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Control of decoherence in open quantum systems using fekdba

Narayan Ganesan and Tzyh-Jong Tarn

Abstract— Quantum feedback is assuming increasingly im- The generality of the treatment adopted here makes all types
portant role in quantum control and quantum information  of quantum systems amenable to the results. It is also shown
processing. In this work we analyze the application of such are that analysis of invariance of quadratic forms alsd lea

feedback techniques in eliminating decoherence in open goa
tum systems. In order to apply such system theoretic methods to Decoherence Free Subspaces (DFS) for the open quantum

we first analyze the invariance properties of quadratic forns ~ Systems but from a different and general perspective. DFS
which corresponds to expected value of a measurement and was first shown to exist by Lidar et al[12] by analysis

present conditions for decouplability of measurement outpts of  of Markovian master equation for open quantum systems
such time-varying open quantum systems from environmental ;54 naturally gives rise to subspaces that are immune to

effects. S
the effects of decoherence namely dissipation and loss of
l. INTRODUCTION coherence.
Decoherence is the process by which quantum systems Il. MATHEMATICAL PRELIMINARIES

lose their coherence information by coupling to the environ We explore the conditions for a scalar function represented
ment. The quantum system entangles to the states of the é@y-a quadratic form of a time varying quantum control sys-
vironment and the system density matrix can be diagonalizéeim to be invariant of perturbation or interaction hamiison

in a preferred basis states for the environment, dictatetidoy when coupled to a quantum environment.

model of interaction hamiltonian[7][9]. Decoherence issno  Let

the biggest stumbling block towards exploitation of quamtu t(t,x)

speedup[8] using finite quantum systems in information 9t [H°T® Te(t 2) + Ie @ He(t,2) + Hsi(t, 2)
processing. Many authors h_ave addressed the control and +Zui(t)Hi ® T.(t, 2))E(t, @)

suppression of decoherencedpen-quantum systerby em-

ploying a variety of open loop and feedback strategies.dffe
of decoherence suppression under arbitrarily fast opep loo
control was studied by Viola et al [13][15]. Another method>

along similar lines for control of decoherence by open-loo . L
. be the environment’s Hilbert space.

multipulses was studied by Uchiyama et. al.[11]. A ver Id be finit infinite di ional arid. i I
illustrating example of decoherence of single qubit syster#s. could be Tinite orintinite dimensional arde 1S generally
éﬁnlte dimensional.

=1
be the governing Schrodinger equation for a quantum
ystem interacting with the environment.
s be the system’s Hilbert space.

used in quantum information processing and its effectiv ¢ ) be the wave function of the svstem and environment
control using pulse method was worked out by Protopopes %) Y '

et al[22]. Shor[16] and Calderbank[17] also came up with in="9 and H, are _respectlvely_th? drift Hamiltonian of fche
teresting error-correction schemes for detecting andaiadu sys_tem and environment whildf;’s are Fhe con_trol Hamil-
effects of decoherence on finite quantum registers. quenLﬁman of the systemHsB governs the interaction _betV\_/een
many authors have also studied the application of feedba e system and the environment. The above Hamiltonian are

methods in control of decoherence[14],[18]. Technololgicaassumed to be time varying and dependent on the spatial

advances enabling manipulation, control of quantum systerxa”ibloef' ;OQE'Sd;r ;bfe‘;acl)?rtggng:?nn (typically the expdct
and recent advances in quantum measurements using ng{(u v '

coupling, non-demolition principles[23] etc, has opengd u y(t, &) = (€(t, 2)|C(¢, 2)|E(E, x)) (1)
avenues for employing feedback based control strategies fo _ ) . _
quantum systems [19],[20],[18]. where againC(¢, z) is assumed to be time-varying operator

In this work we analyze the effectiveness of feedbac?Ctlng fon §yste(;‘n H|It(;ert space. The above 'S(‘j the ggr;]eral
method in eliminating decoherence. A wave function ap_orm ofa yme_ ependent ql_Jantum system and we wis to
dy the invariance properties of the functigft, &) with

proach as opposed to density matrices for the schrt')ding% t to th em d .
equation is adopted which represents the system in an inpﬁ‘f‘—sloeC 0 the system dynamics.
Let y(t,&) = f(t,x,u1, - ,u,, Hsp) be a complex

affine form and greatly enables one to exploit methodologies

from systems theory. We first analyze what it means for fsjlcalar map of the system as a function of the control

complex scalar function to be invariant of certain paramsete unctions and |nteract|or_1 Hgmllto_man over a tl_me interval
to < t < t;. The function is said to be invariant of the
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for all admissible control functions,,--- ,u, and a given Combining the above conditions we get
interaction HamiltonianH s 5.

Let M be the manifold contained in the Hilbert space Lacr Loy Loy Ly (8,6) = 0
Hs ® H. on which the dynamics of the system is describedvhere + € spaq Ko, K1,---, K,}. By finite mathemat-
It could be a finite or infinite dimensional submanifold ofical induction over all the variables we can replace the
Sy, the unit sphere on the collective Hilbert space. Theector fieldsX;,---, X, with vector fieldsZ,--- ,Z, in
guantum system is assumed to be governed by time varyisgad{ Ko, K1, - - - , K;-}. Hence one can show that the previ-
Hamiltonian and it is known that the system evolves omus condition is equivalent to the requirement that
an analytic manifoldD,,, which is dense inM and a
submani};old of the unit sphe®y by Nelson’s theorem[10]. Lici Ly Lz,y(t,§) = O;forall £, (7)
Recent analysis of controllability criteria and reachiépil for all p > 0 and any choice of vector fields of the form
properties of states as studied by Schirmer et.al [30][31] r
provides insight into behavior of quantum control systems Z; =Ko+ Zuj—Kj; ug eU (8)
on finite dimensional manifolds ifR™. The controllability j=1

under various realistic potentials was also studied by Dongnere(/, stand for the set of admissible control functions.
et.al [29][32]. However the analysis of time-varying sys® poof Now let y be invariant undes5. Then for small
carried out here assumes in general that the component . by equation[R)

Hamiltonian operators carry explicit time dependence Wwhic R . e -,
. k—1 k—1
is not under the control of an external agent. And we de(t, Z,"0Z," [ o---0Z1*(£)) = y(t, Z}} 0 2, o- -0 Z1*(€))

so by introducing a time invariant system in the augmented . )
state space domaiM’ = M @ R. A similar scheme was WhereZy, .-, Z; are of the form[(B) andZy, - - , Z are
also used by Lan et.al [26] to study controllability propest given by, .
of such time-varying quantum systems. Zy = Zr + Kp (10)
Let ; = t, the new equation governing the evolution ofy.,q Zi*, the one parameter group of flow of the vector
the system can be written as, field Z;. The left hand side of equatiofil (9) is the output
o o1 1 for Hgg = 0 while the right hand side is for an arbi-
5 ( £(t.7) > = < (Ho(zr, @) + Ho (w1, )t 2) ) trary Hsp. Differentiating both sides off9) with respect to
0 te,tk—1, -+ ,t1 at respectivelyt, = 0,---t; = 0 yields,
3
* ( wiH (w1, 2)8(t, ) ) OV LLa Loyt =LsLs--Lyyte) (1)
+ ( 0 ) for all £ > 0. Now for £ = 1 the above equation yields,
Hgp (1, 2)§(t, 2)
i Lz,y(t,€) = Lz y(t.€)
with,
. SinceL; y = Lzy+ Lk,y, and using the above equation
y(t, &) = (£ 2)ICE 2)lE(t =) “) we can concludd x,y = 0, which is same as the equation
. for p = 0. Again in general by induction we obtain,
The vector fieldsKy = ( (H, +I; V(. ) ), @ p g 9 y
0 0 ¢ 6 LZlLZ2"'LZky(t7§) :LZ]LZZLZky(t,g)
K=\ me@n ) 29K = mopenr ) €O =Lz Lz, Lzy(t¢€)

sponding to drift, control and interaction can be identified .4 using equatiofi{lLO) this yields
contribute to the dynamical evolution. '
Lemma 2.1:Consider the quantum control systdth (3) and Lg,Lz, - Lzy(t,§) = 0;for all x

suppose that the corresponding output given by equatiqgy a|| 7, of the form [B). The sufficient condition for output
@) is invariant under giveni/sp. Then for all integers inyariance however requires a stronger condition of analyt

p > 0 and any choice of vector fieldX,---, X, in the ity of the system. LemmB2.1 implies that the necessary
set{Ko, K1, -+, K.} we have conditions for output invariance are,
LKILXl e LXpy(t7§) = O;for all tag (5) LKIy(tvg) =0
Before proving the above Lemma it is useful to consider a L L L L) =0 12
. - . . . KK, Kiny( 75) = (12)
simple extension. Consider for a fixed number vector fields . '
{X1,--, X,}, with p fixed and from the previous condition, for 0 < io,---,i, < r andn > 0, where Ko, ---, K,

are the vector fields of the augmented system &nd the
interaction vector field. The previous condition can also be
restated thus,

: (6) LKIy(tag) =0
Li,Lx, - Lx, \Li,y(t,€) =0 (X, =K,) Lg, Ly, - Ly, y(t,§) =0 (13)

Ly,Lx,---Lx, ,Lk,y(t,§) =
Ly,Lx,---Lx, ,Lky(t,§) =

(Xp = KO)
(Xp = Kl)



wherer;,, -+, 7, € spaf Ky, -, K,}. The above restate- II1. | NVARIANCE FOR THE QUANTUM SYSTEM
ment might be helpful in simplifying calculations for Lie  calculation of Lie derivativesThe Lie derivatives in

derivatives. the above cases can be calculated for the special case
Lemma 2.2:Suppose the systerfll (3) is analytic, theis  \ynen T, 7 € {Ko, K1 -+, K,, K;}. For instructional
invariant under giverf7s; if and only if @) is satisfied.  purposes we present here two ways for calculating Lie
Proof Consider a sequence of arbitrary control functions igjerivatives of the output with respect to the vector fields
U. Let of augmented system ,
u(t) = (u%, s ,u,l_),t S [to,tl),to =0;
9(§|C(x 9(&|C(x
— (W2, ud),t € [th, b1 + to) L, y(t) :( e ).Kz
3(§|%(ﬂi1)\§>
) +KI | agc@Ele (18)
= (uf, - up) t € [tr+ - lpoy i+ 1) o¢*

where K; = (0 ({|H%p ) is the co-vector field corre-
sponding to the vector field(;, Hsp skew hermitianz7,

&* are conjugate variables and assumed to be independent of
x1 and¢ in calculations. Therefor@(¢|C(x1)|¢)/0z; = 0,

and two time instances ¢ satisfying0 < s <t <t;+---t,
We can then write,

s=t1+- - +tp1+ (th — %) Hence
t=ti+-+tea+te+--+ta+m Li,y(t) = ( Elcwle) e ) : < Hs(;|£> )
for some index variableg,! such that0 < £ <[ < p 0
and somer, 7; such thatd < 7, < ¢t and0 < 7; < ¢;. Let + ( 0 —({|Hsp ) < C)le) )
o X1 .
Y(t) = £(t) be the state of the system in the augmented — (€|[C, Hs)[€)

manifold and lety (¢, 5,9 (s)) and(t, s,9(s)) be the state oy consider,
map of the quantum control system in the absence and

presence of(; respectively, where(s) is the initial state at L y(t) = ( <§|C’(t)|§> (€|C(t) ) . ( " 1H )
time s. Define a smooth function on the augmented manifold (Ho + He)l€)

f() = y(y(t, s,1)). Making use of following relation, (1 —{(Ho+H ) < % )

t UL, U2y v vy uTaHSB) y(t7u17u27"' ,UT,O):
= (£]C + [C, (Ho + He)]|€)
/ f@ (V0D |y ()=r1 (5,0,0(0)) 5 (14) , . . :
The variabler; is replaced witht as it was only a dummy

Without loss of generality, considering a piecewise cantstavariable used for calculations. Another approach follows
control set the term inside the integral can be written as, directly from the geometrical interpretation of Lie detivas

of scalar functions,
F@(9)) = y(r0(t,5,%(s))) . o
=y(Z]' 0 2\ 00 BRI (W(s))  (15) Ky () = lim 5 (€ C(@)IE)
ith only the vector field K; turned on fori =

whereZ;'s are of the form[(B). Since the system was assume .
m) y 0717"'7T7]} (I'e)

to be analytic we can write,

T -1 k+1 T 6 Il
W o2l o LA ) o ey ) -5
_ Z Tz tz o0 ZTE(4(s))) (16) From straight forward calculations one obtains,
L t) = —{&|C(x
for some smallrl, t;_1,-- -7, such that the summation con- Koy(t) = o ds <§| (@1)16) .
verges. The remaining terms can be expanded in the same <§| (x1)[€) + (€IC([B)[€) + (€1C(1)[€)
way for anyi, = (€IC(t) + [C(t), (Ho + Ho)(t,2)]|€)  (19)
: y(Zf“f o0 Z((1(s))) and similarly Lg,y(t) = (£[[C(t), H(t,2)]|§) for i =
) . {1,---,r, I} and H; = Hgp. Following the above trend
Z Ly Lzy(Z) 5 o0 Z*(¥(s))  (17) for a few Lie derivatives with respect to the vector fields
=0 ' KOaKlal"aK’l‘ﬁKly
Since equatlorﬂ]4) is zero for amy> s > 0 and any given L,y = (€|[C, Hsp]|€) = 0

sequence of control functions it follows that the indivitlua
terms in the summation vanish yielding conditiénl(12) and
hence as a consequence conditidn (5) has to hold.

Lie, Ly = (&[[C, Hil, Hspl[€) = 0



L, Ly, L,y =(&|[[C, H;], HsB] Similarly for k = 1 we have

L A sl =0 b g = ) )+ 6 >ic ]

+0(i) ([CHZU]+5(10) e

LKILKOLKOy =0 = <€|TQ|§>
2

= Lk, (§|[C, Ho| + [[C, Ho|, Ho] + FC(t) andT; € Cy. Continuing so, in general we ha#®, € C,,.

d t And by using condition[{J2), we haviHsg,T,] = 0 in
+ %[O(t),Ho(t)HQ =0 general for decoupling. Since the condition is true for any
. . n > 0 and anyT,, and since the vector space of bounded
i.e (¢|[[C, Hol, HSBJ + [[[C, Ho], Ho], HsB] linear operators is complete we hallsz, > o0, o T;] =
+[C). H C(t), Ho(t)], Hsg]|€) = 0 Yo ilHsp, T;) = 0 for a; € R. The converse is true by

| ( ) Hspl + [dt[ (8) Ho(0)). Hss]lE) noting that any operator in the distributiah (i.e) for any

d .
Lk, Li,Li,y =Lk, <§|d_[07 H;| +[[C, H,], Hyl|¢) =0 T €C can be decqmposed into a sum of operafprs;T;
t for T; € C; and given[Hgsp, > 1o, iT;] = O0Va; which

d :
e (¢|[=[C, H;], Hss] + [[[C, Hi], Ho), HsB]|¢) = 0 is true only when[Hgsg,T,,] = 0 for any n. Hence from
dt the previous equationﬁK,LKmLKW1 o Lg,, =0 for
We are now ready to state the condition for output invariande; - - - -t € {0,---r}.

of non-demolition measurements with respect to pertushati

. . . . IV. EXAMPLES
or interaction Hamiltonian.

Theorem 3.1:Let Decoherence as studied by many authors[21][9][7], en-
tangles the states of the system and the environment and
Cy = spar{adﬂ t)| =1,...,7} amounts to forcible collapse of the wave function corre-

sponding to preferred pointer basis decided by the environ-
C, = { (ang } ment. The evolution of such a system can only be described
ot at best at a statistical level.
Cy = spar{ad), )i = =1,...,r} We present two qualitatively different examples to illus-
trate the applicability of the above formalism in practical
Cy = { (ang ) } guantum control systems.

A. Electro-optic Amplitude Modulation
Consider a driven electromagnetic system in a single mode

C, = Spar{adf}{.Cn_l(t)lj =0,1,...;5i=1,...,r} subject to decoherence. The control system describing the
‘ 9\ oscillator under the semiclassical approximation is
{ 0 5)15 %’[/)(t) :(QJCLTG, + ZWJC-;CJ + ’LU(t)(aT — a)

J
+a Z Kjcj + al Z Kjci)Y(t)
Define a distribution of quantum operatoré(t) = J J
A{C1(t),Ca(t),---,Cn(t),--- }. The output equatiof]1) of where the system represented by madis coupled to a
the quantum system is decoupled from the environmentaath of infinite number of oscillators, with corresponding

interactions if and only fif, coupling constants; and wherey)(t) is the combined wave
R function of the system and bath. The contrglt) is the
[C(t),Hsp(t)] =0 (20)  strength of the input current and |8 = waTaJij ch}cj

Proof The proof follows by noting the equivalence of equaand H; = (a' — a). Let the system be monitored by a non-
tion (I3) with the above condition. Consider the followingdemolition observable

term Ly, -+ Lk, y(z) for any k > 1, andio,--- ,i) € o) — _ ; _
{0,---r}. From the calculations above it is the expected (t) = aexp(iwt) + a' exp(—iwt)
value of an operator of Lie brackets &f;, H;,,--- Hi,,C  yijth the corresponding output given byy(t) =
and their time derivatives. In particular fér= 0, and W) CH)|()). Following theorem 3.1 we
d have [C(t),H:] = e“' + e ™ = 2cos(wt)
L, y = (¢l[C, Hi,] + 5(1'0)%0@ = ({|T1[§) with vanishing higher order commutators. Hence

Ci = {c1 * C + cg x I * cos(wt),VYer,c2 € R} and
where §(ig) is the delta function that takes valuewhen since [C(t), Hy] + 0C /0t = 0 we haveC; = C; and
1o = 0 and the operatof’; as defined is such thdt € C;. the sequence converges @ which in general need not



converge at all. Since the commutator of the interaction Decoherence in the presence of contiolthe presence of
hamiltonian Hsp = a)_;rjc; + af >_;kjc; with the  the external controlsl; = uiay), the invariance condition is
elements of the sef; are not all zero, condition{20) is no longer satisfied for the operat6tas[[C, '], o{] # 0

not fulfilled and the non-demolition measurement (i§  and hence the coherence between the states is not preserved.
not invariant of the interaction hamiltoniagii) no longer This is because of the transitions outside DFS caused by
back action evading due to the presence of the interactiofe control hamiltonian. The above formalism is helpful
The measurement of the observablét) would thus reveal in analyzing general class of information that would be
information about the decoherence of the system. preserved in the presence of interaction hamiltonian winich

turn would tell us about how to store information reliably in

i ) ) ) a quantum register. Though the procedure outlined above to
The techniques developed in the previous sections can BgtermineC'(¢) could get computationally intensive even for

applied to the problem of analyzing the decoherence free subodest systems it is nevertheless helpful in learning about
spaces(DFS) discussed in [12]. Decoherence free subspa5ﬁ§ ansatz’(t)

(DFS) camouflage themselves so as to be undetected by the
interaction hamiltonian due to degeneracy of their basitest V. FEEDBACK CONTROL
with respect toHgp.

Decoherence of a collection of 2-level systerker a
collection of 2-level systems interacting with a bath o
oscillators the corresponding hamiltonian is

B. Decoherence free subspaces(DFS)

The technique of using feedback has been considered
y a number of authors [14], [19], [18] etc. Although one
cannot extract information from a quantum system without
disturbing it to some extent, due to rapid advances in
Wo N ) ; N ) ; guantum control technology a good deal of work carried out
H = > Zag + Zwkbkbk + Zzagf (grby, +g1bx)  on weak measurements[6], probabilistic state estimaithrs|
J=1 k ko j=1 non-demolition measurements and filters[28][23][25] that

where the system is assumed to interact through the cdlrévent systematic back action on the system, enable us
lective operatory” Uéj) and g,’s describe coupling to the to extract |m_‘ormat|on vv_|th minimal disturbance and can
modek. An inquiry into what information about the systemnOW be applied to practical quantum systems. In reality a
is preserved in the presence of the interaction could BYStem is coupled to a probe which in turn is immersed in
answered by expressing the operatbacting on the system the environmental bath in order to extract state mformratl_o
Hilbert space in its general form in terms of the basi®f the system. The effects of feedback and probe coupling

projection operators, are currently being investigated by the authors under this
framework. In this section we analyze the effects of minimal
Cty= > cylidil back action feedback on the control of decoherence problem
i,j=0..2N -1 and derive conditions for decouplability.
and solving for condition({40). For a simple N=2 system we Consider the augmented system equafidn (3) that describes
have after straight forward calculations a time dependent quantum system and a feedback of the
~ form u = a(§) + (£).v in order to preserve the input-affine
C = span{ Y _ cijli) (j|.(F) =i + 5@ — i), structure of the state equation, wherg3 arer x 1 vector
i,J andr x r matrix respectively of scalar functions depending
VK =0,1,2...} on state|¢) of the system.
where;(!) etc., stands for thé" letter (either0 or 1) of the & 1 _ 1
binary word;j. Condition [2ZD), which iSC, Hsg] = 0 now ot \ &(t, ) (Ho+ He + - aiHy) (w1, 2)E(t, )
translates to N ( 0 )
3 cliyGlGW =i+ @ — @)K = 0,vK = 1,2,3... >ovi 3 BigHj(w1, w)E(, )
i 0
I + ( ) (21)
H 3 t?
or nontrivially, (V) + 5 = i) ) or that the two words sp(z1,2)8(t 2)
have equal number df's. where again the following vector fields can be iden-
The above calculations are valid for any finl\g a specific  ified £ = 1 K, =
example forN = 3 is C' = [000)(000| + [001)(001]| + ’ (Ho + He + 3 oiH;)¢(x,t) )
|010)(100| + [011)(101]. Of particular interest are terms ( 0 ) and K; = 0
like |011)(101| and|010)(100| as the corresponding(t) = > BijHi¢(x, 1) Hgp(z,t)

(b(1)|C()()) which is a function of the coherence As stated aboye the necessary and sufficier_n conditions
between the basis statdgl1),|101) and |010), |100) is forasc_alar funcUory(t)_of the system to be invariant of the
predicted to be invariant under the interaction. It is worttinteraction vector field is,

noting that the operataf'(¢) acting on system Hilbert space L, y(t)
here need not necessarily be hermitian and only describes '

preserved information in a loose sense. LriLlg, L, y®) = (22)



for 0 < idp,---,i, < r andn > 0. Translating the above Set of such vector fields form a vector space or a distribution

conditions into operators for the above system we obtai@nd constitute a invariant distribution in the sense dbsdri

the following conditions. In the equations below we omitby the following theorems.

the summation symbol and following Einstein’s convention

a summation has to be assumed where ever a pair of theDefinition The vector field K, satisfying equations

same index appears. (29) is said to be in the orthogonal subspace of

Lic,y = (€|[C, Hsp]|€) = 0 zlhe observation space spanned by the 'co-vec'tor fields
y(t,€),dLk, - Lr, y(t, &), -~ forall 0 <ig,--- i, <

Ly, Ly = CEllC, BisH,), Hspl + (O, Hjl L, il€) =0 "andn > 0. Denoted byk., € O+

Lemma 6.1:The distribution®- is invariant with respect

) to the vector fieldg<y, - - - , K. under the Lie bracket opera-
Li Ly =(¢lC, BuH] + [[C, H + o Hj|, B Hi] tion. (i.e) if K, € O, then[K,, K;] € Ot fori=0,--- ,r
+[C,H;|Lj ojl€) =0 proof: Assuming a form for the vector field<, =
Hog , the Lie bracket of[K,, K;] fori = 1,---,r
can be computed as follows,
Li,Lg Ly
=(|l[C, BuHi), Hsp] + [[C, Hj| L a;, Hs B] K., K] = [ 0 0 } ( 0 )
+[[[C, Ho + o Hj], B H], HsB] Hilg) H; H18)
: 0 0 0 0
+ (O H) Ly, B + [C Hy\ L, L o _{ . ]< >_ )
[ ] Kr [ .7] Kr K; 7 H‘r|§> Hq- H7,|§> [HT,H1]|§>
+[[C, Hol, Hi| Lk, B + [[C, H;), Hi] Lic, o Bt |€)
=0 (23) Now using Jacobi identity,
The first two lines of RHS of the above equality is found to
belong to the distributiodC(t), Hsg] and the last two lines Lige, xay(t) = (ElIC, [Hr, Hi]]I€)
belong toC(t). The above calculation can be extended to = —(¢l[H~, [Hi, C]|§) — (&l[Hi, [C, HA]][E)
any number of terms to encompass the result. In general one = —Lg Lg,y(t) — Lx,Lx_y(t)

finds that, in the presence of feedback terms the condition
for decouplability is relaxed to

[C(t), Hsp] € C(t) (24) Now for i = 0 and Ky = ( H1|§> ) we have,
In order to solve ed{23) and consequenflyl (24) for the 0

feedback parameters, it has to be noted that the first two
lines and last two lines of ef.{R3) denote operators actinds,, K| (26)

on different Hilbert spaces, namely the system-envirortmen [0 0 }< 0 ) [ 0 0 1
e (e )

=0

and just the system respectively and the two terms cannét

. = . 0 Hy H-[£) H,[¢ Hol€)
be reconciled unless they vanish individually which leasls u
back to original conditions for open loop invariance. = ( 0 )

In other words, in order for the feedback to be an ef- ([Hr, Hol = Hr)[€) .
fective tool in solving the decoherence problem, the contrdl k. x,y(t) = (£|[C, [H-, Ho]] — [C, H-]|§) (27)
hamiltoniansH; have to act non-trivially on both the Hilbert
spaces which would enable all the operators[id (23) act dve already have,
system-environment Hilbert space.
VI. INVARIANT SUBSPACE Lic. Licoy(t:§) = (ElIC, Hr] +[[C, Hol, H:]|§) =0

As stated above the fundamental conditions for invariancd x, Lk, y(t, §)
were,

<€I%[C, H,]+ [[C, H,], Hyl|¢) =0

Adding the above equations and using Jacobi Identity we

Li,y(t,§) =0 conclude thafK ., Ko] € O*.

LKILKiO T LKiny(tvg) =0

where0 < ig,---,i, < r;n > 0. We now explore a larger VIl. CONCLUSION
class of vector fieldd{. containingK; that also satisfy the
above conditions, i.e, We analyzed the conditions for eliminating the effects of
o decoherence on quantum system whose coherence can be
Lk, y(t,§) =0 (25) : . .
monitored in the form of a scalar output equation. The result
L. Liy - L, y(t,€) =0 hold globally on the analytic manifold.



VIIl. FUTURE WORK

[24]

The invariant distributions possess many desirable qual-
ities and helps in control of decoherence. We wish t{25]
construct an algorithm to determine the invariant distidu

for a given quantum system and its interactions. Design a

A’

study of feedback and analysis of the resulting stability fo
guantum control system will help us solve the decoherend?’]
problem for practical quantum systems. The results can be
extended and conditions can be derived for different typdas]
of measurements and information extraction schemes.

IX. ACKNOWLEDGMENTS

[29]

This research was supported in part by the U. S. Army
Research Office under Grant W911NF-04-1-0386. T. J. Tafgg
would also like to acknowledge partial support from the
China Natural Science Foundation under Grant Numb%l]
60433050 and 60274025. The authors would also like to
thank the reviewers for their invaluable comments and sug2]
gestions.

(1]
(2]
(3]
(4]
(5]
(6]

(7]

(8]
El
[10]
[11]

[12]

[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]

[22]

(23]

REFERENCES

H-P Breuer and F Petruccione, The Theory of open quanystems,
Oxford University Press2002.

W H Louisell, Quantum Statistical Properties of RadiatiJohn Wiley
& Sons, In¢ 1973.

G Mahler, V.A Weberru3, Quantum NetworkSpringer-Verlag 1998.
A Isidori, Nonlinear Control Systemspringer-Verlag 1995.

H Nijmeijer, A J Van der Schaft, Nonlinear Dynamical Cuoit
Systems Springer-Verlag 1990.

M B Mensky, Quantum Measurements and Decoherence, Mae
PhenomenologyKluwer Academic Publisher2000.

D Giulini, E Joos, C Kiefer, J Kupsch, I-O Stamatescu, H BhZ
Decoherence and the Appearance of a Classical World in @umant
Theory, Springer 1996.

M A Nielsen and | L Chuang, Quantum Computation and Quantu
Information, Cambridge University Pres2000.

W H Zurek, “Decoherence and the transition from quantorolassical
- Revisited, Los Alamos Scien¢@7, 2, 2002.

G M Huang, T J Tarn, J W Clark, “On the controllbility of gntum
mechanical systemsJ. Math. Phys24(11) 2608, Nov 1983.

C Uchiyama, M Aihara, “Multipulse control of decoherari, Phys.
Rev. A 66, 032313, 2002.

D A Lidar, | L Chuang and K B Whaley, “Decoherence-FreebSu
spaces for Quantum ComputatiorPhys. Rev. Letters81(12) 2594,
1998.

L Viola, E Knill and S Lloyd, “Dynamical Decoupling of Gm
Quantum Systems’Phys. Rev. Letter82(12) 2417, 1999.

A C Doherty, K Jacobs and G Jungman, “Information, distunce
and Hamiltonian feedback controlPhys. Rev. A63, 062306, 2001.
L Viola, “Quantum Control via encoded dynamical declingy’, Phys.
Rev. A 66, 012307, 2002.

P Shor, “Scheme for reducing decoherence in quantumpaten
memory”, Phys. Rev. A52, 2493, 1995

A R Calderbank and P W Shor, “Good Quantum error-coimgatodes
exist”, Phys. Rev. A4, 1098, 1996.

D B Horoshko and S Y Kilin, “Decoherence slowing via feegk”,
Journal of Modern Optics44(11/12) 2043, 1997.

S Wallentowitz, “Quantum theory of feedback of bosogiases” Phys.
Rev. A 66, 032114, 2002.

K Jacobs, “How to project qubits faster using quanturedfeack”,
Phys. Rev. A67, 030301(R), 2003.

R Omnés, “General theory of the decoherence effect uantum
mechanics”,Phys. Rev. A56(5), 3383, 1997.

V Protopopescu, R Perez, C D’Helon and J Schmulen, “Rbbontrol
of decoherence in realistic one-qubit quantum gatésPhys A:Math.
Gen.,36, 2175, 2003.

V B Barginsky, Y | Vorontsov, K S Thorne, “Quantum Nondelition
Measurements”Science Vol. 209, No. 4456, 547, 1980.

J W Clark, C K Ong, T J Tarn and G M Huang, “Invertibility of
Quantum-Mechanical Control SystemdVlath. Systems Theqnl7,
335, 1984.

J W Clark, C K Ong, T J Tarn and G M Huang, “Quantum
Nondemolition Filters”,Math. Systems Theqr{8, 33, 1985.

C Lan, T J Tarn, Q S Chi and J W Clark, “Analytic Controilitp

of Time-dependent Quantum Control Systems”Math. Phys April
2005.

W Dayawansa, D Cheng, W M Boothby and T J Tarn, “Glopglg)-
Invariance of Nonlinear Systems3IAM J. Control and Optimizatign
Vol 26, No. 5, 1119, 1988.

C M Caves, K S Thorne, R W P Drewer, V D Sandberg and M
Zimmerman, “On the measurement of a weak classical forceledu
to a quantum-mechanical oscillatoRev. of Mod. Phys52(2), Part

I, 341, 1980.

S-H Dong, Y Tang, G-H Sun, F Lara-Rosano, M Lozada-Casso
“Controllability of pure states for the Poschl-Teller potial with a
dynamical group SU(2)"Annals of Phys.315 566, 2005.

S G Schirmer, A | Solomon and J V Leahy, “Degrees of cdtahility

for quantum systems and application to atomic systedisPhys. A:
Math. Gen, 35, 4125, 2002.

S G Schirmer, A | Solomon and J V Leahy, “Criteria for reability

of quantum states”). Phys. A: Math. Gen35, 8551, 2002.

S-H Dong, Y Tang, G-H Sun, “On the controllability of a aptum
system for the Morse potential with compact group SU(PHys. Lett.
A, 320, 145, 2003.



	Introduction
	Mathematical Preliminaries
	Invariance for the quantum system
	Examples
	Electro-optic Amplitude Modulation
	Decoherence free subspaces(DFS)

	Feedback Control
	Invariant Subspace
	Conclusion
	Future Work
	ACKNOWLEDGMENTS
	References

