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Abstract—A feedback control strategy that achieves con- In this paper, the problem of formation control is consid-
vergence of a multi-agent system to a desired formation ered. The main feature of formation control is the cooperative
configuration avoiding at the same time collisions is proposed. nature of the equilibria of the system. Agents must converge

The collision avoidance objective is handled by a decentralized to a desired fi fi ded bv the int t relati
navigation function that vanishes when the desired formation 0 a desired connguration encoded by the Iinter-agent relative

tends to be realized. When inter-agent objectives that specify POSitions. Inspired by our previous work ([3],[5]) involving
the desired formation cannot occur simultaneously in the state decentralized navigation and collision avoidance of multi-
space the desired formation is infeasible. It is shown that agent systems to non-cooperative equilibria (i.e. each agent
under certain assumptions, formation infeasibility forces the had a specific goal configuration not related to the positions

agents velocity vectors to a common value at steady state. f the oth in thi thodol that
This provides a connection between formation infeasibility and of the others) in this paper we propose a methodology tha

flocking behavior for the multi-agent system. handles the problem of formation control satisfying at the
same time, the collision avoidance objective for the sphere
. INTRODUCTION world case. We must note that the same problem has been

considered in [20] for the point world case. In this paper, we

Multi-agent Navigation is a field that has recently gaine@xploit our previous results to treat the sphere world case.
increasing attention both in the robotics and the control In most cases, formation convergence involves kinematic
communities, due to the need for autonomous control @fiodels of the agents’ motion, while flocking behavior dy-
more than one mobile robotic agents in the same workspaggamic ones. Hence the problem of flocking motion has rarely
While most efforts in the past had focused on centrabeen examined in the context of kinematic models of motion.
ized planning, specific real-world applications have leagh this paper, a connection between formation infeasibility
researchers throughout the globe to turn their attention #nhd flocking behavior for multipl&inematicagents is es-
decentralized concepts. The motivation for this work comeglished. Formation infeasibility is equivalent to the case
from many application domains one of the most important afyhen inter-agent objectives cannot occur simultaneously in
which is the field of micro robotics, ([14],[7]), where a teamthe state space. By decoupling the two objectives (collision
of a potentially large number of autonomous micro robotgyoidance and formation convergence) it is shown that under
must cooperate in the sub micron level. certain assumptions formation infeasibility forces the agents

Among the various specifications that the control develocity vectors to a common value at steady state.
sign aims to impose on the multi-agent team, formation The rest of the paper is organized as follows: section I
convergence and achievement of flocking behavior are twsresents the system definition and problem statement. Sec-
objectives that have been pursued extensively in the last faign 11l presents the proposed control scheme. The stability
years. The main feature of formation control is the coopanalysis is provided in section IV. Section V contains an
erative nature of the equilibria of the system. Agents mushteresting result relating formation infeasibility and flocking
converge to a desired configuration encoded by the intesehavior. In section VI computer simulation results are
agent relative positions. Many feedback control schemggesented while section VII summarizes the conclusions and
that achieve formation stabilization to a desire formation ifndicates our current research.
a distributed manner have been proposed in literature, see
for example [20],[12],[11],[3] for some recent efforts. Of Il. SYSTEM AND PROBLEM DEFINITION
particular interest is also the so-called agreement problem,Consider a system oWV spherical agents operating in the
in which agents must converge to the same point in theame workspacB’ C R?. Each agent occupies a disck =
state space ([15], [18],[2],[9]). On the other hand, flockingq € R? :|| ¢—q; ||< r;} in the workspace wherg € R? is
behavior involves convergence of the velocity vectors anthe center of the disc and is the radius of the agent. The
orientations of the agents to a common value at steady statenfiguration space is spanned by= [q1,...,qx]|T. The
contributions include [8], [19],[17]. motion of each agent is described by the single integrator:
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configuration with respect to a certain subset of the rest of  sense that;; = —c;;,Vi,j € N,i # j.

the team, in a manner that will lead the whole team to a 6) The formation configuration igeasible in the sense

desired formation. Specifically, each agent is assigned with  that 3¢ : ||¢; — ¢; — ¢;;|| = 0,V(4,4) € E. The set

a specific subseW; of the rest of the team, called agerg E, = {q:|l¢s —qj — ¢l =0V (i,4) € E} is called

neighboring sewith which it can communicate in order to the equilibrium setof the formation.

achieve the desired formation. FOIIOWing the literature OThe next figure shows two examp|es of feasible formation

formation control [16],[19], the desired formation can beconfigurations in a team of four and seven agents respec-

encoded in terms of formation graph tively, as well as the corresponding neighboring sets for each
Definition 1: The formation graphG' = {V, E,C} is an  agent in the second case. The line formation configuration of

undirected graph that consists of (i) a set of vertidés=  the second figure is implemented in the simulation section.

{1,..., N} indexed by the team members, (i) a set of edgeg, is obvious that the radii of the agents do not have to be

E = {(i,j) € V x V]i € N;} containing pairs of nodes equal.

that represent inter-agent formation specifications and (iii)

a set of labelsC' = {c;;}, where(i,j) € E, that specify 1o 03
the desired inter-agent relative positions in the formation Rectenguar
configuration. 2o o4
The objective of each agenis to be stabilized in a desired @
relative positionc;; with respect to each membgrof N;, 7 6 5 ! 2 3 4

(o]
o
o]
o
(o]
(o]
(o]

avoiding at the same time collisions.

Collision avoidance is meant in the sense that no intersec- N, {1457 Line
tions occur between the agents’ discs. Thus we want to assure N, {37} E gi ® Formation
that||g;(t) — g, (¢)|| > ri+7;,Vi,j € N,i # j for each time N 2a g
instant¢. This is a key difference of collision avoidance of N {13
non-pomt.a.gents.Wlth respecF to pQInt agents. In the latt g. 1. Feasible formation configuration example of (a) a rectangular and
case, collisions (in the two dimensional world) occur onlyb)a line formation
when |[|g;(t) — g;(t)|| = 0 for someq,j. This is not the
case for the non-point world as can be seen by the previous
equation. Thus a different machinery is used in the non-point
case. In previous work [5],[13],[3] we used the navigation The proposed feedback control strategy for agéens
functions approach, established by Koditschek and Rimatefined as

Ill. CONTROL STRATEGY

in the seminal paper [10], to achieve collision avoidance and u = —K; 0¢i _ D; 0vi )
destination convergence for multiple spherical agents. In this 9q; 9qi

paper the destination convergence objective is replaced ishere K;, D; are positive gains.

formation convergence. The function; : W — R, represents the control objec-

Hence, the problem treated in this paper can be stated #@g for agenti: converging to a desired relative configuration
follows: “derive a set of control laws (one for each agent)with respect to each € N;. A suitable choice is:
that drives the team of agents from any initial configuration 1
to the desired formation configuration avoiding, at the same mi=3 Z llg —q; — c,-,j||2 3)
time, collisions.. JEN:

The following assumptions highlight the level of decenynction o, is a navigation function that ensures collision

tralization of the approach: ~ avoidance between agents in the team. Inspired by our pre-
1) Each agent has only knowledge of the position ofjous work on decentralized navigation functions ([5],[3]),

agents located in a cyclic neighborhood of spey, is constructed to assure collision avoidance between the

maz; jen(ri+1;). This setS; = {q : [[¢—q| < dc}

is called thesensing zonef agenti. Hence apart from i = fi(Gi) — (4)
knowledge_ _of agent Iocatec_i iN;,i has also knowledge ((fi (G))F + Gi) /

of the positions of agents if;.

2) Each agent knows the exastimberof agents in the The functionG; serves as an encoder of all possible collision
workspace. schemes between ageftand the rest of the team. It is
3) The workspace is bounded and spherical. Specificallyesigned in such a way to ensure that the boundary of the

W = {q : |l¢dll £ R.}, where R, denotes the free space of each agent is repulsive with respect to the

workspace radius. produced gradient motion. The free space for each agent is
4) The formation graph is undirected, in the sense thatefined as the subset Bf which is free of collisions with the

ieN; < jeN,;,Vi,jeN,i+#j. ltis obvious that other agents. Collision avoidance is reassured in a bounded

(1,j) e Eiff ie N; & j € N,. workspace and for appropriate tuning of the controller gains.
5) There are no conflicting inter-agent objectives, in théJnder the assumptions of the previous sect@njs defined




so that each agent takes into account the positions of agets Stability of a feasible formation
that are V\{ithip its_sensing zone at each time instant. Howeyer, Convergence of the agents to the desired formation con-
decentrallgatlon is restricted by the fact that the constructl%uraﬂon is guaranteed by the following theorem:
of G, requires knowledge of the exacF .number of agents I heorem 1:Assume that the following hold:
the state space. The parametds a positive constant which
as shall be shown in the sequel must be sufficiently large -
to guarantee system stability. The constructive procedure to® X IS Small enough to guarantee thatif : G; < X
define; and more details can be found in [3](see also [4] €N
for the global sensing case). 3>0:[[(L@l2)g+all=4

Function f; is defined in such a way to ensure that the
repulsive potential vanishes when inter-agent distances are
sufficiently large. This function has also been used in our

« The equilibrium set in nonempty, i.€, # 0.

where £ is the Laplacian of the formation graph, the
vectorc; is defined by; = [c11, ..., enn]”, With ¢;; =
— Y ¢; and where® denotes Kronecker product.

previous work ([5],[3]) and was introduced in [21]. We define JEN,
the functionf; by: Then, under the feedback control strategy (2), the state of
5 the system converges I, provided thatt is bounded from
ao+ Y a;GY, Gy < X below by a finite lower bound.
filGi) = j=1 Proof: FunctionV = 3" (¢; + ;) is used as a candidate

0, G; > X i 7 . i .
Lyapunov function for the whole system. Taking its deriva-

where X, Y = f;(0) > 0 are positive scalar constants. Thetive we have
parameters:; are evaluated so thaf is maximized when
G; — 0 and minimized wher;; = X. We also require that ~ V =>(p; + ) =V = {Z (Vi + V%)T} -
fi is continuously differentiable ak. Therefore we have: i

—3Y 2Y
ap = Va1 = 0,02 = 35,03 = 55. The parametent Remembering that; = —K;22: — D,;2% and thaty; =
serves as a sensing parameter that activated;tfienction F(C) 0q; 9
whenever possible collisions are bound to occur. The onW the closed loop dynamics of the system
requirement we have faoX is that it must be small enough to are given by:
guarantee thaf; vanishes whenever the system has reached

i

) L . . - k )
its equilibrium set, i.e. wheg € S. In mathematical terms: KA 11/ )01%%11 - D1§%
. g=|: =...
X <Gi(q),Yq € E,,Yi (6) ' B )
< oone T oy oy - Dy
This constraint ensures that the repulsive potential vanishes = —Ax¥Qq — D (Lg + ¢;)

at the formation configurations.
where o; = GlO’(Gz) — %7141‘ = flk + GZ‘,O’(GZ‘) =

=1
A. Tools from Algebraic Graph Theory !

In this subsection we review some tools from algebraic A 2 dia
K 9 KNA]_\7(1+1/k)7KNA]_V(1+1/k)

graph theory that we shall use in the stability analysis the
next sections. The following can be found in any standard
textbook on algebraic graph theory(e.qg. [1]).

For an undirected grapy with n vertices theadjacency D2 diag (Dy,D1,...,Dy,Dy)
matrix A = A(G) = (a,j) is then x n matrix given by

Ky AT O A7 00 )

2N X2N

a;; = 11if (i,j) € E anda;; = 0 otherwise. Thedegree NxEN

d; of vertex: is defined as the number of its neighboring 0,..., 040,

vertices, i.ed; = {#j : (i,j) € E}. Let A be then xn y2 Sy, Bx |, = diag agd

diagonal matrix ofd;'s. The (combinatorial)l.aplacianof G ~~ ~—~ 0 ’
2N x2N 2N x2N SR

is the symmetric positive semidefinite matdx= A—A. The
Laplacian captures many interesting topological properties #¥ithout loss of generality, we assume that = D for alll
the graph. Of particular interest in our case is the fact that far We will use interchangeably the notatidn both for the
a connected graph, the Laplacian has a single zero eigenvatuatrix D as well as for its equal elements. The matgxs
and the corresponding eigenvector is the vector of ofes, defined by the following relation:
The last property has lead to the interesting result regard- VG 0!

ing the connection between formation non-feasibility and !

flocking behavior discussed in section V. The next subsection VG : :
contains the stability analysis of the formation scheme. VG QN

>

A
q=Qq



Analytic expressions for the elements of the matriGésan This relation, along with the fact that the, terms are

be found in [4]. Each); is symmetric, i.eQ; = Q7. We also present in the analytic expressions @);j, k¥ = 2,3,4

haveQ}; = Q); = —Q}; andQ}, wheneveri # j # k #i.  helps us in deriving bounds oh that ensure asymptotic
The matrix . corresponds to the desired inter-agent relstability.

ative positions and can be shown to be related with the In the following analysis we make use of the following

Laplacian of the formation graph by the relatibn= L& Is.  theorems from matrix analysis ([6]) to provide an estimate

That’s a crucial result regarding the behavior of the systewf Ay, (H(M)):

as we shall we in the next section. Theorem 4.1:Given a matrix A € R"™ ™ then all its
The gradient of) . v; can be calculated by eigenvalues lie in the union of discs:
Z(V’yi)T:...:Q(qTL—Fc;‘F) n n N R
USz:lz—aul <D layl p = [ Ri(A) = R(4)
Similarly, the gradient of > . ¢; is calculated by i=1 .7;;1 i=1
Vo) =...=¢"QT As, where .
zi:( #i) ¢ QA Each of these discs is called a Gersgorin disc of A.
A Corollary 4.2: Given a matrixA € R™*™ andn positive
_ = _ A,-_(Hl/k)% o real numbergy, ..., p, then all the eigenvalues of A lie in
An = | : , Ay, = diag A1) the union ofn discs:
Asy ‘ :
2N X2N

By using the notation: 2 Lqg + ¢, the derivative of the

candidate Lyapunov function is now calculated as

V= {S @+ v | =

n 1 n
U z:lz—aal <= pjlayl
i=1 pi o

J#
By usingp; = ... = poy = p for the first 2N rows of
H(M), Corollary 4.2 provides the following estimates for
the eigenvalues corresponding to these rows:

’ )
z

DI~ [ 7 o 0| ]| I N

q |z —2D| < Z?% (Ha);| < 5 TEXPeNj (Hs),;
j=1
where M 2 [ le D TQjKAEQE ] Hence

Q' AsD Q" AsAxXQ The form of (H>);; guarantees thahaxpan; |(Hz);;| <

J

V < =D|z|]” + [Amin (H(M))| (||z||2 + ||q||2) ©2, where ©, a positive finite bound that corresponds to

) . N the upper bounds of the termé.i_('), |Q%;| K;. The fact
whereH (M) = 5 (M + M™) the Hermitian part of the ma- that these bounds are finite is discussed in {4]. can be

trix M andAwmin (H (M) its largest negative eigenvalue. Thecalculated explicitly after a series of maximizations on the
positive definiteness of the matrikx/ cannot be guaranteed ; ;
terms involved in|(Hz),;|. The fact that the exponerit

?huee ctgntfﬂgt f?ecstoﬁ:zgr?a;rgcae%ir;te hazse:]ct’st?rlfzt 'ggo n%icgglr: ré&pears in the denominator is a direct consequence of the
S . ) 2. . h rm of the formr; is present in ever r
in its neighboring set. The Hermitian part of the matrix ct that a term of the forn; is present in every byproduct

] [ Hi H of (Hg)ij’. The corresponding eigenvalues of the matrix
Mis HM) = 3 Hs H, | where H; = 2D, Hy = H(M) can be rendered strictly positive by tuniiglarge
24x%Q + DALQ, Hy = QTAsD + 2Q"xT Ay, H, = enough as shown in the following:

QT As AEQ+QTET Ax ALQ. After some calculation, we 2N O, 2N O,

(H2);; = (Hs);; = Thenz > 0 is guaranteed by > ¥ 92 Notice that there

2K;0:4; TV QL + ZIIDAf(Hl/k)UzQZai =J is no restriction on how to choose the paramefers, ; of
—(141/k Lo the last2 N rows, provided that they are finite.

XZ:DAI w )UZQW” e Repeating the procedure for the submatriégs H, does

' not guarantee positive definiteness because a careful ex-

(Ha);; = Xl:(AzAj)_(Hl/k) 010, K;Q},Q%; amination of the analytic forms ofHs),;, (Ha),; reveals

C(141/k i that some elements of the main diagonal f could be

+%:(A’A") Y 010 KQ; i zero while some corresponding elements of thié row
Specific bounds on each of the terms in the last relatioreorresponding taHs can be nonzero. Hence the Gersgorin

are provided in [4]. In particular in [4] it is shown that discs may intersect with the left half plane of the imaginary

the termo; is always negative and bounded and its boundaxis. However, the following procedure shows that the largest

are given by0o < |o;| < % where © is a scalar positive negative eigenvalue can be rendered sufficiently small to

parameter. guarantee negative definitenesstaf

and



In the worst case , the eigenvalues of ravé +1,...,4N  ||Lg + ¢|,,;, > 0 we haveLg+c; = c at steady state, where
of the matrix H (M) lie in the disc c is a constant nonzero vector. Henk¢ = 0 at steady state.
Assumption 2 and eq.(7) guarantee that at steady state the

dynamics of the system are given §y= —D (Lg + ¢;) # 0.
< Hy) ’ Hy) . . by=
17l max PoN+i Z ’ 3) i Z 1) i Using the notation,,, v, for the n-dimensional stack vectors
. _ . of the components of the agents’ velocities in they
Assuming without loss of generality th@§N+i = p Vi= directions at steady state, we have
1,...,2N and using the same logic as above it is straightfor-
ward to see that there exists a fini¥g > 0 such that Li=0=¢" (L& L) ¢=0=v]Lv, +v] Lo, =0
(Hs) (Ha) <P O3 The last relation and the fact that# 0 guarantees that at
max DaN i Z‘ 3) ij Z‘ 4) ij| (= ]5? least one of the vectors,, v, is nonzero. Hence at least one

of the vectorsy,, v, is an eigenvector of corresponding to
Hence i, (H(M)) is bounded by A\, (H(M))| < 2 o; the zero eigenvalue. For a connected graph, the eigenvector
Note that the tern® can be chosen arbitrarily smaﬂ wh|Ie associated with the smgle zero eigenvalue of the Laplacian is
O3 is a|Ways boundped in a bounded Workspace_ Hence the vector of ones,l Hence at Steady state, at least one of
. o the vectorsv,, v, belongs in spahl} which ensures that
V< -D|z| + b= (Hz||2 + Hq||2> all agent velocity vectors will have the same components at
Pk steady state ¢
The latter is guaranteed to be negative:ifs chosen large  Thjs simple result shows that formation non-feasibility is

enough: directly related to a phenomenon with many similarities to
V<0oD ||Z||2 S Q% (”ZHQ n ||Q||2) PN What_ is known as fl_ocklng _b_ehaV|0r in multi-agent systems.
The interagent relative positions at steady state as well as the
&k>LE% (1 + 5) value of the velocity norms are captured tn || g + c|
€

q
It is obvious that the form of;,L is directly related to the
form of the resulting flock. The exact hidden relation is quite
interesting and is a topic of current research.

By virtue of the last relation we have thit < 0 if G; <
X for some:. In the setG; > XVi we have

V= -2D|z|* = —2D||Lq + al|* < 0 (®)

Application of LaSalle’s invariance principle ensures the VI. SIMULATIONS

convergence of the system to the largest invariant subsetTo verify the results of the previous paragraphs we provide
of the setS = {¢q: Lg+ ¢, = 0} which corresponds to the two nontrivial computer simulations.
desired formation configuratior The first simulation involves convergence to a feasible for-
Note that the setsS = {¢:Lg+c¢ =0}, ¢ : X < mation configuration. Specifically, we implement the line for-
Gi(q)Vi always intersect due to the constraint (6), providegnation of figure 1(b). The neighboring sets of each agent are
that the equilibrium set is non-empty. defined on that picture. Screenshots I-VI show the evolution
It is obvious that the second assumption of the theorein time of the multi agent team. The values of the parameters
statement guarantees the finiteness of the bound dmat in this simulation arek = 90,D = 0.1K = 1074 X =Y =
leads to asymptotic stability. However it is not as restrictivg0)—3 andds =2 max ; (r; + ;) = 0.09. The collision

as it seems sinc& can be chosen small enough to ensure ig={l.,
avoidance as well as formation configuration properties are
the validity of the assumption.

both verified. Note thaX has been chosen small enough to
V. FORMATION NON-FEASIBILITY RESULTS IN FLOCKING  guarantee that at the equilibrium configuration the condition
BEHAVIOR G; > XVi holds even if the agents are very close to each

The key assumption behind the stability analysis of th€ther as witnessed in screenshot VI.
previous section igormation feasibility namely that there ~ The second simulation involves four agents and a non-
exists a configuration € W such thatLg+c, = 0. But what feasible formation configuration. The values of the parame-
happens when there doaest exist such a Configuration in ters in this simulation are the same as preViOUSly. The neigh‘
the state space? The answer is contained in the next theordtfing sets and desired inter-agents relative position vectors

Theorem 2:Assume that the following hold: are N1 = {2 3,4}, N2 = {1,4}, N3 = {1} Ny = {1, 2}

1) min ||Lq + ¢ > 0. Clg = ¢y = Cg = [ =1 0] ;13 =0 -1 }

W . . . , It can easily be seen that this is not a feasible formation

2) X <Gi(d"),Vq" : lLg” + all = £%||LQ+CIH >0 configuration and that the formation graph is connected.

3) The formation graph is connected. Screenshots |-V show the evolution in time of the multi agent
Under these assumptions, the system reaches a configuratieam. As can be seen in this figure, the interagent velocities
in which all agents have the same velocities and orientationgectors are stabilized at steady state to a common value. This

Proof: Equation (8) guarantees that the system coris shown also in the velocity diagram of the last screenshot.
verges to a configuration than minimizé&q + ¢;||. Since
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Fig. 2. Seven agents converging to a line formation
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Fig. 3. Flocking behavior for 4 agents. Agents velocities converge to
common value

VII. CONCLUSIONS [16]

A feedback control strategy that achieves convergence of
a multi-agent system to a desired formation configuratiolt”]
avoiding at the same time collisions was proposed. The
collision avoidance objective is handled by a decentraliz€lds]
navigation function that vanishes when the desired formation
tends to be realized. When inter-agent objectives that specify;
the desired formation cannot occur simultaneously in the
state space the desired formation is infeasible. It was sho
that under certain assumptions, formation infeasibility forces
the agents velocity vectors to a common value at steady state.
This provides a connection between formation infeasibility?]
and flocking behavior for the multi-agent system.

Current research involves further studying the connection
between the Laplacian of the formation graph and of the

inter-agent desired positions’ vectey with the resulting
flock in the case of formation infeasibility as well as build-
ing a similar control scheme for formation convergence of
nonholonomic agents.
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