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Abstract: We consider the control of interacting subsystemsurrently only a centralized solution and implementation can
whose dynamics and constraints are decoupled, but whogaarantee asymptotic stability theoretically. When the sub-
state vectors are coupled non-separably in a single cost funsystems are operating in a real-time distributed environment,
tion of a finite horizon optimal control problem. For a givena centralized implementation may not be viable due to the
cost structure, we generate distributed optimal control probeomputation and communication requirements of solving the
lems for each subsystem and establish that a distributed reentralized problem at every receding horizon update. In this
ceding horizon control implementation is stabilizing. Thepaper, aistributed implementatioaf receding horizon con-
implementation requires synchronous updates and the exel is presented in which each subsystem is assigned its own
change of the most recent optimal control trajectory betweeoptimal control problem, optimizes only for its own control
coupled subsystems prior to each update. Key requiremergseach update, and exchanges information only with neigh-
for stability are that each subsystem not deviate too far frorhoring subsystems. It is assumed that neighboring subsys-
the previous open-loop state trajectory, and that the recedems can directly communicate with one another. The mo-
ing horizon updates happen sufficiently fast. The venue tWation for pursuing such a distributed implementation is to
multi-vehicle formation stabilization is used to demonstratenable the autonomy of the individual subsystems while re-
the distributed implementation and simulations are providediucing the computation and communication requirements of
a centralized implementation.
Keywords: receding horizon control; cooperative control;
distributed control. Previous work on distributed receding horizon control in-
clude Jia and Krogh [7], Motee and Sayyar-Rodsaru [14] and
1 Introduction Acar [1]. All of these papers address coupled LTI subsys-

. . . tem dynamics with quadratic separable cost functions. State
We are interested in the control of a set of dynamically de- y 9 P

led subsvst that ired t ¢ and input constraints are not included, aside from a stabil-
coupled subsystems that are required 1o perform a COOpe[@/'constraint in [7] that permits state information exchanged

five task. An gxample of SL.'Ch a situation is a group of Veh'E)etween the subsystems to be delayed by one update period.
cles co_operatwely converging to a desired formation, as ex- another work, Jia and Krogh [8] solve a min-max problem
plored in Dunbar and Murray [5], Ren and Beard [15] an or each subsystem, where again coupling comes in the dy-

Leodna;rd and F|ore:I| [10]. or:.e corgroltgpproach tggt aﬁcq 1amics and the neighboring subsystem states are treated as
modates a general cooperalive objective 1S receding oMzl e gisturbances. Stability is obtained by contracting
control. In receding horizon control, the current control ac-

tion is determined by solving online, at each sampling ingac_h subsystems state at every sample period, until the ob-
o ; X ' . Jective set is reached. As such, stability does not depend on
stant, a finite horizon optimal control problem. In Cont'n'information updates between neighbors, although such up-
uous time formulations, each optimization yields an OPeMNates may improve performance. More récently Keviaziy
loop control trajectory and the initial portion of the trajec- . [9] have formulated adistributéd model predit;tive scheme
tory is applied to the system until the next sampling instan Here each subsystem optimizes locally for itself and every

A survey of receding horizon control is given by Mayee : . : - _
al. [11]. For the problem of interest here, cooperation ber_1e|ghbor at each update. By this formulation, feasibility be

) . . comes difficult to ensure, and no proof of stability is pro-
tween subsystems can be incorporated in the optimal cont ed P yisp
problem by including coupling terms in the cost function, as '

done in [5]. In this paper, subsystems that are coupled in th,is paper summarizes the results by Dunbar and Murray
cost func'glon are referred to aeighbors A drawback _of [6]. We begin in Section 2 by defining the system dynam-
the receding horizon control approach to our problem is thits ang an integrated cost function. Both are specific to a
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in the formation. The distributed receding horizon controln concatenated vector form, the system dynamics are
algorithm is then defined, and the stability results are given
in Section 4. Two key requirements for stability are that the 2(t) = f(2(t),u(t), t=>to, givenz(to), (2)
receding horizon updates happen sufficiently fast, and tha
each distributed optimal state trajectory satisfgcaanpati- wﬁweref(z_,_u)_ = (filz1,w1); -, fr, (28,5 un, ). The de-
bility constraint Loosely speaking, the compatibility con- Siréd equilibrium point is denoted” = (21, ..., 2§, ). Since
straints ensure that the actual state trajectory of each veH?—e dynar_n.|cs. are secqnq-order and tlme—lnvgrlaﬂt, the de-
cle is not too far from the trajectory that each neighbor a$'€d equilibrium velocity;? = 0 for every vehiclei, and
sumes for that vehicle, from one receding horizon update {&e deS|£ed constant equilibrium position values are denoted
the next. While the compatibility constraints used here incff = (41~ 4k, ). We now make some standard assump-
some conservatism in the closed-loop response, a fact qu\iﬁ_ns_regardmg the system (2) and theldee.g., see (Al)-
tified in Section 4, the numerical results in Section 5 sho 3) in [3]).
that good closed-loop performance is achieved when thedgsumption 1 The following holds: &) f : R*"Ne x
constraints are relaxed. Section 6 discusses conclusions dd"* — R>""« is twice continuously differentiable) =
extensions. f(2¢,0), and f linearized aroundz,u) = (z¢,0) is stabi-
. . lizable; @) the system (2) has a unique, absolutely continu-
2 System Description and Objective ous solution for any initial condition(t) and any piecewise
ght-continuous contral : [to, 00) — UN=; (c) U is a com-

In this section, we define the system dynamics and pose q o A
containing the origin in its interior.

integrated cost function relevant for multi-vehicle formatiorPact subset aR™
stabilization. The states of the vehicles are coupled in tHeet umax be the positive scalar constanin.. =
cost function, while each vehicle is modelled by decoupledmax [[v(t)| | v(t) € UN=, t > t; € R}. The integrated
dynamics subject to input constraints. The cases where vehipst function relevant for multi-vehicle formation stabiliza-
cles are subject to coupled and decoupled state constraiti is defined as

are addressed in [4]. We make use of the following no-

. _ 2
tation. The symbol| - || denotes any vector norm iR", L(zyu)= Y wlag—q;+dyl
and dimensiom: follows from the context. For any vector (i,9)€ &0
xr € R", ||z||p denotes the’-weighted 2-norm, defined by +wllgy, — qall® + vl|glI* + pllull?,

|z]|% = 2T Px, and P is any positive-definite real symmet-
ric matrix. AlS0, Apax(P) and \yin(P) denote the largest given the positive weighting constants v, 1 € R, and
and smallest real eigenvalues Bf respectively. The set wherew||q, — qa|? is thetracking cost defined byg, =
B(z;r) denotes a closed ball iR™ with centerz and ra- (q1 + g2 + ¢3)/3 andqa = (qf + ¢5 + ¢5)/3. The set
diusr. Whenz is a curve, we sometimes abuse the notatiofiy is theset of all pair-wise neighborthat defines the for-
||| to mean||z(¢)|| at some instant of timee R. mation in the following way. First, if(é,j) € &, then
(4,7) ¢ o, and(i, i) ¢ & for every vehicle € {1, ..., N, }.
Our objective is to stabilize a group of vehicles toward amext, for every vehicle there is at least one paft, j) or
equilibrium point in a cooperative way using receding hori{j, i) in &, i.e., every vehicle has at least one neighbor. Fi-
zon control. For each vehiclee {1, ..., N, }, the state and nally, associated witlg, is the set of constant relative vec-
control vectors are denoteg(t) = (¢;(t), ¢;(t)) € R** and torsD = {d;; € R"|(i,5) € &}, each of which connects
u;(t) € R™, respectively, at any time> t, € R. The vec- the desired equilibrium positions of a pair of neighboring ve-
torsq;(t) € R™ andg;(t) € R™ are the position and velocity, hicles, i.e., for any two neighbotisand j, ¢¢ + d;; = q5-
respectively, of each vehicle Thedecoupledsecond-order, Additionally, the relative vectors irD are consistent with
time-invariant nonlinear system dynamics for each vehiclene another in the sense that, e.g(iifj), (j, k) and (i, k)
i € {1,..., N, } are given byg;(t) = g:(qi(t), ¢:(t),ui(t)), are all in&, thend;; + djz = di. It is assumed at

which we shall write in the equivalent form the outset that, and D are provided by some supervi-
sory mechanism. Note thdt(z,u) = 0 if and only if
2i(t) = fi(zi(t),us(t)), t>to, (1) (z,u) = (2%,0). Also, while the tracking cost is here de-

fined with vehicles 1, 2 and 3, different and fewer (or more)
where f;(z;(t), ui(t)) = (Gi(t),g:(q:(t),di(t),u;(t))) € vehicles can be included in this term without loss of gener-
R2". It is assumed that there is no model error. While thélity (see discussion in Chapter 6 of [4]). The set of pair-
system dynamics can be different for each vehicle, the dise neighbors of any vehiclec {1, ..., N,} is defined as
mension of every vehicles state (control) is assumed to B¥ = {j € {1,..., Na} | (4, ) or (j,i) € &} . When we re-
the same, for notational simplicity and without loss of genfer to theneighborsof any vehiclei € {4, ..., N, }, we mean
erality. Each vehicle is also subject to the decoupled in-the set\;, and theneighborsof any vehiclei € {1,2,3}
put constraints.;(t) € U, t > to. The setdV is the N-  referstothe sed; U {1,2,3} \ {i}. The integrated cost can
times Cartesian produét x --- x . The concatenated be equivalently written as
vectors are denoted = (¢1,...,q9n,), ¢ = (41, ---,4N, ),
e ) Ro g e tod ™ i ol D) = R4 ulal®, @



where@Q = QT > 0 (Proposition 6.1 in [4]). In the next are the actual state and control, respectively, for each vehi-
section, L(z,u) is decomposed into distributed integratedcle: € {1, ..., N,} at any timet > ¢,. Over any prediction
cost functions. Then, distributed optimal control probleménterval [tx, tx. + T, k € N, associated with current tintg,

and corresponding distributed receding horizon control algder each vehicle € {1, ..., N, } we denote

rithm are stated.

ui(7;tr) :  the optimal predicted control trajectory,

3 Distributed Receding Horizon Control
ﬂ i(T;tx) :  the assumed control trajectory

In this section, we introduce notation, defifg, separate
optimal control problems and the distributed receding horiwherer € [t,t, + T]. The corresponding state trajecto-
zon control algorithm. For any vehiciee {1,...,N.}, let  ries are likewise denoted’ (7;t;), 25 (7;tx) and 2;(; ty.),
Z-i = (2j,, 0 2j,) @NAu—; = (ujy, ..., u;, ) denote the vec- and at timer = ¢;,, all of these trajectories are equal to the
tors of the states and controls of the neighbors, @éspec- initial condition z; (t;.). Letu?(7;ty), u*(7;t) anda(r; ty,)
tively, where the ordering of the sub vectors is arbitrary buge the concatenated predicted, optimal and assumed control
fixed. Also,z_; = f_i(2—i,u—;) represents the collective vectors for all vehicles, respectively, with similar notation for
decoupled dynamics of the neighbors of any vehicl&he the concatenated state vectors. Consistent withalso let
distributed integrated cost the optimal control problemfor ¢,_;(7;¢,) and2_;(r;¢;) be the assumed control and state
any vehiclei € {1, ..., N, } is defined as trajectories of the neighbors of corresponding to current
time t;. The collection of distributed optimal control prob-
Li(zi, z—i,u;) = L7 (2, 2—;) + ypllugl|* + La(i), where  lems is now defined.
Li(zi, ) = Z X g - g; + dij|* + v lldl? Problem 1 For each vehiclé € {1, .., N, } and at any up-
JEN: date timety, k € N: Givenz; (tx), z—;(tx), anda;(7; t) and

. _i(m;ty) forall 7 € [tg,, t,, + T, find
T e L Goslmte) forallT & fb, b + 7]
: ¢ Ji(zi(te), z—i(ty)) = min  Ji(zi(te), z—i(te), wi (5 tr)),

uf (5tk)

u?(r;t,) :  the predicted control trajectory,

and v € R is a positive constant. By construction, . ]
SNe Li(2, 2—i,u;) = vL(z,u). Note that the terms that WhereJi(zi(tx), z—i(tx), u (-;tx)) is equal to
couple the positions of vehicles are equally weighted in the bt T
decomposition, although such a choice is not necessary for / Li(2P(s3tk), 2—i(st), ul (s; ) ds
the stability results to hold. tr
o : + yll= (e + T i) — 25117,
In every distributed optimal control problem, the same con-
stant prediction horizorl” € (0,00) and constant update subject to
periodé € (0,T] are used. In practice, the update period

§ € (0, T]is typically the sample interval. By our distributed 2 (mitr) = fi(2 (T5tn), ul (T3 tk))
implementation, an additional condition @nis required, Gi(rite) = fi(Zi(mite), 4i(T5t0)

namely that it be chosen sufficiently small, as quantified in .

the next section. At each receding horizon update, every op- Zoi(mity) = foi(Goi(mite), Gmi(T5 k)

timal control problem is solved synchronously, i.e., at the uf (r5t,) €U

same instant in time. The common receding horizon update 128 (3 t) — Zi(ri )| < 25 (4)

times are denotet. = ¢, + dk, wherek € N = {0, 1,2, ...}.

At each update, every vehicle optimizes only for its owror all - € [t tr 4+ T), with 22 (L tr) = 2 (tr; te) = 2i(tr)
open-loop control, given its current state and that of its neighmdg_i(tk; tr) = z_;(tx), and terminal constraint
bors. Since each cost(z;, z_;, u;) depends upon the neigh-

boring states:_;, each vehiclei must presume some tra- 2ty + Titr) € Qi(e),

jectories forz_; over each prediction horizon. To that end, o .
prior to each update, each vehi¢leceivesanassumedon-  9iven the constants, e; € (0, c0), weighting matrixP;
trol trajectory from each neighbor. Then, using the modef’; > 0.and terminal se, (e:) ={z € R*" [ l2—2{|%,
the current state and the assumed control for that nelghbér}

the assumed state trajectories are computed. Likewise, v&s part of the optimal control problem, the optimized state
hicle i transmits an assumed control to all neighbors pridfor 5 is constrained to be at most a distanc&df from the

to each optimization. By design, the assumed control fassumed state in Equation (4). We refer to Equation (4) as
any vehicle ighe samen every distributed optimal control the statecompatibility constraint The constraint is a means
problem in which it occurs, i.e., every neighboriokill as-  of enforcing a degree of consistency between what a vehicle
sume the same trajectories foover each prediction hori- plans to do and what neighbors believe that vehicle will plan
zon. To distinguish all of the different trajectories, we in-to do, proportional to the square of the update period. The
troduce the following notation. Recall thaf(t) andw;(t)  optimal control solution to each distributed optimal control

|A



problem (assumed to existyig(7;tx), T € [tr, tr+7T]. The denote the set of initial stateg¢) which can be steered to
closed-loop system for which stability is to be guaranteed i§2;(c1) x --- x Qu, (en,) by a piecewise right continuous
controlu?(-;t) : [t,t + T] — UN=. To achieve convergence,
2(1) = f(2(7),urn(T)), T >to, (5)  the update period must satisfy< ..., where the constant
dmax € (0,T] is defined in the next section. When results ap-
ply for any constand € (0, T, we setyn.x = T Following
the presentation in [12], we now state the control algorithm.

Algorithm 1 At time ¢, with z(tg) € Zx, the Distributed

for 7 € [ty,tr41) and anyk € N. The receding horizon Receding Horizon Controllefor any vehiclei € {1, ..., N, }
control law is updated when each new initial state updatg 55 follows:

z(ty) <« z(tx+1) is available. Before stating the control

algorithm formally, which in turn defines the assumed conbata: z;(to), z_i(to), T € (0,00), 6 € (0
trol for each vehicle at every update, a decoupled terminal

controller associated with each terminal cost and constraihtitialization: At time ¢,, solve Problem 1 for vehiclg set-
set is defined. The linearization of thth subsystem (1) ting @;(7;ty) = 0anda_;(7;tg) = 0 forall 7 € [t to + T

at (z;,u;) = (2¢,0) is denotedd, = 2fi(z¢,0), B; = and removing the constraint (4).

g—ﬁ(zf,()). By assuming stabilizability for each vehicle
(Assumption 1 (a)), a feasible local linear feedbagk=
K;(z — z¢) which stabilizes each nonlinear subsystem (1)
in Q;(e;) can be constructed (see [3], [12]). To that end, we
make the following assumption. (@) Applyuj(T;ty), T € [tr, trtr).

Assumption 2 For every vehiclé € {1,..., N, }, the largest (b) Computei;(7:ty+1) = i(7) as

positive constant; > 0 is chosen such tha®;(s;) is a i(r) = w (73 tg), T € [thy1,tk +T)
positively invariant region of attraction for the closed-loop K (z5(m52F) —28), 7€t + T tpsr + T
nonlinear systemt; = f;(z;, K;(z; — 2§)), and such that

with the appliedistributed receding horizon control law

urH(T) = (ui(T3t), ..., un, (T3 tr)),

) 6max]-

Controller:

1. Over any intervalty, tx11), k € N:

for all z; € Q;(¢g;), the stabilizing feedback is feasible, i.e., wherezF = 27 (ty + T;ty).
u; = K;(z; — 2{) € U. In addition, each terminal weight- (c) Transmita;(-;¢;) to every neighbor and receive
ing matrix P, = PT > 0 is chosen to satisfy the Lyapunov @;(+; ) from every neighboy.
equation . . 2. Atany timety, k € {1,2,...}:
(Ai + Bili)" P + Py(Ai + Bili) = —(Qs + pK; K3), (a) Measure current statg(t;) and measure or re-
With Q; = Amax(Q)I € R27¥2n, ceive the current states;i(tk).. .
(b) Solve Problem 1 for vehiclg yieldingu (7; t),

Existence of each; € (0,00) is guaranteed by Lemma 1
in [3]. By construction,Q := diag @1, ...,Qn,) satisfies

Q = Q, whereQ is the weighting for the integrated cost (3). At initialization of Algorithm 1, Problem 1 is solved for each
Defining K’ = diag(K1, ..., Ky, ), P = diag(P, ..., Pn,),  vehicle without enforcing the compatibility constraint (4)
A = diag A4y, ..., Ay,) and B = diag By, ..., By,), itis  and assuming that every neighbor applies zero control over
trivial that P = P > 0 satisfies the prediction interva, to+177]. The choice ofi(7;ty) = 0
T ~ at initialization is motivated in [6]. When(ty) € Zx, Prob-
(A+BK)" P+P(A+BK)=—(Q+pK"K). (6) lem 1 is feasible at initialization, in thaE tk?e input and ter-
minal constraints are satisfied and every distributed value
function J;(-) is bounded. At every subsequent update
k > 1, the compatibility constraints are enforced, and each
(8 2(t0)) = fi (25 (4 2(t)), K (25 (£ 2(ty)) — =€), vehicle assumes all neighbors will continue along their pre-
vious open-loop plans, finishing with their decoupled linear
with ¢t > tg, given initial conditionz;(¢p). The decoupled control laws. Although Algorithm 1 requires the solution to
linear feedbacks are referred to tesminal controllers In  Problem 1 instantaneously at each update tije predic-
the quasi-infinite horizon approach in [3], the (single) tertive version could be stated to account for non-trivial com-
minal controller is never actually employed, as the recegsutation times, as discussed in [4]. Also, the algorithm relies
ing horizon control law is applied for all time. In tldual- on computing the optimal solution to Problem 1 at every up-
modeapproach in [12], receding horizon control is employediate, although the optimal need not be unique. To relax this
until the state reaches the terminal constraint set, at whichquirement, a version akin to that in [12] could be stated,
point the terminal controller is employed for all future time.wherein each distributed value functidp(-) satisfies an im-
The distributed implementation algorithm defined below igprovement property from one update to the next. The as-
based on the quasi-infinite horizon approach, while a duatumed control trajectories would then be defined in terms of
mode version is discussed in Section 4. &t ¢ R?"N«  the previous (suboptimal) control.

TE[tk,tk—FT]. [ |

For each € {1,...,N,}, letzX(¢; 2(to)) denote the closed-
loop solution to



4 Analysis Our main result demonstrates that, for ahy (0, c0), the

In this section, we state the stability results, assess t éosed-loop state trajectory converges(lp, provided that

distributed implementation and discuss alternative formuld"® update period bouniil,.y in Algorithm 1 is proportional

5 ! o N
tions. To save space, all proofs are omitted, but can be fou{f?ir gs dvt?/fln?dtbelolv, ?rr]wd.;,a;[||sf|¢s the propetrtles n E(?ltjr?'
in [6]. The main result is that by applying Algorithm 1, the ion (8). We first make the following assumptions, and then

closed-loop state(t) converges to a neighborhood of the obState the main theorem of the paper.

jective statez, for a sufficiently small upper bound on the
update period,,... At any timetg, k € N, the sum of the
optimal distributed value functions is denoted

Assumption 4 The following holds: &) the update period is
sufficiently small that the following first-order Taylor series
approximation is valid:

N,
* _ * P 5 . N,
Ji(z(tg)) = ;J1 (zi(tr), z—i(tw)) ZLf(zf(S;tk)75—i(3?tk)) ~ yllz(t) — ZCH?}

We begin by stating a feasibility property, following the stan- . .
dard arguments in [ and [12] | J +29(s — ) (=(tr) — )T QU (=(t), w (ts tr),

for all s € [ty,tr + 6] and anyk € N; (b) there ex-
Lemma 1 Suppose Assumptions 1 and 2 hold aith) € ists a Lipschitz constank. € [1,00) such that for any
Zs,. Then, by application of Algorithm 1 with,.x = T, 2,2’ € Zs, u, v’ € UNe,
Problem 1 has a feasible solution at any update time: €
{1,2,...}. Moreover, the sefs, is a positively invariant set || f(z,u) — f(z/,u')| < /C(HZ )+ - u/||>.
for the closed-loop syste(B).

) . . heorem 1 Suppose Assumptions 1-4 hoidi) € Zx and
In the analysis thqt follqws, we require that the optimal an  a given constans € (0, oo) with Q C Z,, the constant
assumeq state trajectorlgs remain bounded. r = r(8) € (0, pmax) is SUCh that the properties in Equation
Assumption 3 There exists a constapt.a. € (0,00) such (g) are satisfied. Then, by application of Algorithm 1 with
that [|2*(t; tx) — 2°l] < pmax @Nd||2(t;tr) — 2°[ < pmax

forall ¢ € [t,tr + T] and anyk € N. Y(r/2)*Amin (Q)

The following lemma gives a bounding result on the decrease Omasx = € + YK pmax(Pmax + Umax) dmax (@) ©)

in J(-) from one update to the next. Since the compatibility

constraints are enforced for update timgsvith £ > 1, the and¢ given by Equatiorf7), the closed-loop state trajectory
result holds fork € {1,2,...}. entersB(z¢; r) in finite time and remains iz for all future
time.

Lemma 2 Suppose Assumptions 1-3 hold ar{dy) € Zx. The theorem guarantees that, by application of Algorithm 1
Then, by application of Algorithm 1 with,., = 7', and for  with §,,., given by Equation (9), the closed-loop state tra-
the positive constargt defined by jectory enters the the closed bl z¢; r) in finite time and
remains in the level sét for all future time. Moreover, the

& = 9T (dpmax + T7k) [[€0] + 1], (M) size of the sef2; can be made arbitrarily small provided the
the functionJs; () satisfies positive constant satisfies the conditions in Equation (8).
The price for a smaller set of convergence, i.e., by choos-
J5(2(tk +9)) — J5(2(tr)) < ing » smaller, is a smaller bound on the update pefiggk,
tr+6 Na which in turn results in a tighter bound in the compatibility
— / ZLf (25 (s5ty), 2_i(s;ty)) ds + 62€, constraints (4). Still, the conditions above for convergence
te =1 are only sufficient, and the simulation results in Section 5

demonstrate that good closed-loop performance and conver-
gence is achieved with an update period larger than required
by the theory. Observe that the update period bayngd in
Denote the compact level sets as Equation (9) is proportional to/¢, which in turn is propor-
_ 2nNo | 7% tional to 1/x. So, the compatibility constraint in Equation

g ={z€R | J5(2) < B}, (4) cannot be independently relaxed by increasingince
with constants € (0,00). The set)s is in the interior of this results in a smaller bound én
Zyx, if 8 > 0is sufficiently small. Now, for any € (0, o)
such that)s C Zx, we can choose a constant= r(3) €  As stated in the introduction, our motivation for pursuing a

forall k € {1,2,...}.

(0, pmax ) With the following properties: distributed implementation is to enable the autonomy of the
individual subsystems while reducing the computation and
B(2%7) C Qg and r? < i (8) communication requirements of a centralized implementa-

YAmin(Q) tion. Since each vehicle is computing its own control locally,



the autonomy objective is satisfied. Regarding the cost difie theoretical conditions for convergence, the compatibil-
computation, the distributed implementation is computatiority constraints imply the closed-loop trajectory must remain
ally scalable in the sense that the size of every local optimizaelatively close to the trajectory computed at initialization;
tion problem is independent of the total number of subsygherefore, the transient response will only be as good as the
tems, as well as the number of neighbors of any vehicle. Thisitial response. If the compatibility constraints are relaxed
is a key advantage over a centralized implementation. Cory choosing a larger update time, one might expect a more
paring the cost of communication is less straightforward, agptimal transient response at the price of poorer convergence.
the distributed implementation requires the transmission df fact, simulation experiments show good convergence even
trajectories as opposed to just current state information, ah the absence of the compatibility constraints (Chapter 6,
each update. A qualitative analysis comparing the cost ¢1]). Keep in mind that the convergence conditions in Theo-
computation and communication of the distributed and cemem 1 are sufficient and therefore conservative. Two alterna-
tralized implementations is given in [4]. tive formulations detailed in [4] include a dual-mode version
of the distributed receding horizon control law, and replacing

We can also assess the closed-loop performance of the dige state compatibility constraints witlontrol compatibility
tributed implementation. More than in centralized impleconstraints.

mentat_ions, thelosed-loo_p performance depen_ds_ !ar_gely on 5 Simulation Example
the optimal open-loop trajectories computed at initialization
One reason for this dependence is that vehicles update th&isimulation of a four vehicle formation is presented in this
controls under the assumption that neighbors will act on wh&gction. For simplicity, the dynamics of each vehicle are
was previously optimal. As such, the effect of the initial regiven by gi(t) = u,(t), for eachi € {1,2,3,4}. The ob-
sponse is propagated into subsequent responses in a miefdive is a formation that tracks a reference trajectory. To be
direct way than in centralized implementations. This is trugonsistent with the stabilization objective of Section 2, the
to the extent that a vehicles performance objective is affectaglocity of the reference trajectory is constant over two time
by its neighbors, which is a function of the relative weightingntervals and the receding horizon control law stabilizes the
between coupling and non coupling terms. For example, §ror dynamics over each such time interval. The reference
the initial response is sluggish and coupling terms in the coBBjectory(gres(t), drer(t)) € R* is defined as
are heavily weighted, each vehicles subsequent control will
likely be sluggish. Another reason for the dependence of per- ef(t) = (t,0), t € [0,10) ’
formance on initialization is the compatibili i K (10,10 = 1), ¢ € [10,00)
patibility constraints, a ) ) J
];2?6%%?&?:&%%?;225' ;‘fg Rtl? mepgut:)k? ti‘;?vi:%m:%f of wheret, = 0 in the notatjon of the previous sections. The
At the optimum, the state compatibility constraint for éaclgrror system for any vehiclehas statdq; — grer, d; — drer
vehiclei is ' nql dynamicsj; = w;. The jump in the_ reference ve-
locity att = 10 seconds serves to examine how well the

error dynamics are stabilized when the desired formation
is reconfigured The control constraint set is defined as

(10)

25 (t;tr) — 2i(t )| < 0%k, t € [ty tg + T).

Over the subinterval of timgy,, t,—1 + 7], we have U={@v*)eR®: -1<v/ <1, j=12}.To elim-
inate any offset between the center of geometry of the for-
|25 (t;tr) — 25 (6 zi(t—1))|| < 0%k, t € [tg,tx_1+T). mation and the reference trajectory, we ggt= (0,0).

The set of pair-wise neighbors defining the desired forma-
Fork = 1and attime = txg,,, Wheret ., = to+Nru-0 = tionis& = {(1,2), (1, 3),(2,4)}. The desired relative vec-

to + T, we therefore have that tors are constant for the two legs of the reference trajectory,
. . 9 defined asliy; = doy = (—271) anddlg = (—2,—1) for
|27 (¢ News 2i (1)) = 27 (Engns 2i(t0))]] < 075 t € [0,10), anddyy = doy = (1,2) anddys = (—1,2) for

t € [10,00). The common rotation in the vectors at time
10 seconds is to match the desired heading of the forma-
X X tion with the heading of the reference trajectory. The initial

; 2 -z : 2 < §%k. o . )
123 (s 20(t2)) = 27 (Evs 20t2)) < 07 conditions for each vehicle are given @g0) = (—1,2),

Applying this recursively up td = Ngy, each at timg =  92(0) = (=4,0), 3(0) = (=2,0) andgs(0) = (=7, 1),

£ Ns» SUMMING up both sides of the inequalities and applyin§ith 4i(0) = (0,0) for each vehicle. In both centralized
the triangle inequality gives and distributed receding horizon implementations, a horizon

time of I' = 5 seconds and update perioddof= 0.5 seconds
2 () — 27 (Enee; 2:(t0) || < Neru - 0%k ~ Tk, are used. Also, the following weighting parameter values
are consistent in both implementations:= 2.0, v = 1.0
where we use the fact thaf (¢ ng,; 2i(tney)) = zi(tney). andp = 2.0. To solve the optimal control problems nu-
After Ngy iterations, the current state deviates from the origmerically, we employ the Nonlinear Trajectory Generation
inal optimal state, at the appropriate pointin time, by at mogNTG) software developed at Caltech. A detailed descrip-
Tk. Thus, when the update period is small enough to satisfion of NTG as a real-time trajectory generation package for

Fork = 2 and at timg = ¢ y,,,, we also have that



constrained mechanical systems is given in [13]. For the cenemes feasible. Removing the compatibility constraints at
tralized receding horizon control law, parameter values in thtE0 seconds allows each vehicle to find a feasible path the
optimal control problem satisfy sufficient conditions for stanew terminal constraints, and the compatibility constraints
bility [6]. The formation response is shown in Figure 1. are then subsequently enforced. The formation response is
shown in Figure 2. The performance is very close to that

Position Space

Position Space

Y motion (m)

Y motion (m)

5 H H H H
X motion (m) -5 0 5 10 15
X motion (m)

Figure 1: Four vehicle formation using centralized receding hori-__ . ) o . )

black square igri(t), fort = 0,6, 12, 18 seconds. zon control.

of the centralized implementation. At tinteseconds, the
The four closed-loop position trajectories of the vehicles arformation is slightly lagging the reference compared to the
shown, with each vehicle depicted by a triangle. The headentralized version. At8 seconds, the formation objective
ing of any triangle shows the direction of the corresponding close to being met, and for slightly more time the same
velocity vector. The symbols along each trajectory mark thprecision as the centralized implementation is achieved. For
points at which the receding horizon updates occur. The lethe chosen values @f and x, the compatibility constraints
end identifies a symbol with a vehicle number for each tran fact never become active. This suggests that, based on
jectory. The vehicles are shown at the snapshots of@iie  the assumption that neighbors continue along their previ-
12 and18 seconds. Also shown at these instants of time areusly optimal paths and when coupling occurs in the cost
the reference trajectory positigr«(¢), identified by the dark functions, good performance and convergence is achievable,
square, and the average position of the core vehigl¢s), even without enforcing the compatibility constraints. On the
identified by the light square. The tracking part of the coopether hand, compatibility constraints are imperative to main-
erative objective is thus achieved when the two squares aan feasibility when coupling constraints are present, as dis-
perfectly overlapping. At time& seconds, the vehicles are cussed in Section 6. Using the same simulation parameters,
close to the desired formation, and at tilwseconds the ob- we note thatontrol compatibility constraints do become ac-
jective has been met with good numerical precision. At timéve over both transient phases of the formation response, as
12 seconds, the snapshot shows the formation reconfiguridgtailed in [6].
2 seconds after the change in heading of the reference trajec-

tory. At time 18 seconds, the objective has again been mé more naive approach than assuming neighbors continue
with good numerical precision. along their previously optimal paths is to assume neighbors

applyzerocontrolat every updateand the compatibility con-

Now, the distributed receding horizon control law is emstraints are never enforced. This was explored in simulations
ployed. In [6], we show that; = 0.33 for eachi € in a previous paper [5], as well as in [6]. In this case, the
{1,2,3,4} guarantees that the conditions in Assumption 2esponse is characterized by overshoot, as vehicles believe
hold. We sety = 2, and when the compatibility constraints neighbors will continue with constant velocity over the en-
are enforced we set= 2. The compatibility constraints are tire optimization horizon at each update. If the horizon time
enforced at every update time except at initialization, as spe€-is shortened, overall performance improves, as the zero
ified by Algorithm 1, and time 10 seconds. Due to the recoreontrol assumption becomes more valid. The reason is that
figuration of the desired formation at 10 seconds, the termé straight line approximation of the actual open-loop path is
nal constraints are redefined, in the error dynamics, relativalid locally, under some mild smoothness conditions, and
to the new desired location and heading of the formatiorso the assumption is a better one for smdllerin the for-
Consequently, if the compatibility constraints are enforcechulation in [9] a similar effect is observed. Since vehicles
at time 10 seconds, each optimization problem no longer bhere are relying on the assumption that neighbors keep do-



ing what theywere doing, and the compatibility constraint we hope to make quantitative comparisons between the dis-
ensures that the assumption is not too far off, practical st&ibuted implementation here and parallel implementations
bility is ensured. Moreover, the sensitivity to horizon time of the corresponding centralized problems. Another impor-
as when neighbors are assumed to continue with constdant extension of our distributed implementation is the ability
velocity and as observed in the formulation in [9], is noto handle coupling state constraints, e.g., collision avoidance
present here. Regarding the communication requirementsadnstraints. The dual-mode receding horizon approach by
transmitting assumed controls to neighboring vehicles, in thdichalska and Mayne [12] addresses robustness to model
NTG formulation corresponding to the simulations above, 1dncertainty in the presence of generic state constraints by
B-spline coefficients specified the two-dimensional assumeadaking the constraints more conservative. In the same way,
control trajectory of each vehicle. Polynomial representacoupling state constraints can be incorporated in our dis-
tions of trajectories in the optimization problem, when validiributed implementation, when such constraints can be made
can aid in keeping the communication requirements closer tnore conservative, as detailed in [4].

that of traditional decentralized schemes.
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