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Abstract: We consider the control of interacting subsystems
whose dynamics and constraints are decoupled, but whose
state vectors are coupled non-separably in a single cost func-
tion of a finite horizon optimal control problem. For a given
cost structure, we generate distributed optimal control prob-
lems for each subsystem and establish that a distributed re-
ceding horizon control implementation is stabilizing. The
implementation requires synchronous updates and the ex-
change of the most recent optimal control trajectory between
coupled subsystems prior to each update. Key requirements
for stability are that each subsystem not deviate too far from
the previous open-loop state trajectory, and that the reced-
ing horizon updates happen sufficiently fast. The venue of
multi-vehicle formation stabilization is used to demonstrate
the distributed implementation and simulations are provided.

Keywords: receding horizon control; cooperative control;
distributed control.

1 Introduction

We are interested in the control of a set of dynamically de-
coupled subsystems that are required to perform a coopera-
tive task. An example of such a situation is a group of vehi-
cles cooperatively converging to a desired formation, as ex-
plored in Dunbar and Murray [5], Ren and Beard [15] and
Leonard and Fiorelli [10]. One control approach that accom-
modates a general cooperative objective is receding horizon
control. In receding horizon control, the current control ac-
tion is determined by solving online, at each sampling in-
stant, a finite horizon optimal control problem. In contin-
uous time formulations, each optimization yields an open-
loop control trajectory and the initial portion of the trajec-
tory is applied to the system until the next sampling instant.
A survey of receding horizon control is given by Mayneet
al. [11]. For the problem of interest here, cooperation be-
tween subsystems can be incorporated in the optimal control
problem by including coupling terms in the cost function, as
done in [5]. In this paper, subsystems that are coupled in the
cost function are referred to asneighbors. A drawback of
the receding horizon control approach to our problem is that
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currently only a centralized solution and implementation can
guarantee asymptotic stability theoretically. When the sub-
systems are operating in a real-time distributed environment,
a centralized implementation may not be viable due to the
computation and communication requirements of solving the
centralized problem at every receding horizon update. In this
paper, adistributed implementationof receding horizon con-
trol is presented in which each subsystem is assigned its own
optimal control problem, optimizes only for its own control
at each update, and exchanges information only with neigh-
boring subsystems. It is assumed that neighboring subsys-
tems can directly communicate with one another. The mo-
tivation for pursuing such a distributed implementation is to
enable the autonomy of the individual subsystems while re-
ducing the computation and communication requirements of
a centralized implementation.

Previous work on distributed receding horizon control in-
clude Jia and Krogh [7], Motee and Sayyar-Rodsaru [14] and
Acar [1]. All of these papers address coupled LTI subsys-
tem dynamics with quadratic separable cost functions. State
and input constraints are not included, aside from a stabil-
ity constraint in [7] that permits state information exchanged
between the subsystems to be delayed by one update period.
In another work, Jia and Krogh [8] solve a min-max problem
for each subsystem, where again coupling comes in the dy-
namics and the neighboring subsystem states are treated as
bounded disturbances. Stability is obtained by contracting
each subsystems state at every sample period, until the ob-
jective set is reached. As such, stability does not depend on
information updates between neighbors, although such up-
dates may improve performance. More recently, Keviczkyet
al. [9] have formulated a distributed model predictive scheme
where each subsystem optimizes locally for itself and every
neighbor at each update. By this formulation, feasibility be-
comes difficult to ensure, and no proof of stability is pro-
vided.

This paper summarizes the results by Dunbar and Murray
[6]. We begin in Section 2 by defining the system dynam-
ics and an integrated cost function. Both are specific to a
multi-vehicle formation objective, so subsystems are hence-
forth referred to asvehicles. The results of this paper hold
for more general subsystem dynamics and performance ob-
jectives, as detailed in [4]. In Section 3, the integrated cost
is decomposed into distributed integrated costs and a dis-
tributed optimal control problem is defined for each vehicle



in the formation. The distributed receding horizon control
algorithm is then defined, and the stability results are given
in Section 4. Two key requirements for stability are that the
receding horizon updates happen sufficiently fast, and that
each distributed optimal state trajectory satisfy acompati-
bility constraint. Loosely speaking, the compatibility con-
straints ensure that the actual state trajectory of each vehi-
cle is not too far from the trajectory that each neighbor as-
sumes for that vehicle, from one receding horizon update to
the next. While the compatibility constraints used here incur
some conservatism in the closed-loop response, a fact quan-
tified in Section 4, the numerical results in Section 5 show
that good closed-loop performance is achieved when these
constraints are relaxed. Section 6 discusses conclusions and
extensions.

2 System Description and Objective

In this section, we define the system dynamics and pose an
integrated cost function relevant for multi-vehicle formation
stabilization. The states of the vehicles are coupled in the
cost function, while each vehicle is modelled by decoupled
dynamics subject to input constraints. The cases where vehi-
cles are subject to coupled and decoupled state constraints
are addressed in [4]. We make use of the following no-
tation. The symbol‖ · ‖ denotes any vector norm inRn,
and dimensionn follows from the context. For any vector
x ∈ Rn, ‖x‖P denotes theP -weighted 2-norm, defined by
‖x‖2P = xT Px, andP is any positive-definite real symmet-
ric matrix. Also,λmax(P ) andλmin(P ) denote the largest
and smallest real eigenvalues ofP , respectively. The set
B(x; r) denotes a closed ball inRn with centerx and ra-
diusr. Whenx is a curve, we sometimes abuse the notation
‖x‖ to mean‖x(t)‖ at some instant of timet ∈ R.

Our objective is to stabilize a group of vehicles toward an
equilibrium point in a cooperative way using receding hori-
zon control. For each vehiclei ∈ {1, ..., Na}, the state and
control vectors are denotedzi(t) = (qi(t), q̇i(t)) ∈ R2n and
ui(t) ∈ Rm, respectively, at any timet ≥ t0 ∈ R. The vec-
torsqi(t) ∈ Rn andq̇i(t) ∈ Rn are the position and velocity,
respectively, of each vehiclei. Thedecoupledsecond-order,
time-invariant nonlinear system dynamics for each vehicle
i ∈ {1, ..., Na} are given byq̈i(t) = gi(qi(t), q̇i(t), ui(t)),
which we shall write in the equivalent form

żi(t) = fi(zi(t), ui(t)), t ≥ t0, (1)

where fi(zi(t), ui(t)) = (q̇i(t), gi(qi(t), q̇i(t), ui(t))) ∈
R2n. It is assumed that there is no model error. While the
system dynamics can be different for each vehicle, the di-
mension of every vehicles state (control) is assumed to be
the same, for notational simplicity and without loss of gen-
erality. Each vehiclei is also subject to the decoupled in-
put constraintsui(t) ∈ U , t ≥ t0. The setUN is theN -
times Cartesian productU × · · · × U . The concatenated
vectors are denotedq = (q1, ..., qNa), q̇ = (q̇1, ..., q̇Na),
z = (z1, ..., zNa) ∈ R2nNa andu = (u1, ..., uNa) ∈ UNa .

In concatenated vector form, the system dynamics are

ż(t) = f(z(t), u(t)), t ≥ t0, givenz(t0), (2)

wheref(z, u) = (f1(z1, u1), ..., fNa
(zNa

, uNa
)). The de-

sired equilibrium point is denotedzc = (zc
1, ..., z

c
Na

). Since
the dynamics are second-order and time-invariant, the de-
sired equilibrium velocityq̇c

i = 0 for every vehiclei, and
the desired constant equilibrium position values are denoted
qc = (qc

1, ..., q
c
Na

). We now make some standard assump-
tions regarding the system (2) and the setU (e.g., see (A1)–
(A3) in [3]).

Assumption 1 The following holds: (a) f : R2nNa ×
RmNa → R2nNa is twice continuously differentiable,0 =
f(zc, 0), andf linearized around(z, u) = (zc, 0) is stabi-
lizable; (b) the system (2) has a unique, absolutely continu-
ous solution for any initial conditionz(t0) and any piecewise
right-continuous controlu : [t0,∞)→ UNa ; (c) U is a com-
pact subset ofRm containing the origin in its interior.

Let umax be the positive scalar constantumax ={
max ‖v(t)‖ | v(t) ∈ UNa , t ≥ t0 ∈ R

}
. The integrated

cost function relevant for multi-vehicle formation stabiliza-
tion is defined as

L(z, u) =
∑

(i,j)∈ E0

ω‖qi − qj + dij‖2

+ ω‖qΣ − qd‖2 + ν‖q̇‖2 + µ‖u‖2,

given the positive weighting constantsω, ν, µ ∈ R, and
whereω‖qΣ − qd‖2 is the tracking cost, defined byqΣ =
(q1 + q2 + q3)/3 and qd = (qc

1 + qc
2 + qc

3)/3. The set
E0 is theset of all pair-wise neighborsthat defines the for-
mation in the following way. First, if(i, j) ∈ E0, then
(j, i) /∈ E0, and(i, i) /∈ E0 for every vehiclei ∈ {1, ..., Na}.
Next, for every vehiclei there is at least one pair(i, j) or
(j, i) in E0, i.e., every vehicle has at least one neighbor. Fi-
nally, associated withE0 is the set of constant relative vec-
torsD = {dij ∈ Rn|(i, j) ∈ E0}, each of which connects
the desired equilibrium positions of a pair of neighboring ve-
hicles, i.e., for any two neighborsi and j, qc

i + dij = qc
j .

Additionally, the relative vectors inD are consistent with
one another in the sense that, e.g., if(i, j), (j, k) and(i, k)
are all in E0, then dij + djk = dik. It is assumed at
the outset thatE0 and D are provided by some supervi-
sory mechanism. Note thatL(z, u) = 0 if and only if
(z, u) = (zc, 0). Also, while the tracking cost is here de-
fined with vehicles 1, 2 and 3, different and fewer (or more)
vehicles can be included in this term without loss of gener-
ality (see discussion in Chapter 6 of [4]). The set of pair-
wise neighbors of any vehiclei ∈ {1, ..., Na} is defined as
Ni = {j ∈ {1, ..., Na} | (i, j) or (j, i) ∈ E0} . When we re-
fer to theneighborsof any vehiclei ∈ {4, ..., Na}, we mean
the setNi, and theneighborsof any vehiclei ∈ {1, 2, 3}
refers to the setNi ∪ {1, 2, 3} \ {i}. The integrated cost can
be equivalently written as

L(z, u) = ‖z − zc‖2Q + µ‖u‖2, (3)



whereQ = QT > 0 (Proposition 6.1 in [4]). In the next
section,L(z, u) is decomposed into distributed integrated
cost functions. Then, distributed optimal control problems
and corresponding distributed receding horizon control algo-
rithm are stated.

3 Distributed Receding Horizon Control
In this section, we introduce notation, defineNa separate
optimal control problems and the distributed receding hori-
zon control algorithm. For any vehiclei ∈ {1, ..., Na}, let
z−i = (zj1 , ..., zjk

) andu−i = (uj1 , ..., ujk
) denote the vec-

tors of the states and controls of the neighbors ofi, respec-
tively, where the ordering of the sub vectors is arbitrary but
fixed. Also, ż−i = f−i(z−i, u−i) represents the collective
decoupled dynamics of the neighbors of any vehiclei. The
distributed integrated costin the optimal control problem for
any vehiclei ∈ {1, ..., Na} is defined as

Li(zi, z−i, ui) = Lz
i (zi, z−i) + γµ‖ui‖2 + Ld(i), where

Lz
i (zi, z−i) =

∑
j∈Ni

γω

2
‖qi − qj + dij‖2 + γν‖q̇i‖2

and Ld(i) =
{

γω‖qΣ − qd‖2/3, i ∈ {1, 2, 3}
0, otherwise,

and γ ∈ R is a positive constant. By construction,∑Na

i=1 Li(zi, z−i, ui) = γL(z, u). Note that the terms that
couple the positions of vehicles are equally weighted in the
decomposition, although such a choice is not necessary for
the stability results to hold.

In every distributed optimal control problem, the same con-
stant prediction horizonT ∈ (0,∞) and constant update
periodδ ∈ (0, T ] are used. In practice, the update period
δ ∈ (0, T ] is typically the sample interval. By our distributed
implementation, an additional condition onδ is required,
namely that it be chosen sufficiently small, as quantified in
the next section. At each receding horizon update, every op-
timal control problem is solved synchronously, i.e., at the
same instant in time. The common receding horizon update
times are denotedtk = t0 +δk, wherek ∈ N = {0, 1, 2, ...}.
At each update, every vehicle optimizes only for its own
open-loop control, given its current state and that of its neigh-
bors. Since each costLi(zi, z−i, ui) depends upon the neigh-
boring statesz−i, each vehiclei must presume some tra-
jectories forz−i over each prediction horizon. To that end,
prior to each update, each vehiclei receivesanassumedcon-
trol trajectory from each neighbor. Then, using the model,
the current state and the assumed control for that neighbor,
the assumed state trajectories are computed. Likewise, ve-
hicle i transmits an assumed control to all neighbors prior
to each optimization. By design, the assumed control for
any vehicle isthe samein every distributed optimal control
problem in which it occurs, i.e., every neighbor ofi will as-
sume the same trajectories fori over each prediction hori-
zon. To distinguish all of the different trajectories, we in-
troduce the following notation. Recall thatzi(t) andui(t)

are the actual state and control, respectively, for each vehi-
cle i ∈ {1, ..., Na} at any timet ≥ t0. Over any prediction
interval [tk, tk + T ], k ∈ N, associated with current timetk,
for each vehiclei ∈ {1, ..., Na} we denote

up
i (τ ; tk) : the predicted control trajectory,

u∗i (τ ; tk) : the optimal predicted control trajectory,
ûi(τ ; tk) : the assumed control trajectory,

whereτ ∈ [tk, tk + T ]. The corresponding state trajecto-
ries are likewise denotedzp

i (τ ; tk), z∗i (τ ; tk) and ẑi(τ ; tk),
and at timeτ = tk, all of these trajectories are equal to the
initial conditionzi(tk). Let up(τ ; tk), u∗(τ ; tk) andû(τ ; tk)
be the concatenated predicted, optimal and assumed control
vectors for all vehicles, respectively, with similar notation for
the concatenated state vectors. Consistent withz−i, also let
û−i(τ ; tk) and ẑ−i(τ ; tk) be the assumed control and state
trajectories of the neighbors ofi, corresponding to current
time tk. The collection of distributed optimal control prob-
lems is now defined.

Problem 1 For each vehiclei ∈ {1, ..., Na} and at any up-
date timetk, k ∈ N: Givenzi(tk), z−i(tk), andûi(τ ; tk) and
û−i(τ ; tk) for all τ ∈ [tk, tk + T ], find

J∗i (zi(tk), z−i(tk)) = min
up

i (·;tk)
Ji(zi(tk), z−i(tk), up

i (·; tk)),

whereJi(zi(tk), z−i(tk), up
i (·; tk)) is equal to∫ tk+T

tk

Li(z
p
i (s; tk), ẑ−i(s; tk), up

i (s; tk)) ds

+ γ‖zp
i (tk + T ; tk)− zc

i ‖2Pi
,

subject to

żp
i (τ ; tk) = fi(z

p
i (τ ; tk), up

i (τ ; tk))
˙̂zi(τ ; tk) = fi(ẑi(τ ; tk), ûi(τ ; tk))
˙̂z−i(τ ; tk) = f−i(ẑ−i(τ ; tk), û−i(τ ; tk))
up

i (τ ; tk) ∈ U
‖zp

i (τ ; tk)− ẑi(τ ; tk)‖ ≤ δ2κ (4)

for all τ ∈ [tk, tk +T ], with zp
i (tk; tk) = ẑi(tk; tk) = zi(tk)

andẑ−i(tk; tk) = z−i(tk), and terminal constraint

zp
i (tk + T ; tk) ∈ Ωi(εi),

given the constantsκ, εi ∈ (0,∞), weighting matrixPi =
PT

i > 0, and terminal setΩi(εi) = {z ∈ R2n | ‖z−zc
i ‖2Pi

≤
εi}. �

As part of the optimal control problem, the optimized state
for i is constrained to be at most a distance ofδ2κ from the
assumed state in Equation (4). We refer to Equation (4) as
the statecompatibility constraint. The constraint is a means
of enforcing a degree of consistency between what a vehicle
plans to do and what neighbors believe that vehicle will plan
to do, proportional to the square of the update period. The
optimal control solution to each distributed optimal control



problem (assumed to exist) isu∗i (τ ; tk), τ ∈ [tk, tk+T ]. The
closed-loop system for which stability is to be guaranteed is

ż(τ) = f(z(τ), uRH(τ)), τ ≥ t0, (5)

with the applieddistributed receding horizon control law

uRH(τ) = (u∗1(τ ; tk), ..., u∗Na
(τ ; tk)),

for τ ∈ [tk, tk+1) and anyk ∈ N. The receding horizon
control law is updated when each new initial state update
z(tk) ← z(tk+1) is available. Before stating the control
algorithm formally, which in turn defines the assumed con-
trol for each vehicle at every update, a decoupled terminal
controller associated with each terminal cost and constraint
set is defined. The linearization of theith subsystem (1)
at (zi, ui) = (zc

i , 0) is denotedAi = ∂fi

∂zi
(zc

i , 0), Bi =
∂fi

∂ui
(zc

i , 0). By assuming stabilizability for each vehiclei
(Assumption 1 (a)), a feasible local linear feedbackui =
Ki(zi − zc

i ) which stabilizes each nonlinear subsystem (1)
in Ωi(εi) can be constructed (see [3], [12]). To that end, we
make the following assumption.

Assumption 2 For every vehiclei ∈ {1, ..., Na}, the largest
positive constantεi > 0 is chosen such thatΩi(εi) is a
positively invariant region of attraction for the closed-loop
nonlinear systeṁzi = fi(zi,Ki(zi − zc

i )), and such that
for all zi ∈ Ωi(εi), the stabilizing feedback is feasible, i.e.,
ui = Ki(zi − zc

i ) ∈ U . In addition, each terminal weight-
ing matrixPi = PT

i > 0 is chosen to satisfy the Lyapunov
equation
(Ai + BiKi)T Pi + Pi(Ai + BiKi) = −(Qi + µKT

i Ki),

with Qi = λmax(Q)I ∈ R2n×2n.

Existence of eachεi ∈ (0,∞) is guaranteed by Lemma 1
in [3]. By construction,Q̂ := diag(Q1, ..., QNa

) satisfies
Q̂ ≥ Q, whereQ is the weighting for the integrated cost (3).
Defining K = diag(K1, ...,KNa

), P = diag(P1, ..., PNa
),

A = diag(A1, ..., ANa
) andB = diag(B1, ..., BNa

), it is
trivial thatP = PT > 0 satisfies

(A + BK)T
P + P (A + BK) = −(Q̂ + µKT K). (6)

For eachi ∈ {1, ..., Na}, let zK
i (t; z(t0)) denote the closed-

loop solution to

żK
i (t; z(t0)) = fi

(
zK
i (t; z(t0)),Ki

(
zK
i (t; z(t0))− zc

i

))
,

with t ≥ t0, given initial conditionzi(t0). The decoupled
linear feedbacks are referred to asterminal controllers. In
the quasi-infinite horizon approach in [3], the (single) ter-
minal controller is never actually employed, as the reced-
ing horizon control law is applied for all time. In thedual-
modeapproach in [12], receding horizon control is employed
until the state reaches the terminal constraint set, at which
point the terminal controller is employed for all future time.
The distributed implementation algorithm defined below is
based on the quasi-infinite horizon approach, while a dual-
mode version is discussed in Section 4. LetZΣ ⊂ R2nNa

denote the set of initial statesz(t) which can be steered to
Ω1(ε1) × · · · × ΩNa

(εNa
) by a piecewise right continuous

controlup(·; t) : [t, t + T ]→ UNa . To achieve convergence,
the update period must satisfyδ ≤ δmax, where the constant
δmax ∈ (0, T ] is defined in the next section. When results ap-
ply for any constantδ ∈ (0, T ], we setδmax = T . Following
the presentation in [12], we now state the control algorithm.

Algorithm 1 At time t0 with z(t0) ∈ ZΣ, the Distributed
Receding Horizon Controllerfor any vehiclei ∈ {1, ..., Na}
is as follows:

Data: zi(t0), z−i(t0), T ∈ (0,∞), δ ∈ (0, δmax].

Initialization: At time t0, solve Problem 1 for vehiclei, set-
ting ûi(τ ; t0) = 0 andû−i(τ ; t0) = 0 for all τ ∈ [t0, t0 + T ]
and removing the constraint (4).

Controller:

1. Over any interval[tk, tk+1), k ∈ N:

(a) Applyu∗i (τ ; tk), τ ∈ [tk, tk+1).
(b) Computêui(τ ; tk+1) = ûi(τ) as

ûi(τ) =
{

u∗i (τ ; tk), τ ∈ [tk+1, tk + T )
Ki

(
zK
i (τ ; zk

i )− zc
i

)
, τ ∈ [tk + T, tk+1 + T ]

wherezk
i := z∗i (tk + T ; tk).

(c) Transmitûi(·; tk) to every neighbor and receive
ûj(·; tk) from every neighborj.

2. At any timetk, k ∈ {1, 2, ...}:
(a) Measure current statezi(tk) and measure or re-

ceive the current statesz−i(tk).
(b) Solve Problem 1 for vehiclei, yieldingu∗i (τ ; tk),

τ ∈ [tk, tk + T ]. �

At initialization of Algorithm 1, Problem 1 is solved for each
vehicle without enforcing the compatibility constraint (4)
and assuming that every neighbor applies zero control over
the prediction interval[t0, t0+T ]. The choice of̂u(τ ; t0) = 0
at initialization is motivated in [6]. Whenz(t0) ∈ ZΣ, Prob-
lem 1 is feasible at initialization, in that the input and ter-
minal constraints are satisfied and every distributed value
function Ji(·) is bounded. At every subsequent updatetk,
k ≥ 1, the compatibility constraints are enforced, and each
vehicle assumes all neighbors will continue along their pre-
vious open-loop plans, finishing with their decoupled linear
control laws. Although Algorithm 1 requires the solution to
Problem 1 instantaneously at each update timetk, a predic-
tive version could be stated to account for non-trivial com-
putation times, as discussed in [4]. Also, the algorithm relies
on computing the optimal solution to Problem 1 at every up-
date, although the optimal need not be unique. To relax this
requirement, a version akin to that in [12] could be stated,
wherein each distributed value functionJi(·) satisfies an im-
provement property from one update to the next. The as-
sumed control trajectories would then be defined in terms of
the previous (suboptimal) control.



4 Analysis
In this section, we state the stability results, assess the
distributed implementation and discuss alternative formula-
tions. To save space, all proofs are omitted, but can be found
in [6]. The main result is that by applying Algorithm 1, the
closed-loop statez(t) converges to a neighborhood of the ob-
jective statezc, for a sufficiently small upper bound on the
update periodδmax. At any timetk, k ∈ N, the sum of the
optimal distributed value functions is denoted

J∗Σ(z(tk)) =
Na∑
i=1

J∗i (zi(tk), z−i(tk)).

We begin by stating a feasibility property, following the stan-
dard arguments in [3] and [12].

Lemma 1 Suppose Assumptions 1 and 2 hold andz(t0) ∈
ZΣ. Then, by application of Algorithm 1 withδmax = T ,
Problem 1 has a feasible solution at any update timetk, k ∈
{1, 2, ...}. Moreover, the setZΣ is a positively invariant set
for the closed-loop system(5).

In the analysis that follows, we require that the optimal and
assumed state trajectories remain bounded.
Assumption 3 There exists a constantρmax ∈ (0,∞) such
that‖z∗(t; tk) − zc‖ ≤ ρmax and‖ẑ(t; tk) − zc‖ ≤ ρmax,
for all t ∈ [tk, tk + T ] and anyk ∈ N.
The following lemma gives a bounding result on the decrease
in J∗Σ(·) from one update to the next. Since the compatibility
constraints are enforced for update timestk with k ≥ 1, the
result holds fork ∈ {1, 2, ...}.

Lemma 2 Suppose Assumptions 1-3 hold andz(t0) ∈ ZΣ.
Then, by application of Algorithm 1 withδmax = T , and for
the positive constantξ defined by

ξ = γκωT
(
4ρmax + T 2κ

)
[|E0|+ 1], (7)

the functionJ∗Σ(·) satisfies

J∗Σ(z(tk + δ))− J∗Σ(z(tk)) ≤

−
∫ tk+δ

tk

Na∑
i=1

Lz
i (z∗i (s; tk), ẑ−i(s; tk)) ds + δ2ξ,

for all k ∈ {1, 2, ...}.

Denote the compact level sets as

Ωβ = {z ∈ R2nNa | J∗Σ(z) ≤ β},

with constantβ ∈ (0,∞). The setΩβ is in the interior of
ZΣ if β > 0 is sufficiently small. Now, for anyβ ∈ (0,∞)
such thatΩβ ⊂ ZΣ, we can choose a constantr = r(β) ∈
(0, ρmax) with the following properties:

B(zc; r) ⊆ Ωβ/2 and r2 ≤ 8β

γλmin(Q)
. (8)

Our main result demonstrates that, for anyβ ∈ (0,∞), the
closed-loop state trajectory converges toΩβ , provided that
the update period boundδmax in Algorithm 1 is proportional
to r2 as defined below, andr satisfies the properties in Equa-
tion (8). We first make the following assumptions, and then
state the main theorem of the paper.

Assumption 4 The following holds: (a) the update period is
sufficiently small that the following first-order Taylor series
approximation is valid:

Na∑
i=1

Lz
i (z

∗
i (s; tk), ẑ−i(s; tk)) ≈ γ‖z(tk)− zc‖2Q

+ 2γ(s− tk)(z(tk)− zc)T Qf(z(tk), u∗(tk; tk)),

for all s ∈ [tk, tk + δ] and anyk ∈ N; (b) there ex-
ists a Lipschitz constantK ∈ [1,∞) such that for any
z, z′ ∈ ZΣ, u, u′ ∈ UNa ,

‖f(z, u)− f(z′, u′)‖ ≤ K
(
‖z − z′‖ + ‖u− u′‖

)
.

Theorem 1 Suppose Assumptions 1-4 hold,z(t0) ∈ ZΣ and
for a given constantβ ∈ (0,∞) with Ωβ ⊂ ZΣ, the constant
r = r(β) ∈ (0, ρmax) is such that the properties in Equation
(8) are satisfied. Then, by application of Algorithm 1 with

δmax =
γ(r/2)2λmin(Q)

ξ + γKρmax(ρmax + umax)λmax(Q)
, (9)

andξ given by Equation(7), the closed-loop state trajectory
entersB(zc; r) in finite time and remains inΩβ for all future
time.

The theorem guarantees that, by application of Algorithm 1
with δmax given by Equation (9), the closed-loop state tra-
jectory enters the the closed ballB(zc; r) in finite time and
remains in the level setΩβ for all future time. Moreover, the
size of the setΩβ can be made arbitrarily small provided the
positive constantr satisfies the conditions in Equation (8).
The price for a smaller set of convergence, i.e., by choos-
ing r smaller, is a smaller bound on the update periodδmax,
which in turn results in a tighter bound in the compatibility
constraints (4). Still, the conditions above for convergence
are only sufficient, and the simulation results in Section 5
demonstrate that good closed-loop performance and conver-
gence is achieved with an update period larger than required
by the theory. Observe that the update period boundδmax in
Equation (9) is proportional to1/ξ, which in turn is propor-
tional to 1/κ. So, the compatibility constraint in Equation
(4) cannot be independently relaxed by increasingκ, since
this results in a smaller bound onδ

As stated in the introduction, our motivation for pursuing a
distributed implementation is to enable the autonomy of the
individual subsystems while reducing the computation and
communication requirements of a centralized implementa-
tion. Since each vehicle is computing its own control locally,



the autonomy objective is satisfied. Regarding the cost of
computation, the distributed implementation is computation-
ally scalable in the sense that the size of every local optimiza-
tion problem is independent of the total number of subsys-
tems, as well as the number of neighbors of any vehicle. This
is a key advantage over a centralized implementation. Com-
paring the cost of communication is less straightforward, as
the distributed implementation requires the transmission of
trajectories, as opposed to just current state information, at
each update. A qualitative analysis comparing the cost of
computation and communication of the distributed and cen-
tralized implementations is given in [4].

We can also assess the closed-loop performance of the dis-
tributed implementation. More than in centralized imple-
mentations, theclosed-loop performance depends largely on
the optimal open-loop trajectories computed at initialization.
One reason for this dependence is that vehicles update their
controls under the assumption that neighbors will act on what
was previously optimal. As such, the effect of the initial re-
sponse is propagated into subsequent responses in a more
direct way than in centralized implementations. This is true
to the extent that a vehicles performance objective is affected
by its neighbors, which is a function of the relative weighting
between coupling and non coupling terms. For example, if
the initial response is sluggish and coupling terms in the cost
are heavily weighted, each vehicles subsequent control will
likely be sluggish. Another reason for the dependence of per-
formance on initialization is the compatibility constraints, a
fact that we now quantify. LetNRH ∈ N be some number of
receding horizon updates after timet0 such thatNRH ·δ ≈ T .
At the optimum, the state compatibility constraint for each
vehiclei is

‖z∗i (t; tk)− ẑi(t; tk)‖ ≤ δ2κ, t ∈ [tk, tk + T ].

Over the subinterval of time[tk, tk−1 + T ], we have

‖z∗i (t; tk)− z∗i (t; zi(tk−1))‖ ≤ δ2κ, t ∈ [tk, tk−1 + T ].

Fork = 1 and at timet = tNRH, wheretNRH = t0+NRH ·δ ≈
t0 + T , we therefore have that

‖z∗i (tNRH; zi(t1))− z∗i (tNRH; zi(t0))‖ ≤ δ2κ.

Fork = 2 and at timet = tNRH, we also have that

‖z∗i (tNRH; zi(t2))− z∗i (tNRH; zi(t1))‖ ≤ δ2κ.

Applying this recursively up tok = NRH, each at timet =
tNRH, summing up both sides of the inequalities and applying
the triangle inequality gives

‖zi(tNRH)− z∗i (tNRH; zi(t0))‖ ≤ NRH · δ2κ ≈ Tδκ,

where we use the fact thatz∗i (tNRH; zi(tNRH)) = zi(tNRH).
After NRH iterations, the current state deviates from the orig-
inal optimal state, at the appropriate point in time, by at most
Tδκ. Thus, when the update period is small enough to satisfy

the theoretical conditions for convergence, the compatibil-
ity constraints imply the closed-loop trajectory must remain
relatively close to the trajectory computed at initialization;
therefore, the transient response will only be as good as the
initial response. If the compatibility constraints are relaxed
by choosing a larger update time, one might expect a more
optimal transient response at the price of poorer convergence.
In fact, simulation experiments show good convergence even
in the absence of the compatibility constraints (Chapter 6,
[4]). Keep in mind that the convergence conditions in Theo-
rem 1 are sufficient and therefore conservative. Two alterna-
tive formulations detailed in [4] include a dual-mode version
of the distributed receding horizon control law, and replacing
the state compatibility constraints withcontrolcompatibility
constraints.

5 Simulation Example

A simulation of a four vehicle formation is presented in this
section. For simplicity, the dynamics of each vehicle are
given by q̈i(t) = ui(t), for eachi ∈ {1, 2, 3, 4}. The ob-
jective is a formation that tracks a reference trajectory. To be
consistent with the stabilization objective of Section 2, the
velocity of the reference trajectory is constant over two time
intervals and the receding horizon control law stabilizes the
error dynamics over each such time interval. The reference
trajectory(qref(t), q̇ref(t)) ∈ R4 is defined as

qref(t) =
{

(t, 0), t ∈ [0, 10)
(10, 10− t), t ∈ [10,∞) , (10)

wheret0 = 0 in the notation of the previous sections. The
error system for any vehiclei has state(qi − qref, q̇i − q̇ref)
and dynamics̈qi = ui. The jump in the reference ve-
locity at t = 10 seconds serves to examine how well the
error dynamics are stabilized when the desired formation
is reconfigured. The control constraint set is defined as
U =

{
(v1, v2) ∈ R2 : −1 ≤ vj ≤ 1, j = 1, 2

}
. To elim-

inate any offset between the center of geometry of the for-
mation and the reference trajectory, we setqd = (0, 0).
The set of pair-wise neighbors defining the desired forma-
tion isE0 = {(1, 2), (1, 3), (2, 4)}. The desired relative vec-
tors are constant for the two legs of the reference trajectory,
defined asd12 = d24 = (−2, 1) andd13 = (−2,−1) for
t ∈ [0, 10), andd12 = d24 = (1, 2) andd13 = (−1, 2) for
t ∈ [10,∞). The common rotation in the vectors at time
10 seconds is to match the desired heading of the forma-
tion with the heading of the reference trajectory. The initial
conditions for each vehicle are given asq1(0) = (−1, 2),
q2(0) = (−4, 0), q3(0) = (−2, 0) andq4(0) = (−7,−1),
with q̇i(0) = (0, 0) for each vehiclei. In both centralized
and distributed receding horizon implementations, a horizon
time ofT = 5 seconds and update period ofδ = 0.5 seconds
are used. Also, the following weighting parameter values
are consistent in both implementations:ω = 2.0, ν = 1.0
and µ = 2.0. To solve the optimal control problems nu-
merically, we employ the Nonlinear Trajectory Generation
(NTG) software developed at Caltech. A detailed descrip-
tion of NTG as a real-time trajectory generation package for



constrained mechanical systems is given in [13]. For the cen-
tralized receding horizon control law, parameter values in the
optimal control problem satisfy sufficient conditions for sta-
bility [6]. The formation response is shown in Figure 1.
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Figure 1: Four vehicle formation using centralized receding hori-
zon control. The light yellow square isqΣ(t) and the
black square isqref(t), for t = 0, 6, 12, 18 seconds.

The four closed-loop position trajectories of the vehicles are
shown, with each vehicle depicted by a triangle. The head-
ing of any triangle shows the direction of the corresponding
velocity vector. The symbols along each trajectory mark the
points at which the receding horizon updates occur. The leg-
end identifies a symbol with a vehicle number for each tra-
jectory. The vehicles are shown at the snapshots of time0, 6,
12 and18 seconds. Also shown at these instants of time are
the reference trajectory positionqref(t), identified by the dark
square, and the average position of the core vehiclesqΣ(t),
identified by the light square. The tracking part of the coop-
erative objective is thus achieved when the two squares are
perfectly overlapping. At time6 seconds, the vehicles are
close to the desired formation, and at time8 seconds the ob-
jective has been met with good numerical precision. At time
12 seconds, the snapshot shows the formation reconfiguring
2 seconds after the change in heading of the reference trajec-
tory. At time 18 seconds, the objective has again been met
with good numerical precision.

Now, the distributed receding horizon control law is em-
ployed. In [6], we show thatεi = 0.33 for each i ∈
{1, 2, 3, 4} guarantees that the conditions in Assumption 2
hold. We setγ = 2, and when the compatibility constraints
are enforced we setκ = 2. The compatibility constraints are
enforced at every update time except at initialization, as spec-
ified by Algorithm 1, and time 10 seconds. Due to the recon-
figuration of the desired formation at 10 seconds, the termi-
nal constraints are redefined, in the error dynamics, relative
to the new desired location and heading of the formation.
Consequently, if the compatibility constraints are enforced
at time 10 seconds, each optimization problem no longer be-

comes feasible. Removing the compatibility constraints at
10 seconds allows each vehicle to find a feasible path the
new terminal constraints, and the compatibility constraints
are then subsequently enforced. The formation response is
shown in Figure 2. The performance is very close to that
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Figure 2: Four vehicle formation using distributed receding hori-
zon control.

of the centralized implementation. At time6 seconds, the
formation is slightly lagging the reference compared to the
centralized version. At18 seconds, the formation objective
is close to being met, and for slightly more time the same
precision as the centralized implementation is achieved. For
the chosen values ofδ andκ, the compatibility constraints
in fact never become active. This suggests that, based on
the assumption that neighbors continue along their previ-
ously optimal paths and when coupling occurs in the cost
functions, good performance and convergence is achievable,
even without enforcing the compatibility constraints. On the
other hand, compatibility constraints are imperative to main-
tain feasibility when coupling constraints are present, as dis-
cussed in Section 6. Using the same simulation parameters,
we note thatcontrolcompatibility constraints do become ac-
tive over both transient phases of the formation response, as
detailed in [6].

A more naive approach than assuming neighbors continue
along their previously optimal paths is to assume neighbors
applyzerocontrolat every update, and the compatibility con-
straints are never enforced. This was explored in simulations
in a previous paper [5], as well as in [6]. In this case, the
response is characterized by overshoot, as vehicles believe
neighbors will continue with constant velocity over the en-
tire optimization horizon at each update. If the horizon time
T is shortened, overall performance improves, as the zero
control assumption becomes more valid. The reason is that
a straight line approximation of the actual open-loop path is
valid locally, under some mild smoothness conditions, and
so the assumption is a better one for smallerT . In the for-
mulation in [9] a similar effect is observed. Since vehicles
here are relying on the assumption that neighbors keep do-



ing what theyweredoing, and the compatibility constraint
ensures that the assumption is not too far off, practical sta-
bility is ensured. Moreover, the sensitivity to horizon time,
as when neighbors are assumed to continue with constant
velocity and as observed in the formulation in [9], is not
present here. Regarding the communication requirements of
transmitting assumed controls to neighboring vehicles, in the
NTG formulation corresponding to the simulations above, 14
B-spline coefficients specified the two-dimensional assumed
control trajectory of each vehicle. Polynomial representa-
tions of trajectories in the optimization problem, when valid,
can aid in keeping the communication requirements closer to
that of traditional decentralized schemes.

6 Conclusions and Extensions

In this paper, a distributed implementation of receding hori-
zon control is formulated. An integrated cost function rele-
vant for multi-vehicle formation stabilization that couples the
states of a set of dynamically decoupled subsystems is first
defined. One aspect of the generality of our approach is that
the subsystem dynamics are nonlinear and heterogeneous.
Another aspect is that more general coupling functions can
also be admitted, as detailed in [4]. The coupling cost is de-
composed and distributed optimal control problems are then
defined. Each distributed problem is augmented with acom-
patibility constraint, which is a central element in the stabil-
ity results by ensuring that actual and assumed responses of
each vehicle are not too far from one another. Convergence
to a neighborhood of the desired equilibrium point is proven
in the absence of explicit uncertainty and for sufficiently fast
receding horizon updates. We note that a sufficiently fast
update period is also required in [12], which addresses ro-
bustness to model error. In contrast, we require sufficiently
smallδ to mitigate anengineereduncertainty, namely due to
the discrepancy between the assumed and actual controls of
every vehicle, which is present even though there is no model
error.

Since every optimal control problem is solved globally syn-
chronously, the distributed receding horizon control law is
not decentralized, as this requires centralized clock keeping
[2]. A locally synchronous, and consequently decentralized,
version is explored in [4]. In our distributed approach, no
communication is required between vehicles while the dis-
tributed optimal control problems are being solved. This is
an advantage over parallelization methods [2], where every
distributed optimization must communicate with neighbor-
ing optimizations while iterating. Thus, our distributed im-
plementation would generally incur a lower communication
cost than an approach using receding horizon control with
parallelization methods. A tradeoff is that for problems that
admit parallelization, convergence to the centralized solution
is guaranteed. While the distributed implementation here
is stabilizing, it will perform differently in general than the
centralized implementation. In fact, the distributed imple-
mentation corresponds to the solution of a modified central-
ized problem, detailed in [4]. As part of our ongoing work,

we hope to make quantitative comparisons between the dis-
tributed implementation here and parallel implementations
of the corresponding centralized problems. Another impor-
tant extension of our distributed implementation is the ability
to handle coupling state constraints, e.g., collision avoidance
constraints. The dual-mode receding horizon approach by
Michalska and Mayne [12] addresses robustness to model
uncertainty in the presence of generic state constraints by
making the constraints more conservative. In the same way,
coupling state constraints can be incorporated in our dis-
tributed implementation, when such constraints can be made
more conservative, as detailed in [4].
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