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Abstract— The problem of using wireless sensor networks
technology for estimation and control of dynamical systems
has recently received widespread attention within the scientific
community. Classical control theory is in general insufficient
to model distributed control problems where issues of com-
munication delay, jitter, and time synchronization between
components cannot be ignored.

The purpose of this paper is to extend our work on discrete
time Kalman filtering with intermittent observations [1] that
was motivated by data losses in a communication channel.
Accordingly, we consider the Linear Gaussian Quadratic
(LQG) optimal control problem in the discrete time setting,
showing that the separation principle holds in the presence
of data losses. Then, using our previous results, we show
the existence of a critical arrival probability below which the
resulting optimal controller fails to stabilize the system. This is
done by providing analytic upper and lower bounds on the cost
functional, and stochastically characterizing their convergence
properties ask →∞.

I. I NTRODUCTION

Advances in VLSI and MEMS technology have boosted
the development of micro sensor integrated systems. Such
systems combine computing, storage, radio technology, and
energy source on a single chip [2] [3]. When distributed
over a wide area, networks of sensors can perform a variety
of tasks that range from environmental monitoring and
military surveillance, to navigation and control of a moving
vehicle [4] [5] [6]. A common feature of these systems is
the presence of significant communication delays and data
loss across the network. From the point of view of control
theory, significant delay is equivalent to loss, as data needs
to arrive to its destination in time to be used for control. In
short, communication and control become tightly coupled
such that the two issues cannot be addressed independently.

Consider, for example, the problem of navigating a vehi-
cle based on the estimate from a sensor web of its current
position and velocity. The measurements underlying this
estimate can be lost or delayed due to the unreliability of
the wireless links. What is the amount of data loss that the
control loop can tolerate in order to reliably perform the
navigation task? Can communication protocols be designed
to satisfy this constraint? Practical advances in the design
of these systems are described in [7]. The goal of this paper
is to examine some control-theoretic implications of using
sensor networks for control. These require a generalization

of classical control techniques that explicitly take into
account the stochastic nature of the communication channel.

In our setting, the sensor network provides observed data
that are used to estimate the state of a controlled system,
and this estimate is then used for control. However, due
to unreliability of the network links, data communicated
from the sensors to the estimator can be lost and we
want to characterize the impact of such event on the
control performance. Accordingly, we generalize the Linear
Quadratic Gaussian (LQG) optimal control problem —
modeling the arrival of an observation as a random process
whose parameters are related to the characteristics of the
communication channel, as shown in Figure 1. The sepa-
ration principle states that observer and plant of a linear
system can be designed independently. We show that this
principle continues to hold in the case of data loss between
the sensor and the estimator. This allows to extend our
results in [1], [8] showing the existence of a critical loss
probability below which a transition occurs and the resulting
optimal controller fails to stabilize the system. We show the
existence of such transition by finding deterministic upper
and lower bounds for the expected optimal cost and their
convergence conditions.

In some related work [9] Nilsson presents the LQG
optimal regulator with bounded delays between sensors
and controller, and between the controller and the actuator,
but he does not address the packet-loss case. This is
considered by Hadijcostis and Touri [10]. Their analysis is
restricted to the static scalar case. Other approaches include
using the last received sample for control, or designing a
dropout compensator [11], [12]. We consider the alternative
approach where the external compensator feeding the con-
troller is the optimal time varying Kalman gain. Moreover,
we analyze the proposed solution in state space domain
rather than in frequency domain as it was presented in [12],
and we consider the more general Multiple Input Multiple
Output (MIMO) case.

The LQG optimal control problem with missing ob-
servations can also be modelled using the well known
Jump Linear System (JLS) theory [13], where the observer
switches between open loop and closed loop configuration,
depending on whether the packet containing the observa-
tion is lost, or arrives at the estimator in time. However,
convergence results in this case can be obtained only when



Fig. 1. Overview of the system.We study the statistical convergence
of the expected state covariance of the discrete time LQG, where the
observation, travelling over an unreliable communication channel, can be
lost at each time step with probability1− γ̄.

each jump sub-system is stabilizable and detectable. The
detectability assumption fails in our case, producing a non-
stationary state random process.

Finally, we mention that philosophically our result can be
seen as another manifestation of the well knownuncertainty
threshold principle [14], [15]. This principle states that
optimum long-range control of a dynamical system with
uncertainty parameters is possible if and only if the uncer-
tainty does not exceed a given threshold. The uncertainty
is modelled as white noise scalar sequences acting on the
system and control matrices. In our case the uncertainty
is due to the random arrival of the observation, with the
randomness arising from losses in the network.

The paper is organized as follows. In section II we for-
mulate the LQG optimal control problem with intermittent
observations. In section III we prove some lemmas we need
to prove the main theorems. In Section IV we compute the
optimal controller, showing that it is linear. We also provide
upper and lower bounds on the cost functional of the LQG
problem, and find the conditions on the observation arrival
probabilityγ̄ for which the upper bound converges to a fixed
point, and for which the lower bound diverges. Finally, in
section V, we state our conclusions and give directions for
future work.

II. PROBLEM FORMULATION

Consider the following linear stochastic system with
intermittent observations:

xk+1 = Axk + Buk + wk (1)

yk = Cxk + vk, (2)

wherexk ∈ Rn is the state vector,yk ∈ Rm is the output
vector,uk ∈ Rq is the input vector,x0 ∈ Rn, wk ∈ Rn and
vk ∈ Rm are Gaussian, uncorrelated, white, with zero mean

and covariance(P0, Q, Rk) respectively,Rk = γkR + (1−
γk)σ2I, and γk are i.i.d. Bernoulli random variable with
P (γk = 1) = γ̄. Let us define the following information
set:

Ik
∆= {yk, γk}, (3)

whereyk = (yk, yk−1, . . . , y1), γk = (γk, γk−1, . . . , γ1).
Consider also the following cost function:

JN (uN−1) = E

[
x′NWNxN +

N−1∑

k=0

(x′kWkxk + u′kUkuk)

∣∣∣∣∣ IN

]

(4)
We now look for control input sequenceu∗N−1 that

minimizes the above functional given that the information
Ik is available at timek, i.e.

J∗N = min
uN−1

JN (uN−1) = JN (u∗N−1) (5)

whereu∗k = u∗k(Ik) andIk is defined in Equation 3.

III. M ATHEMATICAL BACKGROUND

Before proceeding, let us define the following variables:

x̂k|k
∆= E[xk | Ik],

ek|k
∆= xk − x̂k|k,

Pk|k
∆= E[ek|ke′k|k | Ik].

(6)

In the following derivation we will make use of the
following facts

Lemma 1. The following facts are true:
(a) E [(xk − x̂k)x̂′k | Ik] = E

[
ek|kx̂′k | Ik

]
= 0

(b) E [x′kSxk | Ik] = x̂′kSx̂k + trace
(
SPk|k

)
, ∀S

(c) E [E[ g(xk+1) |Ik+1] | Ik] = E [g(xk+1) | Ik] , ∀g(·)
Proof: (a) It follows directly from the definition.

In fact: E [(xk − x̂k)x̂′k | Ik] = E [xkx̂′k − x̂kx̂′k | Ik] =
E [xk | Ik] x̂′k − x̂kx̂′k = 0

(b) Using standard algebraic operations and the previous
fact we have:

E
[
x′kSxk |Ik

]
= E

[
(xk − x̂k + x̂k)′S(xk − x̂k + x̂k) |Ik

]

= x̂′kSx̂k + E
[
(xk − x̂k)′S(xk − x̂k)

]
+

+ 2E
[
x̂′kS(xk − x̂k) | Ik

]

= x̂′kSx̂k + 2trace{SE[(xk − x̂k)x̂′k |Ik]}+

+ trace{SE[(xk − x̂k)(xk − x̂k)′ |Ik]}
= x̂′kSx̂k + trace{SPk|k}

(c) Let (X,Y, Z) be any random vectors,g(·) any func-
tion, andp the probability distribution, then

EY,Z [g(X, Y, Z) | X] =

=
∫

Z

∫

Y

g(X, Y, Z)p(Y, Z|X)dY dZ

=
∫

Z

∫

Y

g(X, Y, Z)p(Y |Z, X)p(Z|X)dY dZ

=
∫

Z

[∫

Y

g(X, Y, Z)p(Y |Z, X)dY

]
p(Z|X)dZ

= EZ [ EY [g(X,Y, Z) | Z, X] | X] .



where we used the Bayes’ Rule. Since by hypothesisIk ⊆
Ik+1, then fact (c) follows from the above equality by
substitutingIk = X andIk+1 = (X,Z).

IV. F INITE AND INFINITE HORIZON LQG

We first start finding the optimal estimator, which will
be needed to solve the LQG controller design, as it will be
shown later.

A. Estimator Design,σ → +∞
We derive the equations for optimal estimator using

similar arguments used for the standard Kalman filtering
equations. The innovation step is given by:

x̂k+1|k
∆
= E[xk+1|Ik] = E[Axk + Buk + wk|Ik]

= AE[xk|Ik] + Buk

= Ax̂k|k + Buk (7)

ek+1|k
∆
= xk+1 − x̂k+1|k (8)

Pk+1|k
∆
= E[ek+1|ke′k+1|k |Ik] =

= E
[(

A(xk − x̂k|k) + wk

) (
A(xk − x̂k|k) + wk

)′ |Ik

]

= AE[ek|ke′k|k|Ik]A′ + E[wkw′k]

= APk|kA′ + Q (9)

where we used the independence ofwk and Ik. Since
yk+1, γk+1, wk and Ik are all independent of each other
and following the same approach described in [1], then
correction step is given by:

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 − Cx̂k+1|k) (10)

Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k, (11)

Kk+1
∆
= Pk+1|kC′(CPk+1|kC′ + R)−1, (12)

where we took the limitσ → +∞.
The initial conditions for the estimator iterative equations

are:

x̂0|−1 = 0 (13)

P0|−1 = P0 (14)

B. Estimator properties

Here we compute some quantities that will prove useful
when deriving the equation for the optimal LQG controller.
Consider first the following variable:

∆k+1|k
∆= E[x̂k+1|kx̂′k+1|k |Ik] =

= E[(Ax̂k|k + Buk)(Ax̂k|k + Buk)′ |Ik]
= E[Ax̂k|kx̂′k|kA′ + 2Ax̂k|ku′kB′ + Buku′kB′ |Ik]

= Ax̂k|kx̂′k|kA′ + 2Ax̂k|ku′kB′ + Buku′kB′ (15)

where we used the fact thatx̂k|k is independent ofIk.
Equation (10) can be rewritten as follows:

x̂k+1|k+1 =

= x̂k+1|k + γk+1Kk+1

(
C(xk+1 − x̂k+1|k) + vk+1

)

= x̂k+1|k + γk+1Kk+1

(
Cek+1|k + vk+1

)
(16)

The first and the second terms in the previous equation
and vk+1 are independent of each other by Lemma 1 (a)

and have zero mean. Moreover, the random variableγk+1
is independent of the previous terms. Therefore, we have:

∆k+1|k+1
∆
= E[x̂k+1|k+1x̂

′
k+1|k+1 |Ik] =

= E[x̂k+1|k x̂′k+1|k |Ik] +

+ E[γ2
k+1Kk+1(Cek+1|ke′k+1|kC′ +

+ vk+1vk+1)K
′
k+1 |Ik] =

= ∆k+1|k + E[γ2
k+1Kk+1(Cek+1|ke′k+1|kC′ +

+ vk+1vk+1)K
′
k+1 |Ik] =

= ∆k+1|k +

+ E[γ2
k+1Kk+1(CPk+1|kC′ + R)K′

k+1 |Ik] =

= ∆k+1|k +

+ E[γ2
k+1Pk+1|kC′(CPk+1|kC′ + R)−1CP ′k+1|k |Ik] =

= ∆k+1|k + E[Mk+1 |Ik] (17)

Mk+1
∆
= γ2

k+1Pk+1|kC′(CPk+1|kC′ + R)−1CP ′k+1|k (18)

whereMk+1 is a stochastic matrix which depends on the
sequence{γk}, but is independent ofuk.

C. Controller design

To derive the optimal feedback control law and the
corresponding value for the objective function we will
follow the dynamic programming approach based on the
cost-to-go iterative procedure.

Define the optimal value functionVk(xk) as follows:

VN (xN ) ∆= E[x′NWNxN | IN ]

Vk(xk) ∆= min
uk

E[x′kWkxk + u′kUkuk + Vk+1(xk+1) | Ik]

Using dynamic programming theory [16] [17], one can
show thatJ∗N = V0(x0).

We claim that the value functionVk(xk) can be written
as:

Vk(xk) = x̂′k|kSkx̂k|k + ck, k = 0, . . . , N (19)

where the matrixSk and the scalarck are to be determined
and are independent of the information setI. We will prove
it by induction. The claim is certainly true fork = N , in
fact:

VN (xN ) = E[x′NWNxN | IN ]
= x̂′N |NWNxN |N + trace(WNPN |N )(20)

where we used Lemma 1 (b), with the following choice of
parameters:

SN = WN (21)

cN = trace(WNPN |N ) (22)

Suppose now that the claim is true fork + 1, i.e.
Vk+1(xk+1) = x̂′k+1|k+1Sk+1x̂k+1|k+1 + ck+1, and we use
it to compute the value function at time stepk as follows:



Vk(xk) =

= min
uk

E[x′kWkxk + u′kUkuk + Vk+1(xk+1) | Ik]

= min
uk

E[x′kWkxk + u′kUkuk +

+ E[x′k+1|k+1Sk+1xk+1|k+1 + ck+1 | Ik+1] |Ik]

= min
uk

E[x′kWkxk + u′kUkuk +

+ x′k+1|k+1Sk+1xk+1|k+1 + ck+1 |Ik]

= min
uk

(x̂′k|kWkx̂k|k + trace(WkPk|k) + u′kUkuk +

+ trace(Sk+1E[xk+1|k+1x
′
k+1|k+1 |Ik] + E[ck+1 | Ik]))

= min
uk

(u′kUkuk + trace(Sk+1∆k+1|k)) +

+ trace(Sk+1Mk+1) + x̂′k|kWkx̂k|k +

+ trace(WkPk|k) + E[ck+1 | Ik]

= min
uk

(u′kUkuk + u′kB′Sk+1Buk + 2u′kB′Sk+1Ax̂k|k) +

+ x̂′k|kA′Sk+1Ax̂k|k + trace(Sk+1Mk+1) +

+ x̂′k|kWkx̂k|k + trace(WkPk|k) + E[ck+1 | Ik] (23)

where we used Lemma 1(c) in the third line and Lemma
1(b) in the fourth line. We substituted Equations (17) in
fifth line and we separated terms which did not depend
on uk. Finally, in sixth line we substituted Equations (15)
and we used the propertytrace(AB) = trace(BA). The
value function is a convex quadratic function of the input,
therefore the minimizer can be simply obtained by solving
∂Vk

∂uk
= 0, which gives:

uk = −(B′Sk+1B + Uk)−1B′Sk+1A x̂k|k = Lk x̂k|k.
(24)

The optimal feedback is therefore a simple linear feedback
of the estimated state. If we substitute the minimizer back
into Equation (23) and we use Equation (19) we get:

Vk(xk) =

= −x̂′k|kA′Sk+1B(B′Sk+1B + Uk)−1B′Sk+1A x̂k|k +

+ x̂′k|kA′Sk+1Ax̂k|k + x̂′k|kWkx̂k|k +

+ trace(Sk+1Mk) + trace(WkPk|k) + E[ck+1 | Ik],

and

x̂′k|kSkx̂k|k + ck = x̂′k|k(A′Sk+1A + Wk −
+ A′Sk+1B(B′Sk+1B + Uk)−1B′Sk+1A)x̂k|k +

+ trace(Sk+1Mk+1) + trace(WkPk|k) + E[ck+1 | Ik]

For the previous equation to hold for̂xk|k, we need to
have:

Sk = A′Sk+1A + Wk −
+ A′Sk+1B(B′Sk+1B + Uk)−1B′Sk+1A (25)

ck = E[ck+1 | Ik] + trace(Sk+1Mk+1) + trace(WkPk|k)

Therefore, the cost function for the optimal LQG is given
by:

J∗N = V0(x0) = x̂′0|0S0x̂0|0 +

+

N∑

k=0

(
trace(Sk+1Eγ [Mk+1]) + trace(WkEγ [Pk|k])

)
(26)

where the first term is zero since by hypothesisx̂0 = 0.
The matricesMk+1 andPk|k in the second and third term
are stochastic since they are function of the sequence{γk},
where the expectation with respect to this process is made
explicit in Eγ . The exact expected value of these matrices
cannot be computed analytically, as shown in [1], but it can
be bounded by computable quantities. In fact let us consider
the following three equations:

P̂k+1|k = AP̂k|k−1A
′ + Q−

+ γ̄AP̂k|k−1C
′(CP̂k|k−1C

′ + R)−1CP̂k|k−1A
′

P̂k+1|k+1 = P̂k|k−1 −
+ γ̄P̂k|k−1C

′(CP̂k|k−1C
′ + R)−1CP̂k|k−1

P̃k+1|k = (1− γ̄)AP̃k|k−1A
′ + Q

initialized to P̂0|−1 = P̃0|−1 = P0. It is possible to show
that:

P̃k|k ≤ Eγ [Pk|k] ≤ P̂k|k (27)

0 ≤ Eγ [Mk+1] ≤
≤ γ̄P̂k|k−1C

′(CP̂k|k−1C
′ + R)−1CP̂k|k−1

= P̂k|k−1 − P̂k+1|k+1 (28)

Therefore we have:

Jmin
N ≤ J∗N ≤ Jmax

N (29)

Jmax
N =

N∑

k=0

(trace(Sk+1(P̂k|k−1 − P̂k+1|k+1)) +

+ trace(WkP̂k|k)) (30)

Jmin
N =

N∑

k=0

trace(WkP̃k|k) (31)

D. Finite and Infinite Horizon LQG control

The previous equations were derived for the finite horizon
LQG. The infinite horizon LQG can be obtained by taking
the limit for N → +∞ of the previous equations. However,
the matrices{Mk+1} and {Pk|k} depend on the specific
realization of the observation sequence{γk}, therefore the
minimal costJN is a stochastic function and does not have
a limit. Differently from standard LQG controller design
where the controller always stabilizes the original system,
in the case of control with packet losses, the stability can be
lost if the arrival probabilitȳγ is below a certain threshold.
In particular the Equation for the cost matrixSk is the
solution of a modified Riccati Algebraic Equation (MARE)
which was already introduced and studied in our previous
work [1]. In particular, Equation (25) is the dual of the
estimator equation presented in [1]. Therefore, the same
conclusions can be drawn and we are now ready summarize
the previous result in the following theorem:

Theorem 1 (Finite Horizon LQG). Consider the system
(1)-(2) and consider the problem of minimizing the cost
function (4) with policyuk = f(Ik), where Ik is the
information available under the communication model, as
defined in Equation (3). Then, the optimal control is alinear



function of the estimated system state given by Equation
(24), where the matrixSk can be computed iteratively using
Equation (25). Theseparation principlestill holds under
our assumptions, since the optimal estimator is independent
of the control inputuk. The optimal state estimator is
given by Equations (7)-(10) and (9)-(12), and the minimal
achievable cost is given given by Equation (26).

Theorem 2 (Infinite Horizon LQG). Consider the same
systems as defined in the previous theorem with the follow-
ing additional hypothesis:WN = Wk = W and Uk = U .
Moreover, let(A,B) and (A,Q

1
2 ) be controllable, and let

(A,C) and (A,W
1
2 ) be observable. Let us consider the

limiting caseN → +∞, then, there exists a critical arrival
probability γmin which satisfies the following property:

min
(

1, 1− 1
|λmax(A)|2

)
≤ γmin ≤ 1 (32)

where|λmax(A)| is the eigenvalue of matrixA with largest
absolute value, such that for all̄γ > γmin we have:

Lk = L∞ = −(B′S∞B + U)−1B′S∞A (33)
1
N

Jmin
N ≤ 1

N
J∗N ≤ 1

N
Jmax

N (34)

where the matrix S∞, and the mean cost bounds
Jmin

N , Jmax
N are given by:

lim
N→+∞

1

N
Jmax

N = Jmax
∞ =

= γ̄trace((S∞ −W )P∞C′(CP∞C′ + R)−1CP∞ +

+ trace(WP∞)) (35)

lim
N→+∞

1

N
Jmin

N = Jmin
∞ = trace(WP∞), (36)

and the matricesS∞,P∞,P∞ are given by:

S∞ = A′S∞A + W −
+ A′S∞B(B′S∞B + U)−1B′S∞A (37)

P∞ = AP∞A′ + Q−
+ γ̄ AP∞C ′(CP∞C ′ + R)−1CP∞A′ (38)

P∞ = (1− γ̄)AP∞A′ + Q, (39)

whereS∞ is the solution of a standard ARE which always
exists [18],P̄∞ is the solution of a MARE dual to the one
proposed in [1], and P∞ is the solution of a Lyapunov
Equation. Moreover, the assumptions above arenecessary
and sufficientconditions for the closed loop system under
LQG feedback to bestable in mean sense. The critical
probability γmin can be computed via the solution of the
following LMIs optimization problem:

γmin = argminγ̄Ψγ(Y,Z) > 0, 0 ≤ Y ≤ I.

Ψγ(Y, Z) =

=




Y
√

γ(Y A + ZC)
√

1− γY A√
γ(A′Y + C′Z′) Y 0√

1− γA′Y 0 Y




V. CONCLUSION

Motivated by applications where control is performed
over a communication network, in this paper we extend our
previous results on estimation with intermittent observations
to the optimal control problem. First, we show that the sep-
aration principle holds also in the case when the observed
state can be lost at each time step with some probabilityλ.
Then, we show how the optimal control problem formally
reduces to the solution of a standard Riccati equation for
the controller and the same modified Riccati equation that
was studied in [1], [8] for the estimator. Accordingly, we
provide upper and lower bounds on the expected optimal
cost functional and characterize its convergence conditions,
showing a transition to an unbounded cost beyond a critical
arrival probability. We also provide upper and lower bounds
for the cost in the finite horizon case. Future work will
include stability analysis and LQG controller design for a
more general class of systems, specifically the ones where
also loss of control packets occurs between the controller
and one or more actuators.
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