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Abstract—The problem of using wireless sensor networks of classical control techniques that explicitly take into
technology for estimation and control of dynamical systems gaccount the stochastic nature of the communication channel.
has recently received widespread attention within the scientific In our setting, the sensor network provides observed data
community. Classical control theory is in general insufficient ! .
to model distributed control problems where issues of com- that are used to estimate the state of a controlled system,
munication delay, jitter, and time synchronization between and this estimate is then used for control. However, due
components cannot be ignored. to unreliability of the network links, data communicated

The purpose of this paper is to extend our work on discrete from the sensors to the estimator can be lost and we

was motivated by data losses in a communication channel. . . .
Accordingly, we consider the Linear Gaussian Quadratic control performance. Accordingly, we generalize the Linear

(LQG) optimal control problem in the discrete time setting, ~Quadratic Gaussian (LQG) optimal control problem —

showing that the separation principle holds in the presence modeling the arrival of an observation as a random process
of data losses. Then, using our previous results, we show whose parameters are related to the characteristics of the
the existence of a critical arrival probability below which the  ~ommunication channel, as shown in Figure 1. The sepa-

resulting optimal controller fails to stabilize the system. This is - - )
done by providing analytic upper and lower bounds on the cost ration principle states that observer and plant of a linear

functional, and stochastically characterizing their convergence SYStém can be designed independently. We show that this
properties ask — oo. principle continues to hold in the case of data loss between
the sensor and the estimator. This allows to extend our
I. INTRODUCTION results in [1], [8] showing the existence of a critical loss
probability below which a transition occurs and the resulting
Advances in VLS| and MEMS technology have boostedptimal controller fails to stabilize the system. We show the
the development of micro sensor integrated systems. SueRistence of such transition by finding deterministic upper
systems combine computing, storage, radio technology, aageld lower bounds for the expected optimal cost and their
energy source on a single chip [2] [3]. When distribute¢onvergence conditions.
over a wide area, networks of sensors can perform a varietyln some related work [9] Nilsson presents the LQG
of tasks that range from environmental monitoring an@ptimal regulator with bounded delays between sensors
military surveillance, to navigation and control of a movingand controller, and between the controller and the actuator,
vehicle [4] [5] [6]. A common feature of these systems ishut he does not address the packet-loss case. This is
the presence of significant communication delays and datansidered by Hadijcostis and Touri [10]. Their analysis is
loss across the network. From the point of view of controtestricted to the static scalar case. Other approaches include
theory, significant delay is equivalent to loss, as data needsing the last received sample for control, or designing a
to arrive to its destination in time to be used for control. Irdropout compensator [11], [12]. We consider the alternative
short, communication and control become tightly coupledpproach where the external compensator feeding the con-
such that the two issues cannot be addressed independerntiyler is the optimal time varying Kalman gain. Moreover,
Consider, for example, the problem of navigating a vehiwe analyze the proposed solution in state space domain
cle based on the estimate from a sensor web of its currerdther than in frequency domain as it was presented in [12],
position and velocity. The measurements underlying thiand we consider the more general Multiple Input Multiple
estimate can be lost or delayed due to the unreliability ddutput (MIMO) case.
the wireless links. What is the amount of data loss that the The LQG optimal control problem with missing ob-
control loop can tolerate in order to reliably perform theservations can also be modelled using the well known
navigation task? Can communication protocols be designddmp Linear System (JLS) theory [13], where the observer
to satisfy this constraint? Practical advances in the desigmwitches between open loop and closed loop configuration,
of these systems are described in [7]. The goal of this papdepending on whether the packet containing the observa-
is to examine some control-theoretic implications of usingion is lost, or arrives at the estimator in time. However,
sensor networks for control. These require a generalizati@onvergence results in this case can be obtained only when



and covariancéP,, Q, Ry) respectively,R; = v R+ (1 —

m ve)o?I, and~y;, are i.i.d. Bernoulli random variable with
L1 P P(y = 1) = 7. Let us define the following information
Y Controller set:
i A
Yit1 M t I = {y", 7"}, 3)
1 wherey” = (yr, yk—1,- -, 41), ¥ = (W, Yo—15- -, 71)-
Tt+110 Consider also the following cost function:
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We now look for control input sequenca*™~! that
minimizes the above functional given that the information
T, is available at timek, i.e.

Jy = min In(@V ) = Ty (@ (5)

Wt

Fig. 1. Overview of the system. We study the statistical convergence Whereuk = Uk(Ik) andZ; is defined in Equa'uon 3.
of the expected state covariance of the discrete time LQG, where the

observation, travelling over an unreliable communication channel, can be I1l. M ATHEMATICAL BACKGROUND
lost at each time step with probability— 5. . . . .
Before proceeding, let us define the following variables:

N A
. . - T = Elzg | Zgl,
each jump sub-system is stabilizable and detectable. The klE A [ | K] 6
detectability assumption fails in our case, producing a non- Cklk z Tk = Tklk; (6)
stationary state random process. Por = Elexrey, | Ze]-

Finally, we mention that philosophically our result can be
seen as another manifestation of the well knawgertainty
threshold principle[14], [15]. This principle states that
optimum long-range control of a dynamical system with-emma 1. The following facts are true:
uncertainty parameters is possible if and only if the uncer- () E [(zx — &)@}, | Z] = E [exp@}, | Zx] =0
tainty does not exceed a given threshold. The uncertainty (b) E [«} Sz | Z] = £).SZ) + trace (SPW) , VS
is modelled as white noise scalar sequences acting on the (¢) E[E[ g(zk+1) [Zr+1) | Ze) = E[g(zr+1) | Zk],  Va(+)
system and control matrices. In our case the uncertainty Proof:
is due to the random arrival of the observation, with th‘?n fact: E
randomness arising from losses in the network. E [z, | T &) — 21, = 0

The paper is organized as follows. In section II we for- (b) Using “standard a algebraic operations and the previous
mulate the LQG optimal control problem with intermittentfact we have:
observations. In section Il we prove some lemmas we ne%fi (S 1Te] = E[(ox — &k + 88) S(ak — bk + ) |Ti]
to prove the main theorems. In Section IV we compute the o o, .
optimal controller, showing that it is linear. We also provide = &Stk + B [(ox —2)'S(ox — )] +

In the following derivation we will make use of the
following facts

(a) It follows directly from the definition.
[k = 20) iy | I = Blopdy — xdy [ D] =

upper and lower bounds on the cost functional of the LQG + 2E (23S (zk — k) | Zk]
problem, and find the conditions on the observation arrival = @, S&y + 2trace{ SE[(x — &x) @ |Ta]} +
probabilitysy for which the upper bound converges to a fixed +  trace{SE[(zr — &k)(zx — &x) |Tk]}

point, and for which the lower bound diverges. Finally, in
section V, we state our conclusions and give directions for
future work.

20.9%, + trace{SPyx }

(c) Let (X,Y, Z) be any random vectorg,-) any func-

1. PROBLEM EORMULATION tion, andp the probability distribution, then
Consider the following linear stochastic system with Ey z[9(X,Y,Z) | X] =
intermittent observations: _ / (XY, 2)p(Y. Z|X)dY dZ
Tht1 = Axy, + Buy + wy, (1) ZJy
w = Czipt o, @) :/Z 9(X.Y, 2)p(Y|Z, X)p(Z|X)dY dZ

wherez;, € R" is the state vectory, € R™ is the output
vector,u;, € RY is the input vectorgy € R™, w;, € R™ and
v, € R™ are Gaussian, uncorrelated, white, with zero mean =Ez[Ey[9g(X,Y,2) | Z,X] | X].

Y
[/ 9(X,Y, Z2)p(Y|Z, X)dY | p(Z|X)dZ
Y

[
S



where we used the Bayes’ Rule. Since by hypothégis  and have zero mean. Moreover, the random varighle
Ziw.1, then fact (c) follows from the above equality byis independent of the previous terms. Therefore, we have:

substitutingZ, = X andZ,.; = (X, 2). [ ] . .
GLr 1= (X, 2) Apt1kt1 é]E[xk+l\k+lx;c+l\k+l |Zx] =

IV. FINITE AND INFINITE HORIZON LQG = El&rt1k Thrap 1Te] +
We first start finding the optimal estimator, which will + E[vi 41 Kit1(CepsajpehpnC +
be needed to solve the LQG controller design, as it will be + Vhr1Vk1) K |Th) =
shown later. = Aparjp + By Kis1 (Cersr s nC +
A. Estimator Designg — +oo + Uk 1V11) Kig1 | Zi] =
We derive the equations for optimal estimator using = A1k +

similar arguments used for the standard Kalman filtering | Ejy2,, K\ 1 (CPuynC' + R)K )iy |Ti] =
equations. The innovation step is given by:

= Appii +
Brprn = Elon|Ti] = E[Azy + Buy + wi|Ti] + E[irs1Pes1nC (CPog1xC’ + R) T CPyqy |Tk] =
= AE[zk|Zx] + Buk = Apt1k + E[Mrg1 | k] a7)
= AZgx + Buk @ Mis1 2 7211 PeyipC (CPrsxC' + R)'CPiy (18)
€ht1lk 2 oz — Tht1|k 8)

where My, 1 is a stochastic matrix which depends on the
A , sequence vy }, but is independent of;.
Pii1ie = Elert1keirin 1 ZTe] =

_E [(A(xk )+ we) (Al — Enpe) +w)’ \Ik] C. Contrt?ller design _

, , , To derive the optimal feedback control law and the
= AE[exnekix|Zx] A" + Efwywj] corresponding value for the objective function we will
= APy A"+ Q (9  follow the dynamic programming approach based on the

where we used the independencewf and 7. Since COst-to-go iterative procedure.

Yr+1, Tk+1, Wi andZ;, are all independent of each other Define the optimal value functiol (x) as follows:
and following the same approach described in [1], then

correction step is given by: Vn(zn) = ElxyWnzy | IN]
Brpierr = Terae T Ve+1 K1 (Y1 — C2rqapr) (10) Vi (z3) A min B[z}, Wiz, + ufUptn + Vit (@re1) | Tl
Peoiijpyr = Pegapp — 1 K1 C Py, (11) Uk
K 2 Pros15C'(C Py C' + R) Y, (12) Using dynamic programming theory [16] [17], one can

show thatJX[ = VE)(SBQ).

where we took the limit — +oo. o ~ We claim that the value functiol, (z)) can be written
The initial conditions for the estimator iterative equationgg:

are:
Vie(zr) = 20 SkThk + Chs k=0,....,.N (19
For = 0 (13) e |
p - p (14) where the matrixS;, and the scalar;. are to be determined
o=t = 70 and are independent of the information ZetVe will prove
B. Estimator properties it by induction. The claim is certainly true fdte = N, in

Here we compute some quantities that will prove useflfRCt:
when deriving the equation for the optimal LQG controller. Vi (zn)

= E[lz\Wyzn | T
Consider first the following variable: ey Wyen | In]

N = @y nyWnrnn + trace(Wy Py n)(20)
=2 o ) —
Apsrfe = Blonra el [Te] = where we used Lemma 1 (b), with the following choice of
= E[(Ady, + Buy) (A, + Buy)" |Zi] parameters:
= E[A:i‘k‘ki‘;flkA/ + 2A§:k‘ku;€B' + Buku%B' ‘Zk]

Sy = Wy 1)
= A.’i‘k|k§3;€‘kAl + 2A§7k‘ku§€B/ + BU]C’U/;CB/ (15)

cy = trace(WyPyn) (22)

where we used the fact thay, ;. is independent of.

Equation (10) can be rewritten as follows: Suppose now that the claim is true fdr + 1, i.e.

Vk+1(fljk+1) = :ﬁ;€+1‘k+1sk+1ik+1|k+1 + Ck+1, and we use

Tht1jkr = it to compute the value function at time stépas follows:
= &pp1p + Y1 Kir1 (C(@rg1 — Brogrje) + Vrs1)
= Tpqaik + Ve+r1 Kpp1 (Cek+1\k + 'Uk+1) (16)

The first and the second terms in the previous equation
and v;4, are independent of each other by Lemma 1 (a)
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where we used Lemma 1(c) in the third line and Lemma
1(b) in the fourth line. We substituted Equations (17) in

Vk(a:k) =

minE[l’;kak + u;Ukuk + Vk+1(3}k+1) | Ik]

Uk

minE[z;kak + u;ka’u‘k +
U

’
E[$k+1|k+15k+1xk+l\k+l + Ck41 ‘Ik-!—l] |Ik]
minE[CL’;kak + u?cUkuk +

Uk

i
Tl 1 kt1 Skt 1Th41) k41 + Chr1 [ Tk]

. ~l ~ !
mm(szkak‘k + trace(Wi Py i) + urUrur +
Uk

trace(Se1E[Trr1jk+1%kr1je1 [Za] + Elcwtr | Zi]))
min(uy Ukuk + trace(Sk4+1Qk41|x)) +
ug

trace(Sk+1Mk+1) =+ :%;C‘kai'k‘k +

trace(Wr Pyji) + Elckt1 | k]

min(uch;cuk + u;gB/SkJrlBuk + 2u;cB/Sk+1A53k|k) +
U

& A’ Skp1 Ay + trace(Sk1 Mg1) +
i’thk@k‘k + tI‘aCB(WkPk|k) + E[Ck+1 | I}C} (23)

where the first term is zero since by hypothegis= 0.

The matricesMkH and Py, in the second and third term
are stochastic since they are function of the sequéngg,
where the expectation with respect to this process is made
explicit in E,. The exact expected value of these matrices
cannot be computed analytically, as shown in [1], but it can
be bounded by computable quantities. In fact let us consider
the following three equations:

Poyip = APy A +Q—
+ '7Aﬁk\k—lcl(0ﬁk\k—1cl +R)_10ﬁk\k—1f4/
ﬁk+1\k+1 = ﬁkﬂc—l -
+ :Yﬁkw—lc/(Cﬁk\k—lC/+R)_1Cﬁk\k—1
151@+1|k = (1 _:Y)Aﬁk\k—lAl‘FQ

initialized to 130‘_1 = }30|_1 = Py. It is possible to show
that:

Py < Ey[Pus] < Py (27)
0 < Ey[Myn]<
< Vpkuc 1C(Cpk\k 1C" + R) T C Py
= Pk|k 1 —Pk+1\k+1 (28)

fifth line and we separated terms which did not dependherefore we have:

on uy. Finally, in sixth line we substituted Equations (15)
and we used the propertyace(AB) = trace(BA). The

value function is a convex quadratic function of the input, . ..
therefore the minimizer can be simply obtained by solving
= 0, which gives:

*(B,Sk.}-lB + Uk)ilB/S]H_lA jk\k == Lk i’;dk

Vi __

Ouyg

U =

The optimal feedback is therefore a simple linear feedback
of the estimated state. If we substitute the minimizer back

(24)

into Equation (23) and we use Equation (19) we get:
Vk(l‘k) =
= i, A'Sk11B(B'Sks1B + Ux) ' B'Siy1Adwk +
+ @k A Skr1 ARk + Lo Wi +
+ trace(Sk+1Mr) + trace(Wi Prji.) + Elcet1 | Z],

and

For the previous equation to hold far,;, we need to

have:
Sk

Ck

Therefore, the cost function for the optimal LQG is given

by:

jj;dkski’kw +cr = i’;g|k(AlSk+1A + Wi —
+ A'Sp11B(B'Sk+1B + Uk)ilB,Sk-HA)i'k\k +
+ trace(Sk41Mp11) + trace(Wr Py) + Elcet1 | Zi]

_|_

A/SkJrlA + Wy —
A'S;1B(B'Spy 1B+ Uy) 'B'Sp 1A (25)
Elcky1 | Zn] + trace(Sk41 My 1) + trace(Wr Py)x)

J;\‘] = Vo(wo) = fté‘OSoii'o‘o —+

+

N

k=0

(trace(Sk41E[My41]) + trace(WiE- [Py 1] 26)

szn S JN < Jma:zz (29)
N ~ ~
JN = Z(trace(5k+1(Pk|k,1 _Pk+1|k+1)>+
k=0
+ trace(Wkﬁmk)) (30)
N
Jyin = Z trace(Wkﬁk‘k) (31)

k=0
D. Finite and Infinite Horizon LQG control

The previous equations were derived for the finite horizon
LQG. The infinite horizon LQG can be obtained by taking
the limit for N — +o00 of the previous equations. However,
the matrices{M}.,1} and { P} depend on the specific
realization of the observation sequenrfeg. }, therefore the
minimal cost.Jy is a stochastic function and does not have
a limit. Differently from standard LQG controller design
where the controller always stabilizes the original system,
in the case of control with packet losses, the stability can be
lost if the arrival probabilityy is below a certain threshold.

In particular the Equation for the cost matri, is the
solution of a modified Riccati Algebraic Equation (MARE)
which was already introduced and studied in our previous
work [1]. In particular, Equation (25) is the dual of the
estimator equation presented in [1]. Therefore, the same
conclusions can be drawn and we are now ready summarize
the previous result in the following theorem:

Theorem 1 (Finite Horizon LQG). Consider the system
(1)-(2) and consider the problem of minimizing the cost
function (4) with policyu, = f(Zy), where Z; is the
information available under the communication model, as
defined in Equation (3). Then, the optimal control isreear



function of the estimated system state given by Equation V. CONCLUSION
(24), where the matrix;, can be computed iteratively using . L .
Equation (25). Theseparation principlestill holds under Motivated by_ ap_pllcatlons where_control is performed

our assumptions, since the optimal estimator is independe%\l[er.al commumcatlon_netvyork, n t.h's paper we extend_ our
of the control inputuy. The optimal state estimator is previous r_esults on estimation Wlt.h intermittent observations
given by Equations (7)-(10) and (9)-(12), and the minimal® the optl'ma}l control problem. First, we show that the sep-
achievable cost is given given by Equation (26). aration principle holds alsp in the case when the obggrved

state can be lost at each time step with some probahility

Theorem 2 (Infinite Horizon LQG). Consider the same Then, we show how the optimal control problem formally

systems as defined in the previous theorem with the folloneduces to the solution of a standard Riccati equation for
ing additional hypothesisiWy = W), = W and U, = U. the controller and the same modified Riccati equation that
Moreover, let(A, B) and (4,Q2) be controllable, and let was studied in [1], [8] for the estimator. Accordingly, we

(A,C) and (A,W2) be observable. Let us consider theprovide upper and lower bounds on the expected optimal
limiting case/N — +o0, then, there exists a critical arrival cost functional and characterize its convergence conditions,

probability v,,,;, which satisfies the following property:

showing a transition to an unbounded cost beyond a critical

I
|>\m,a.'r, (A)

where| )\, (A4)] is the eigenvalue of matriXd with largest
absolute value, such that for all > ~,,,;, we have:

arrival probability. We also provide upper and lower bounds
for the cost in the finite horizon case. Future work will
include stability analysis and LQG controller design for a
more general class of systems, specifically the ones where
also loss of control packets occurs between the controller

and one or more actuators.

Ly =Lo = —(B'SeoB+U)'B'S.A (33)

1 nin 1 * 1 maxr
NN S IS N (34) .
where the matrix S,,, and the mean cost bounds
JN, JeT are given by:
1 [2]
i NN = e = 3]
= ytrace((Seo — W)Poo O’ (CPouC’ + R) 'CPo + n
+ trace(WPe)) (35)
NEI_I’}OO NJN = J2'" = trace(WP_,), (36) 5]
and the matricesS..,P...P. are given by: (6]
Soo = ASA+W — 7]
+ A'SB(B'SsB+U)'B'S,,A  (37)
Py = AP A +Q -
+ 5AP. C'(CPLC' + R)"\CP. A (38) [

where S, is the solution of a standard ARE which always
exists [18], P, is the solution of a MARE dual to the one1g]
proposed in [1], and_B, is the solution of a Lyapunov
Equation. Moreover, the assumptions above ageessary

and sufficientconditions for the closed loop system unde; ]
LQG feedback to bestable in mean senseThe critical
probability +,;, can be computed via the solution of thell2]
following LMIs optimization problem:

13
Ymin = argmin V. (Y, Z) >0, 0<Y <. 13
[14]
v, (Y, 2) =
Y VIYA+2C) JT=aYA
= | Y +C'2") Y 0 191
VI—FAY 0 e
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