
Formation Control and Collision Avoidance for Multi-Agent Systems
and a Connection between Formation Infeasibility and Flocking

Behavior

Dimos V. Dimarogonas and Kostas J. Kyriakopoulos

Abstract— A feedback control strategy that achieves con-
vergence of a multi-agent system to a desired formation
configuration avoiding at the same time collisions is proposed.
The collision avoidance objective is handled by a decentralized
navigation function that vanishes when the desired formation
tends to be realized. When inter-agent objectives that specify
the desired formation cannot occur simultaneously in the state
space the desired formation is infeasible. It is shown that
under certain assumptions, formation infeasibility forces the
agents velocity vectors to a common value at steady state.
This provides a connection between formation infeasibility and
flocking behavior for the multi-agent system.

I. I NTRODUCTION

Multi-agent Navigation is a field that has recently gained
increasing attention both in the robotics and the control
communities, due to the need for autonomous control of
more than one mobile robotic agents in the same workspace.
While most efforts in the past had focused on central-
ized planning, specific real-world applications have lead
researchers throughout the globe to turn their attention to
decentralized concepts. The motivation for this work comes
from many application domains one of the most important of
which is the field of micro robotics, ([14],[7]), where a team
of a potentially large number of autonomous micro robots
must cooperate in the sub micron level.

Among the various specifications that the control de-
sign aims to impose on the multi-agent team, formation
convergence and achievement of flocking behavior are two
objectives that have been pursued extensively in the last few
years. The main feature of formation control is the coop-
erative nature of the equilibria of the system. Agents must
converge to a desired configuration encoded by the inter-
agent relative positions. Many feedback control schemes
that achieve formation stabilization to a desire formation in
a distributed manner have been proposed in literature, see
for example [20],[12],[11],[3] for some recent efforts. Of
particular interest is also the so-called agreement problem,
in which agents must converge to the same point in the
state space ([15], [18],[2],[9]). On the other hand, flocking
behavior involves convergence of the velocity vectors and
orientations of the agents to a common value at steady state;
contributions include [8], [19],[17].
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In this paper, the problem of formation control is consid-
ered. The main feature of formation control is the cooperative
nature of the equilibria of the system. Agents must converge
to a desired configuration encoded by the inter-agent relative
positions. Inspired by our previous work ([3],[5]) involving
decentralized navigation and collision avoidance of multi-
agent systems to non-cooperative equilibria (i.e. each agent
had a specific goal configuration not related to the positions
of the others) in this paper we propose a methodology that
handles the problem of formation control satisfying at the
same time, the collision avoidance objective for the sphere
world case. We must note that the same problem has been
considered in [20] for the point world case. In this paper, we
exploit our previous results to treat the sphere world case.

In most cases, formation convergence involves kinematic
models of the agents’ motion, while flocking behavior dy-
namic ones. Hence the problem of flocking motion has rarely
been examined in the context of kinematic models of motion.
In this paper, a connection between formation infeasibility
and flocking behavior for multiplekinematicagents is es-
tablished. Formation infeasibility is equivalent to the case
when inter-agent objectives cannot occur simultaneously in
the state space. By decoupling the two objectives (collision
avoidance and formation convergence) it is shown that under
certain assumptions formation infeasibility forces the agents
velocity vectors to a common value at steady state.

The rest of the paper is organized as follows: section II
presents the system definition and problem statement. Sec-
tion III presents the proposed control scheme. The stability
analysis is provided in section IV. Section V contains an
interesting result relating formation infeasibility and flocking
behavior. In section VI computer simulation results are
presented while section VII summarizes the conclusions and
indicates our current research.

II. SYSTEM AND PROBLEM DEFINITION

Consider a system ofN spherical agents operating in the
same workspaceW ⊂ R2. Each agenti occupies a disc:R =
{q ∈ R2 :‖ q−qi ‖≤ ri} in the workspace whereqi ∈ R2 is
the center of the disc andri is the radius of the agent. The
configuration space is spanned byq = [q1, . . . , qN ]T . The
motion of each agent is described by the single integrator:

q̇i = ui, i ∈ N = [1, . . . , N ] (1)

whereui denotes the velocity (control input) for each agent.
Each agents’ objective is to converge to a desired relative



configuration with respect to a certain subset of the rest of
the team, in a manner that will lead the whole team to a
desired formation. Specifically, each agent is assigned with
a specific subsetNi of the rest of the team, called agenti’s
neighboring setwith which it can communicate in order to
achieve the desired formation. Following the literature on
formation control [16],[19], the desired formation can be
encoded in terms of aformation graph:

Definition 1: The formation graphG = {V,E, C} is an
undirected graph that consists of (i) a set of verticesV =
{1, ..., N} indexed by the team members, (ii) a set of edges,
E = {(i, j) ∈ V × V |i ∈ Nj} containing pairs of nodes
that represent inter-agent formation specifications and (iii)
a set of labelsC = {cij}, where (i, j) ∈ E, that specify
the desired inter-agent relative positions in the formation
configuration.

The objective of each agenti is to be stabilized in a desired
relative positioncij with respect to each memberj of Ni,
avoiding at the same time collisions.

Collision avoidance is meant in the sense that no intersec-
tions occur between the agents’ discs. Thus we want to assure
that‖qi(t)− qj(t)‖ > ri +rj , ∀i, j ∈ N , i 6= j for each time
instantt. This is a key difference of collision avoidance of
non-point agents with respect to point agents. In the latter
case, collisions (in the two dimensional world) occur only
when ‖qi(t)− qj(t)‖ = 0 for some i, j. This is not the
case for the non-point world as can be seen by the previous
equation. Thus a different machinery is used in the non-point
case. In previous work [5],[13],[3] we used the navigation
functions approach, established by Koditschek and Rimon
in the seminal paper [10], to achieve collision avoidance and
destination convergence for multiple spherical agents. In this
paper the destination convergence objective is replaced by
formation convergence.

Hence, the problem treated in this paper can be stated as
follows: “derive a set of control laws (one for each agent)
that drives the team of agents from any initial configuration
to the desired formation configuration avoiding, at the same
time, collisions.”.

The following assumptions highlight the level of decen-
tralization of the approach:

1) Each agent has only knowledge of the position of
agents located in a cyclic neighborhood of spe-
cific radius dC at each time instant, wheredC >
maxi,j∈N (ri +rj). This setSi = {q : ‖q−qi‖ ≤ dC}
is called thesensing zoneof agenti. Hence apart from
knowledge of agent located inNi,i has also knowledge
of the positions of agents inSi.

2) Each agent knows the exactnumberof agents in the
workspace.

3) The workspace is bounded and spherical. Specifically
W = {q : ‖q‖ ≤ Rw}, where Rw denotes the
workspace radius.

4) The formation graph is undirected, in the sense that
i ∈ Nj ⇔ j ∈ Ni, ∀i, j ∈ N , i 6= j. It is obvious that
(i, j) ∈ E iff i ∈ Nj ⇔ j ∈ Ni.

5) There are no conflicting inter-agent objectives, in the

sense thatcij = −cji,∀i, j ∈ N , i 6= j.
6) The formation configuration isfeasible, in the sense

that ∃q : ‖qi − qj − cij‖ = 0,∀(i, j) ∈ E. The set
Eq = {q : ‖qi − qj − cij‖ = 0∀ (i, j) ∈ E} is called
the equilibrium setof the formation.

The next figure shows two examples of feasible formation
configurations in a team of four and seven agents respec-
tively, as well as the corresponding neighboring sets for each
agent in the second case. The line formation configuration of
the second figure is implemented in the simulation section.
It is obvious that the radii of the agents do not have to be
equal.
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Fig. 1. Feasible formation configuration example of (a) a rectangular and
(b)a line formation

III. C ONTROL STRATEGY

The proposed feedback control strategy for agenti is
defined as

ui = −Ki
∂ϕi

∂qi
−Di

∂γi

∂qi
(2)

whereKi, Di are positive gains.
The functionγi : W → R+ represents the control objec-

tive for agenti: converging to a desired relative configuration
with respect to eachj ∈ Ni. A suitable choice is:

γi =
1
2

∑

j∈Ni

‖qi − qj − cij‖2 (3)

Functionϕi is a navigation function that ensures collision
avoidance between agents in the team. Inspired by our pre-
vious work on decentralized navigation functions ([5],[3]),
ϕi is constructed to assure collision avoidance between the
agents in a decentralized manner:

ϕi =
fi (Gi)(

(fi (Gi))
k + Gi

)1/k
(4)

The functionGi serves as an encoder of all possible collision
schemes between agenti and the rest of the team. It is
designed in such a way to ensure that the boundary of the
free space of each agent is repulsive with respect to the
produced gradient motion. The free space for each agent is
defined as the subset ofW which is free of collisions with the
other agents. Collision avoidance is reassured in a bounded
workspace and for appropriate tuning of the controller gains.
Under the assumptions of the previous section,Gi is defined



so that each agent takes into account the positions of agents
that are within its sensing zone at each time instant. However,
decentralization is restricted by the fact that the construction
of Gi requires knowledge of the exact number of agents in
the state space. The parameterk is a positive constant which
as shall be shown in the sequel must be sufficiently large
to guarantee system stability. The constructive procedure to
defineGi and more details can be found in [3](see also [4]
for the global sensing case).

Function fi is defined in such a way to ensure that the
repulsive potential vanishes when inter-agent distances are
sufficiently large. This function has also been used in our
previous work ([5],[3]) and was introduced in [21]. We define
the functionfi by:

fi(Gi) =





a0 +
3∑

j=1

ajG
j
i , Gi ≤ X

0, Gi > X

(5)

whereX,Y = fi(0) > 0 are positive scalar constants. The
parametersaj are evaluated so thatfi is maximized when
Gi → 0 and minimized whenGi = X. We also require that
fi is continuously differentiable atX. Therefore we have:
a0 = Y, a1 = 0, a2 = −3Y

X2 , a3 = 2Y
X3 . The parameterX

serves as a sensing parameter that activates thefi function
whenever possible collisions are bound to occur. The only
requirement we have forX is that it must be small enough to
guarantee thatfi vanishes whenever the system has reached
its equilibrium set, i.e. whenq ∈ S. In mathematical terms:

X < Gi (q) ,∀q ∈ Eq, ∀i (6)

This constraint ensures that the repulsive potential vanishes
at the formation configurations.

IV. STABILITY ANALYSIS

A. Tools from Algebraic Graph Theory

In this subsection we review some tools from algebraic
graph theory that we shall use in the stability analysis the
next sections. The following can be found in any standard
textbook on algebraic graph theory(e.g. [1]).

For an undirected graphG with n vertices theadjacency
matrix A = A(G) = (aij) is the n × n matrix given by
aij = 1 if (i, j) ∈ E and aij = 0 otherwise. Thedegree
di of vertex i is defined as the number of its neighboring
vertices, i.e.di = {#j : (i, j) ∈ E}. Let ∆ be then × n
diagonal matrix ofdi’s. The (combinatorial)Laplacianof G
is the symmetric positive semidefinite matrixL = ∆−A. The
Laplacian captures many interesting topological properties of
the graph. Of particular interest in our case is the fact that for
a connected graph, the Laplacian has a single zero eigenvalue
and the corresponding eigenvector is the vector of ones,

−→
1 .

The last property has lead to the interesting result regard-
ing the connection between formation non-feasibility and
flocking behavior discussed in section V. The next subsection
contains the stability analysis of the formation scheme.

B. Stability of a feasible formation

Convergence of the agents to the desired formation con-
figuration is guaranteed by the following theorem:

Theorem 1:Assume that the following hold:

• The equilibrium set in nonempty, i.e.Eq 6= ∅.
• X is small enough to guarantee that if∃i : Gi < X

then
∃δ > 0 : ‖(L ⊗ I2) q + cl‖ ≥ δ

whereL is the Laplacian of the formation graph, the
vectorcl is defined bycl = [c11, . . . , cNN ]T , with cii =
− ∑

j∈Ni

cij and where⊗ denotes Kronecker product.

Then, under the feedback control strategy (2), the state of
the system converges toEq, provided thatk is bounded from
below by a finite lower bound.

Proof: FunctionV =
∑
i

(ϕi + γi) is used as a candidate

Lyapunov function for the whole system. Taking its deriva-
tive we have

V =
∑

i

(ϕi + γi) ⇒ V̇ =

{∑

i

(∇ϕi +∇γi)
T

}
· q̇

Remembering thatui = −Ki
∂ϕi

∂qi
− Di

∂γi

∂qi
and thatϕi =

fi(Gi)

((fi(Gi))
k+Gi)1/k the closed loop dynamics of the system

are given by:

q̇ =



−K1A

−(1+1/k)
1 σ1

∂G1
∂q1

−D1
∂γ1
∂q1

...

−KNA
−(1+1/k)
N σN

∂GN

∂qN
−DN

∂γN

∂qN


 = . . .

= −AKΣQq −D (Lq + cl)

where σi = Giσ(Gi) − fi

k , Ai = fk
i + Gi, σ(Gi) =

3∑
j=1

jajG
j−1
i and the matrices

AK
∆= diag

(
K1A

−(1+1/k)
1 ,K1A

−(1+1/k)
1 , . . . ,

KNA
−(1+1/k)
N , KNA

−(1+1/k)
N

)

︸ ︷︷ ︸
2N×2N

D
∆= diag (D1, D1, . . . , DN , DN )︸ ︷︷ ︸

2N×2N

Σ ∆=


 Σ1︸︷︷︸

2N×2N

, . . . , ΣN︸︷︷︸
2N×2N


 , Σi = diag




0, . . . , σi, σi︸ ︷︷ ︸
2i−1,2i

,

. . . , 0




Without loss of generality, we assume thatDi = D for all
i. We will use interchangeably the notationD both for the
matrix D as well as for its equal elements. The matrixQ is
defined by the following relation:

∇G
∆=



∇G1

...
∇GN


 =




Q1

...
QN


 q

∆= Qq



Analytic expressions for the elements of the matricesQi can
be found in [4]. EachQi is symmetric, i.e.Qi = QT

i . We also
haveQi

ij = Qi
ji = −Qi

jj andQi
jk wheneveri 6= j 6= k 6= i.

The matrixL corresponds to the desired inter-agent rel-
ative positions and can be shown to be related with the
Laplacian of the formation graph by the relationL = L⊗I2.
That’s a crucial result regarding the behavior of the system
as we shall we in the next section.

The gradient of
∑

i γi can be calculated by
∑

i

(∇γi)
T = . . . = 2

(
qT L + cT

l

)

Similarly, the gradient of
∑

i ϕi is calculated by∑
i

(∇ϕi)
T = . . . = qT QT AΣ, where

AΣ =




AΣ1

...
AΣN


 , AΣi

= diag

(
A
−(1+1/k)
i σi, . . . ,

A
−(1+1/k)
i σi

)

︸ ︷︷ ︸
2N×2N

By using the notationz
∆= Lq + cl, the derivative of the

candidate Lyapunov function is now calculated as

V̇ =
{∑

i

(∇ϕi +∇γi)
T

}
· q̇ = . . .

= −D ‖z‖2 − [
zT qT

]
M

[
z
q

] (7)

whereM
∆=

[
D 2AKΣQ

QT AΣD QT AΣAKΣQ

]
. Hence

V̇ ≤ −D ‖z‖2 + |λmin(H(M))|
(
‖z‖2 + ‖q‖2

)

whereH(M) = 1
2

(
M + MT

)
the Hermitian part of the ma-

trix M andλmin(H(M)) its largest negative eigenvalue. The
positive definiteness of the matrixM cannot be guaranteed
due to the fact that each agent has to take into account in
the conflict resolution procedure agents that do not belong
in its neighboring set. The Hermitian part of the matrix

M is H(M) = 1
2

[
H1 H2

H3 H4

]
, whereH1 = 2D, H2 =

2AKΣQ + DAT
ΣQ, H3 = QT AΣD + 2QT ΣT AK , H4 =

QT AΣAKΣQ+QT ΣT AKAT
ΣQ. After some calculation, we

have

(H2)ij = (H3)ij =

=





2KiσiA
−(1+1/k)
i Qi

ii +
∑
l

DA
−(1+1/k)
l σlQ

l
ii, i = j

∑
l

DA
−(1+1/k)
l σlQ

l
ij , i 6= j

and
(H4)ij =

∑
l

(AlAj)
−(1+1/k)

σlσjKjQ
l
ijQ

j
jj

+
∑
l

(AlAi)
−(1+1/k)

σlσiKiQ
i
iiQ

l
ij

Specific bounds on each of the terms in the last relations
are provided in [4]. In particular in [4] it is shown that
the termσi is always negative and bounded and its bounds
are given by0 ≤ |σi| ≤ Θ

k where Θ is a scalar positive
parameter.

This relation, along with the fact that theσi terms are
present in the analytic expressions of(Hk)ij , k = 2, 3, 4
helps us in deriving bounds onk that ensure asymptotic
stability.

In the following analysis we make use of the following
theorems from matrix analysis ([6]) to provide an estimate
of λmin(H(M)):

Theorem 4.1:Given a matrix A ∈ Rn×n then all its
eigenvalues lie in the union ofn discs:

n⋃

i=1





z : |z − aii| ≤
n∑

j=1
j 6=i

|aij |





∆=
n⋃

i=1

Ri(A) ∆= R(A)

Each of these discs is called a Gersgorin disc of A.
Corollary 4.2: Given a matrixA ∈ Rn×n andn positive

real numbersp1, . . . , pn then all the eigenvalues of A lie in
the union ofn discs:

n⋃

i=1





z : |z − aii| ≤ 1
pi

n∑

j=1
j 6=i

pj |aij |





By using p1 = . . . = p2N = p for the first 2N rows of
H(M), Corollary 4.2 provides the following estimates for
the eigenvalues corresponding to these rows:

|z − 2D| ≤
2N∑

j=1

p2N+j

p

∣∣∣(H2)ij

∣∣∣ ≤ 2N

p
max

j
p2N+j

∣∣∣(H2)ij

∣∣∣

The form of (H2)ij guarantees thatmax
j

p2N+j

∣∣∣(H2)ij

∣∣∣ ≤
Θ2
k , where Θ2 a positive finite bound that corresponds to

the upper bounds of the termsA−(·)
i ,

∣∣Ql
ij

∣∣ ,Ki. The fact
that these bounds are finite is discussed in [4].Θ2 can be
calculated explicitly after a series of maximizations on the
terms involved in

∣∣∣(H2)ij

∣∣∣. The fact that the exponentk
appears in the denominator is a direct consequence of the
fact that a term of the formσi is present in every byproduct
of

∣∣∣(H2)ij

∣∣∣. The corresponding eigenvalues of the matrix

H(M) can be rendered strictly positive by tuningk large
enough as shown in the following:

|z − 2D| ≤ 2N

p

Θ2

k
⇒ z > 2D − 2N

p

Θ2

k

Then z > 0 is guaranteed byk > N
p

Θ2
D . Notice that there

is no restriction on how to choose the parametersp2N+j of
the last2N rows, provided that they are finite.

Repeating the procedure for the submatricesH3,H4 does
not guarantee positive definiteness because a careful ex-
amination of the analytic forms of(H3)ij , (H4)ij reveals
that some elements of the main diagonal ofH4 could be
zero while some corresponding elements of thei-th row
corresponding toH3 can be nonzero. Hence the Gersgorin
discs may intersect with the left half plane of the imaginary
axis. However, the following procedure shows that the largest
negative eigenvalue can be rendered sufficiently small to
guarantee negative definiteness ofV̇ .



In the worst case , the eigenvalues of rows2N +1, ..., 4N
of the matrixH(M) lie in the disc

|z| < max
i

p

p2N+i





∑

j

∣∣∣(H3)ij

∣∣∣ +
∑

j 6=i

∣∣∣(H4)ij

∣∣∣




Assuming without loss of generality thatp2N+i = p̃ ∀i =
1, ..., 2N and using the same logic as above it is straightfor-
ward to see that there exists a finiteΘ3 > 0 such that

max
i

p

p2N+i





∑

j

∣∣∣(H3)ij

∣∣∣ +
∑

j 6=i

∣∣∣(H4)ij

∣∣∣


 ≤ p

p̃

Θ3

k

Henceλmin(H(M)) is bounded by|λmin(H(M))| ≤ p
p̃

Θ3
k .

Note that the termp
p̃ can be chosen arbitrarily small, while

Θ3 is always bounded in a bounded workspace. Hence

V̇ ≤ −D ‖z‖2 +
p

p̃

Θ3

k

(
‖z‖2 + ‖q‖2

)

The latter is guaranteed to be negative ifk is chosen large
enough:

V̇ < 0 ⇔ D ‖z‖2 > p
p̃

Θ3
k

(
‖z‖2 + ‖q‖2

)
⇔

⇔ k > p
p̃

Θ3
D

(
1 + R2

w

δ2

)

By virtue of the last relation we have thatV̇ < 0 if Gi <
X for somei. In the setGi ≥ X∀i we have

V̇ = −2D ‖z‖2 = −2D ‖Lq + cl‖2 ≤ 0 (8)

Application of LaSalle’s invariance principle ensures the
convergence of the system to the largest invariant subset
of the setS = {q : Lq + cl = 0} which corresponds to the
desired formation configuration.♦

Note that the setsS = {q : Lq + cl = 0}, q : X <
Gi(q)∀i always intersect due to the constraint (6), provided
that the equilibrium set is non-empty.

It is obvious that the second assumption of the theorem
statement guarantees the finiteness of the bound onk that
leads to asymptotic stability. However it is not as restrictive
as it seems sinceX can be chosen small enough to ensure
the validity of the assumption.

V. FORMATION NON-FEASIBILITY RESULTS IN FLOCKING

BEHAVIOR

The key assumption behind the stability analysis of the
previous section isformation feasibility, namely that there
exists a configurationq ∈ W such thatLq+cl = 0. But what
happens when there doesnot exist such a configuration in
the state space? The answer is contained in the next theorem:

Theorem 2:Assume that the following hold:
1) min

q∈W
‖Lq + cl‖ > 0.

2) X < Gi (q∗) ,∀q∗ : ‖Lq∗ + cl‖ = min
q∈W

‖Lq + cl‖ > 0

3) The formation graph is connected.
Under these assumptions, the system reaches a configuration
in which all agents have the same velocities and orientations.

Proof: Equation (8) guarantees that the system con-
verges to a configuration than minimizes‖Lq + cl‖. Since

‖Lq + cl‖min > 0 we haveLq+cl = c at steady state, where
c is a constant nonzero vector. HenceLq̇ = 0 at steady state.
Assumption 2 and eq.(7) guarantee that at steady state the
dynamics of the system are given byq̇ = −D (Lq + cl) 6= 0.
Using the notationvx, vy for then-dimensional stack vectors
of the components of the agents’ velocities in thex, y
directions at steady state, we have

Lq̇ = 0 ⇒ q̇T (L ⊗ I2) q̇ = 0 ⇒ vT
x Lvx + vT

y Lvy = 0

The last relation and the fact thatq̇ 6= 0 guarantees that at
least one of the vectorsvx, vy is nonzero. Hence at least one
of the vectorsvx, vy is an eigenvector ofL corresponding to
the zero eigenvalue. For a connected graph, the eigenvector
associated with the single zero eigenvalue of the Laplacian is
the vector of ones,

−→
1 . Hence at steady state, at least one of

the vectorsvx, vy belongs in span{−→1 }, which ensures that
all agent velocity vectors will have the same components at
steady state .♦

This simple result shows that formation non-feasibility is
directly related to a phenomenon with many similarities to
what is known as flocking behavior in multi-agent systems.
The interagent relative positions at steady state as well as the
value of the velocity norms are captured bymin

q∈W
‖Lq + cl‖.

It is obvious that the form ofcl,L is directly related to the
form of the resulting flock. The exact hidden relation is quite
interesting and is a topic of current research.

VI. SIMULATIONS

To verify the results of the previous paragraphs we provide
two nontrivial computer simulations.

The first simulation involves convergence to a feasible for-
mation configuration. Specifically, we implement the line for-
mation of figure 1(b). The neighboring sets of each agent are
defined on that picture. Screenshots I-VI show the evolution
in time of the multi agent team. The values of the parameters
in this simulation are:k = 90, D = 0.1K = 10−4,X = Y =
10−3 anddC = 2 max

i,j={1,...,7}
(ri + rj) = 0.09. The collision

avoidance as well as formation configuration properties are
both verified. Note thatX has been chosen small enough to
guarantee that at the equilibrium configuration the condition
Gi > X∀i holds even if the agents are very close to each
other as witnessed in screenshot VI.

The second simulation involves four agents and a non-
feasible formation configuration. The values of the parame-
ters in this simulation are the same as previously. The neigh-
boring sets and desired inter-agents relative position vectors
are N1 = {2, 3, 4}, N2 = {1, 4}, N3 = {1}, N4 = {1, 2},
c12 = c41 = c24 =

[ −.1 0
]T

, c13 =
[

0 −.1
]T

It can easily be seen that this is not a feasible formation
configuration and that the formation graph is connected.
Screenshots I-V show the evolution in time of the multi agent
team. As can be seen in this figure, the interagent velocities
vectors are stabilized at steady state to a common value. This
is shown also in the velocity diagram of the last screenshot.
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Fig. 2. Seven agents converging to a line formation
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Fig. 3. Flocking behavior for 4 agents. Agents velocities converge to a
common value

VII. C ONCLUSIONS

A feedback control strategy that achieves convergence of
a multi-agent system to a desired formation configuration
avoiding at the same time collisions was proposed. The
collision avoidance objective is handled by a decentralized
navigation function that vanishes when the desired formation
tends to be realized. When inter-agent objectives that specify
the desired formation cannot occur simultaneously in the
state space the desired formation is infeasible. It was shown
that under certain assumptions, formation infeasibility forces
the agents velocity vectors to a common value at steady state.
This provides a connection between formation infeasibility
and flocking behavior for the multi-agent system.

Current research involves further studying the connection
between the Laplacian of the formation graph and of the

inter-agent desired positions’ vectorcl with the resulting
flock in the case of formation infeasibility as well as build-
ing a similar control scheme for formation convergence of
nonholonomic agents.
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