk|)+H(ρk), (33)



where f (ρk)− 1
ρk

= dH
dρk

. The time derivative ofVI along the
trajectories of (31) and (32) is given by

V̇I =
(

sinφk

cosφk

)
φ̇k +

(
f (ρk)−

1
ρk

)
ρ̇k

= −sin2
φk

cosφk
. (34)

Therefore,V̇I ≤ 0 in the setE = {(ρk,φk)|ρk > 0, |φk|< π

2}.
The largest invariant set inE for which V̇I = 0 is (ρk,φk) =
(ρ1,0), where

f (ρ1)−
1
ρ1

= 0. (35)

and f (ρk) is given by (30) [6].
Proposition 3: The steering control law of the form (3),

with uspac
k determined by (29) with the projection andualign

k
given by (4) withK� 0 stabilizes clockwise circular motion
about a fixed center of mass with radius,ρ1, determined by
(35).

Proof: Circular motion about a fixed center of mass
corresponds to the set of relative equilibria of (5)-(6) and
(29), characterized byΓ = {(r k,θk) | Ṙ = 0, ‖r̃k‖= ρ1, k =
1, . . . ,N}. Exponential stability ofΓ for the singularly
perturbed system follows from exponential stability of the
balanced manifold,̇R = 0, for the fast dynamics (7) with
K < 0 and exponential stability of the set of ring formations
‖r̃ k‖ = ρ1 for the (decoupled) slow dynamics (31)-(32).
Exponential stability of the balanced manifold follows from
the Lyapunov analysis in [12]. Exponential stability of the
set of ring formations follows from exponential stability
of the rotation equilibrium about the fixed center of mass
for each particle, a consequence of the Lyapunov analysis
in (33) and (34). Convergence to the balanced manifold
is almost global for the fast dynamics: only synchronized
solutions do not converge to the balanced manifold [12].
Convergence to the set of ring formations is almost global
for the slow dynamics from the Lyapunov analysis. For
the singularly perturbed system, the convergence results are
therefore semiglobal, i.e. the conclusions for the fast and
slow dynamics are asymptotically recovered as the small
parameterε decreases to zero.

Remark 3:The second term in (29) stabilizes motion
perpendicular tõrk. Changing the sign of this term stabilizes
counter-clockwise rotation, i.e.

ubal
k =− f (ρk) <

r̃k

ρk
, ieiθk > + <

r̃k

ρk
,eiθk > . (36)

In shape coordinates, this control law is given by

φ̇k =−
(

f (ρk)−
1
ρk

)
cosφk +sinφk cosφk. (37)

To see that this stabilizes counter-clockwise motion, observe
that the time derivative of (33) becomes

V̇I =
sin2

φk

cosφk
. (38)

Therefore,V̇I ≤ 0 in the setE = {(ρk,φk)|ρk > 0, |φk|> π

2}.
The largest invariant set inE for which V̇I = 0 is (ρk,φk) =
(ρ1,π), whereρ1 is determined by (35).

B. Behavior Primitives

The parallel and circular feedback controls are used to
define five behavior primitives which can be combined to
track piecewise-linear trajectories. The behavior primitives
use impulsive controls to align the particles with the ref-
erence input and the feedback controls to stabilize this
trajectory. The behaviors will be referred to asrandom-to-
circular, circular-to-parallel, parallel-to-parallel, parallel-
to-circular, andcircular-to-circular. In parallel motion, the
network center of mass follows a linear reference trajectory.
In the circular state, the network center of mass is fixed, i.e.
the group is stopped.

1) Random-to-circular: Starting from random initial
conditions, this behavior stabilizes circular motion about
a fixed center of mass. The input to this behavior is the
spacing parameter,ρo, which determines the formation
radius according to (35). The impulse control used to align
the particles in the rotation direction is given by

4θk = arg(±i r̃ k)−θk, (39)

where the± corresponds to counter- and clockwise rotation,
respectively. The feedback control used to stabilize circular
motion is of the form (3), whereuspac

k is given by (29) for
clockwise or (36) for counter-clockwise rotation. Note that
we use the balanced spacing control,uspac

k = ubal
k , i.e. we

neglect the projection. The alignment control term,ualign
k ,

is given by (4) withK � 0.
2) Circular-to-parallel: Starting from circular motion,

this behavior stabilizes parallel motion along a reference
trajectory with approximate uniform particle spacing. The
input to this behavior is the spacing parameter,ρo, which
determines the critical points of the interparticle potential
(24), and the reference heading,θo. The impulse control
which aligns the particles in the reference direction is

4θk = θo−θk. (40)

The feedback control that stabilizes parallel motion is of
the form (3), whereuspac

k is given by (26) andualign
k by (4)

with K � 0.
3) Parallel-to-parallel: Starting from parallel motion,

this behavior stabilizes parallel motion along a different
reference trajectory. The input to this behavior is the new
reference heading,θo. The impulsive control used to align
the particles in the input direction is given by (40). The
feedback control used to stabilize parallel motion is of the
form (3), whereuspac

k is given by (26) andualign
k by (4) with

K � 0.
4) Parallel-to-circular: Starting from parallel motion,

this behavior stabilizes circular motion about a fixed center
of mass. The input to this behavior is the spacing parameter,
ρo, which determines the formation radius according to (35).
The impulsive control used to align the particles in the



Fig. 4. Trajectory tracking withN = 20 starting from random initial
conditions. The reference input is a piecewise-linear curve. The behavior
sequence starts in the vicinity of A withrandom-to-circular and then
follows A circular-to-parallel, B parallel-to-parallel, and Cparallel-to-
circular. This sequence repeats for the points C, D, and E and then ends
with the circular-to-circular behavior at E.

rotation direction is given by (39). The feedback control
used to stabilize circular motion is of the form (3), where
uspac

k = ubal
k is given by (29) or (36) andualign

k by (4) with
K � 0.

5) Circular-to-circular: Starting from circular motion,
this behavior stabilizes circular motion with a different
radius, i.e. dilation/contraction. The input to this behavior
is the new spacing parameter,ρo, which determines the
formation radius according to (35). There is no impulsive
control used to realign the particles. The feedback control
used to stabilize circular motion is of the form (3), where
uspac

k = ubal
k is given by (29) or (36) andualign

k by (4) with
K � 0.

C. Trajectory Tracking Example

In this section, we use the behavior primitives to construct
a behavior sequence that tracks an input reference trajec-
tory. The admissible references are piecewise-linear paths
specified by a list of desired heading and duration pairs. An
example of trajectory tracking is shown in Figure 4.

In this example, twenty particles start from random initial
conditions in the vicinity of the point A. We observe
that in simulation,|K| = O(1) is sufficient to stabilize the
desired collective motion. The behavior sequence starts
with random-to-circularwith K = −1 and ρo = 25. This
stabilizes circular motion at radiusρ1 = 25.5 determined
by (35). The next behavior in the sequence iscircular-to-
parallel with parametersK = 1, ρo = 25.5, andθo = 22.5◦,
which takes the sensor network from point A to point B
in Figure 4. At point B, the behaviorparallel-to-parallel
with K = 1 is used to track the reference inputθo =−67.5◦

to point C. Then theparallel-to-circular behavior stabilizes
circular motion about a fixed center of mass withK =−1
andρo = 25. The sequence is repeated for the points C, D,
and E. Lastly, thecircular-to-circular behavior stabilizes
circular motion with the radiusρo = 50 (ρ1 = 50.5) using
K =−1.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we extend the analysis of a previously
considered two particle control law to show that it is
bistable for|K| = O(1), whereK is the relative alignment
coupling parameter. This behavior is preserved in numerical
simulations for many particles. However, forN > 2, the
control law stabilizes both clockwise and counter-clockwise
rotations, which is undesirable for modeling natural groups,
e.g. fish schools. We plan to complete the analysis for the
two particle system and investigate the stability properties
of a many particle system governed by a modified control
scheme.

We also apply previous results for feedback control
of networks of many particles to trajectory tracking of
piecewise-linear paths. We use impulsive controls to input
the reference trajectory and feedback controls to stabilize
both parallel motion along the reference heading and cir-
cular motion around a fixed center of mass. We plan to
extend the circular control law so that it is possible to
stabilize particular configurations (formations) within the
family of incoherent states, see e.g. [2]. For example, in
thesplay state, the particles have uniform phase differences,
which corresponds to regular spacing around the circle. The
dilation/contraction behavior may be extended to perform
more elaborate formation shape control. We also plan to
consider robustness to perturbations in the network topology
such as those explored in [5] and [9].
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