
ar
X

iv
:q

ua
nt

-p
h/

06
02

21
7v

1 
 2

7 
F

eb
 2

00
6

Control of decoherence in open quantum systems using feedback

Narayan Ganesan and Tzyh-Jong Tarn

Abstract— Quantum feedback is assuming increasingly im-
portant role in quantum control and quantum information
processing. In this work we analyze the application of such
feedback techniques in eliminating decoherence in open quan-
tum systems. In order to apply such system theoretic methods
we first analyze the invariance properties of quadratic forms
which corresponds to expected value of a measurement and
present conditions for decouplability of measurement outputs of
such time-varying open quantum systems from environmental
effects.

I. I NTRODUCTION

Decoherence is the process by which quantum systems
lose their coherence information by coupling to the environ-
ment. The quantum system entangles to the states of the en-
vironment and the system density matrix can be diagonalized
in a preferred basis states for the environment, dictated bythe
model of interaction hamiltonian[7][9]. Decoherence is now
the biggest stumbling block towards exploitation of quantum
speedup[8] using finite quantum systems in information
processing. Many authors have addressed the control and
suppression of decoherence inopen-quantum systemsby em-
ploying a variety of open loop and feedback strategies. Effect
of decoherence suppression under arbitrarily fast open loop
control was studied by Viola et al [13][15]. Another method
along similar lines for control of decoherence by open-loop
multipulses was studied by Uchiyama et. al.[11]. A very
illustrating example of decoherence of single qubit system
used in quantum information processing and its effective
control using pulse method was worked out by Protopopescu
et al[22]. Shor[16] and Calderbank[17] also came up with in-
teresting error-correction schemes for detecting and reducing
effects of decoherence on finite quantum registers. Recently
many authors have also studied the application of feedback
methods in control of decoherence[14],[18]. Technological
advances enabling manipulation, control of quantum systems
and recent advances in quantum measurements using weak
coupling, non-demolition principles[23] etc, has opened up
avenues for employing feedback based control strategies for
quantum systems [19],[20],[18].

In this work we analyze the effectiveness of feedback
method in eliminating decoherence. A wave function ap-
proach as opposed to density matrices for the schrödinger
equation is adopted which represents the system in an input-
affine form and greatly enables one to exploit methodologies
from systems theory. We first analyze what it means for a
complex scalar function to be invariant of certain parameters.
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The generality of the treatment adopted here makes all types
of quantum systems amenable to the results. It is also shown
here that analysis of invariance of quadratic forms also lead
to Decoherence Free Subspaces (DFS) for the open quantum
systems but from a different and general perspective. DFS
was first shown to exist by Lidar et al[12] by analysis
of Markovian master equation for open quantum systems
that naturally gives rise to subspaces that are immune to
the effects of decoherence namely dissipation and loss of
coherence.

II. M ATHEMATICAL PRELIMINARIES

We explore the conditions for a scalar function represented
by a quadratic form of a time varying quantum control sys-
tem to be invariant of perturbation or interaction hamiltonian
when coupled to a quantum environment.

Let
∂ξ(t,x)
∂t

= [H0 ⊗ Ie(t, x) + Ie ⊗He(t, x) +HSB(t, x)

+
r
∑

i=1

ui(t)Hi ⊗ Ie(t, x)]ξ(t, x)

be the governing Schrodinger equation for a quantum
system interacting with the environment.
Hs be the system’s Hilbert space.
He be the environment’s Hilbert space.
Hs could be finite or infinite dimensional andHe is generally
infinite dimensional.
ξ(t, x) be the wave function of the system and environment.
H0 and He are respectively the drift Hamiltonian of the
system and environment whileHi’s are the control Hamil-
tonian of the system.HSB governs the interaction between
the system and the environment. The above Hamiltonian are
assumed to be time varying and dependent on the spatial
variable. Consider a scalar function (typically the expected
value of an observable) of the form,

y(t, ξ) = 〈ξ(t, x)|C(t, x)|ξ(t, x)〉 (1)

where againC(t, x) is assumed to be time-varying operator
acting on system Hilbert space. The above is the general
form of a time dependent quantum system and we wish to
study the invariance properties of the functiony(t, ξ) with
respect to the system dynamics.

Let y(t, ξ) = f(t, x, u1, · · · , ur, HSB) be a complex
scalar map of the system as a function of the control
functions and interaction Hamiltonian over a time interval
t0 ≤ t ≤ t1. The function is said to be invariant of the
interaction Hamiltonian if

f(t, x, u1, · · · , ur, HSB) = f(t, x, u1, · · · , ur, 0) (2)
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for all admissible control functionsu1, · · · , ur and a given
interaction HamiltonianHSB.

Let M be the manifold contained in the Hilbert space
Hs⊗He on which the dynamics of the system is described.
It could be a finite or infinite dimensional submanifold of
SH , the unit sphere on the collective Hilbert space. The
quantum system is assumed to be governed by time varying
Hamiltonian and it is known that the system evolves on
an analytic manifoldDω, which is dense inM and a
submanifold of the unit sphereSH by Nelson’s theorem[10].
Recent analysis of controllability criteria and reachability
properties of states as studied by Schirmer et.al [30][31]
provides insight into behavior of quantum control systems
on finite dimensional manifolds inRn. The controllability
under various realistic potentials was also studied by Dong
et.al [29][32]. However the analysis of time-varying systems
carried out here assumes in general that the component
Hamiltonian operators carry explicit time dependence which
is not under the control of an external agent. And we do
so by introducing a time invariant system in the augmented
state space domainM′ = M ⊕ R. A similar scheme was
also used by Lan et.al [26] to study controllability properties
of such time-varying quantum systems.

Let x1 = t, the new equation governing the evolution of
the system can be written as,

∂

∂t

(

x1
ξ(t, x)

)

=

(

1
(H0(x1, x) +He(x1, x))ξ(t, x)

)

+

(

0
uiHi(x1, x)ξ(t, x)

)

(3)

+

(

0
HSB(x1, x)ξ(t, x)

)

with,
y(t, ξ) = 〈ξ(t, x)|C(t, x)|ξ(t, x)〉 (4)

The vector fieldsK0 =

(

1
(H0 +He)ξ(x, t)

)

,

Ki =

(

0
Hiξ(x, t)

)

andKI =

(

0
HSBξ(x, t)

)

corre-

sponding to drift, control and interaction can be identifiedto
contribute to the dynamical evolution.

Lemma 2.1:Consider the quantum control system (3) and
suppose that the corresponding output given by equation
(4) is invariant under givenHSB. Then for all integers
p ≥ 0 and any choice of vector fieldsX1, · · · , Xp in the
set{K0,K1, · · · ,Kr} we have

LKI
LX1

· · ·LXp
y(t, ξ) = 0; for all t, ξ (5)

Before proving the above Lemma it is useful to consider a
simple extension. Consider for a fixed number vector fields
{X1, · · · , Xp}, with p fixed and from the previous condition,

LKI
LX1

· · ·LXp−1
LK0

y(t, ξ) = 0 (Xp = K0)
LKI

LX1
· · ·LXp−1

LK1
y(t, ξ) = 0 (Xp = K1)

...
LKI

LX1
· · ·LXp−1

LKr
y(t, ξ) = 0 (Xp = Kr)

(6)

Combining the above conditions we get

LKI
LX1

· · ·LXp−1
Lτy(t, ξ) = 0

where τ ∈ span{K0,K1, · · · ,Kr}. By finite mathemat-
ical induction over all the variables we can replace the
vector fieldsX1, · · · , Xp with vector fieldsZ1, · · · , Zp in
span{K0,K1, · · · ,Kr}. Hence one can show that the previ-
ous condition is equivalent to the requirement that

LKI
LZ1

· · ·LZp
y(t, ξ) = 0; for all t, ξ (7)

for all p ≥ 0 and any choice of vector fields of the form

Zi = K0 +

r
∑

j=1

uijKj ; uij ∈ U (8)

whereU , stand for the set of admissible control functions.
Proof Now let y be invariant underHSB. Then for small
t1, · · · , tk by equation (2)

y(t, Ztkk ◦Z
tk−1

k−1 ◦· · ·◦Z
t1
1 (ξ)) = y(t, Z̃tkk ◦Z̃

tk−1

k−1 ◦· · ·◦Z̃
t1
1 (ξ))

(9)
whereZ1, · · · , Zk are of the form (8) and̃Z1, · · · , Z̃k are
given by,

Z̃k = Zk +KI (10)

and Ztkk , the one parameter group of flow of the vector
field Zk. The left hand side of equation (9) is the output
for HSB = 0 while the right hand side is for an arbi-
trary HSB. Differentiating both sides of (9) with respect to
tk, tk−1, · · · , t1 at respectivelytk = 0, · · · t1 = 0 yields,

LZ1
LZ2

· · ·LZk
y(t, ξ) = LZ̃1

LZ̃2
· · ·LZ̃k

y(t, ξ) (11)

for all k ≥ 0. Now for k = 1 the above equation yields,

LZ1
y(t, ξ) = LZ̃1

y(t, ξ)

SinceLZ̃1
y = LZ1

y + LKI
y, and using the above equation

we can concludeLKI
y = 0, which is same as the equation

(7) for p = 0. Again in general by induction we obtain,

LZ1
LZ2

· · ·LZk
y(t, ξ) = LZ̃1

LZ̃2
· · ·LZ̃k

y(t, ξ)

= LZ̃1
LZ2

· · ·LZk
y(t, ξ)

and using equation(10) this yields,

LKI
LZ1

· · ·LZk
y(t, ξ) = 0; for all x

for all Zi of the form (8). The sufficient condition for output
invariance however requires a stronger condition of analyt-
icity of the system. Lemma 2.1 implies that the necessary
conditions for output invariance are,

LKI
y(t, ξ) = 0

LKI
LKi0

· · ·LKin
y(t, ξ) = 0 (12)

for 0 ≤ i0, · · · , in ≤ r and n ≥ 0, whereK0, · · · ,Kr

are the vector fields of the augmented system andKI , the
interaction vector field. The previous condition can also be
restated thus,

LKI
y(t, ξ) = 0

LKI
Lτi0 · · ·Lτin y(t, ξ) = 0 (13)



whereτi0 , · · · , τin ∈ span{K0, · · · ,Kr}. The above restate-
ment might be helpful in simplifying calculations for Lie
derivatives.

Lemma 2.2:Suppose the system (3) is analytic, theny is
invariant under givenHSB if and only if (5) is satisfied.
Proof Consider a sequence of arbitrary control functions in
U . Let

u(t) = (u11, · · · , u
1
r), t ∈ [t0, t1), t0 = 0;

= (u21, · · · , u
2
r), t ∈ [t1, t1 + t2)

...

= (up1, · · · , u
p
r), t ∈ [t1 + · · · tp−1, t1 + · · · tp)

and two time instancess, t satisfying0 ≤ s ≤ t ≤ t1+· · · tp.
We can then write,

s = t1 + · · ·+ tk−1 + (tk − τk)

t = t1 + · · ·+ tk−1 + tk + · · ·+ tl−1 + τl

for some index variablesk, l such that0 ≤ k ≤ l ≤ p
and someτk, τl such that0 ≤ τk < tk and0 ≤ τl < tl. Let

ψ(t) =

(

x1
ξ(t)

)

be the state of the system in the augmented

manifold and letγ0(t, s, ψ(s)) andγI(t, s, ψ(s)) be the state
map of the quantum control system in the absence and
presence ofKI respectively, whereψ(s) is the initial state at
time s. Define a smooth function on the augmented manifold
f(ψ) = y(γ0(t, s, ψ)). Making use of following relation,

y(t, u1, u2, · · · , ur, HSB)− y(t, u1, u2, · · · , ur, 0) =
∫ t

0

f(ψ(s))∗.KI(ψ(s))|ψ(s)=γI (s,0,ψ(0))ds (14)

Without loss of generality, considering a piecewise constant
control set the term inside the integral can be written as,

f(ψ(s)) = y(γ0(t, s, ψ(s)))

= y(Zτll ◦ Z
tl−1

l−1 ◦ · · · ◦ Z
tk+1

k+1 Z
τk
k (ψ(s))) (15)

whereZi’s are of the form (8). Since the system was assumed
to be analytic we can write,

y(Zτll ◦ Z
tl−1

l−1 ◦ · · · ◦ Z
tk+1

k+1 Z
τk
k (ψ(s)))

=

∞
∑

i=0

τ il
i!
LiZl

y(Z
tl−1

l−1 ◦ · · · ◦ Zτkk (ψ(s))) (16)

for some smallτl, tl−1, · · · τk such that the summation con-
verges. The remaining terms can be expanded in the same
way for anyi,

LiZl
y(Z

tl−1

l−1 ◦ · · · ◦ Zτkk ((ψ(s)))

=
∞
∑

j=0

tjl−1

j!
LjZl−1

LiZl
y(Z

tl−2

l−2 ◦ · · · ◦ Zτkk (ψ(s)) (17)

Since equation (14) is zero for anyt ≥ s ≥ 0 and any given
sequence of control functions it follows that the individual
terms in the summation vanish yielding condition (12) and
hence as a consequence condition (5) has to hold.

III. I NVARIANCE FOR THE QUANTUM SYSTEM

Calculation of Lie derivativesThe Lie derivatives in
the above cases can be calculated for the special case
when τ1, · · · , τr ∈ {K0,K1 · · · ,Kr,KI}. For instructional
purposes we present here two ways for calculating Lie
derivatives of the output with respect to the vector fields
of augmented system ,

LKI
y(t) =

(

∂〈ξ|C(x1)|ξ〉
∂x1

∂〈ξ|C(x1)|ξ〉
∂ξ

)

.KI

+K∗
I .

(

∂〈ξ|C(x1)|ξ〉
∂x∗

1

∂〈ξ|C(x1)|ξ〉
∂ξ∗

)

(18)

whereK∗
I =

(

0 〈ξ|H∗
SB

)

is the co-vector field corre-
sponding to the vector fieldKI , HSB skew hermitian,x∗1,
ξ∗ are conjugate variables and assumed to be independent of
x1 andξ in calculations. Therefore∂〈ξ|C(x1)|ξ〉/∂x∗1 = 0,
Hence

LKI
y(t) =

(

〈ξ| ˙C(t)|ξ〉 〈ξ|C(t)
)

.

(

0
HSB|ξ〉

)

+
(

0 −〈ξ|HSB

)

(

0
C(t)|ξ〉

)

= 〈ξ|[C,HSB ]|ξ〉

Now consider,

LK0
y(t) =

(

〈ξ| ˙C(t)|ξ〉 〈ξ|C(t)
)

.

(

1
(H0 +He)|ξ〉

)

+
(

1 −〈ξ|(H0 +He)
)

(

∂〈ξ|C(x1)|ξ〉
∂x∗

1

C(t)|ξ〉

)

= 〈ξ|Ċ + [C, (H0 +He)]|ξ〉

The variablex1 is replaced witht as it was only a dummy
variable used for calculations. Another approach follows
directly from the geometrical interpretation of Lie derivatives
of scalar functions,

LKi
y(t) = lim

s→t

d

ds
〈ξ|C(x1)|ξ〉

with only the vector field Ki turned on for i =
{0, 1, · · · , r, I} (i.e)

∂

∂t

(

x1
ξ(t, x)

)

= Ki

From straight forward calculations one obtains,

LK0
y(t) = lim

s→t

d

ds
〈ξ|C(x1)|ξ〉

= 〈ξ̇|C(x1)|ξ〉+ 〈ξ|Ċ(t)|ξ〉+ 〈ξ|C(x1)|ξ̇〉

= 〈ξ|Ċ(t) + [C(t), (H0 +He)(t, x)]|ξ〉 (19)

and similarly LKi
y(t) = 〈ξ|[C(t), Hi(t, x)]|ξ〉 for i =

{1, · · · , r, I} andHI = HSB. Following the above trend
for a few Lie derivatives with respect to the vector fields
K0,K1, · · · ,Kr,KI ,

LKI
y = 〈ξ|[C,HSB ]|ξ〉 = 0

LKI
LKi

y = 〈ξ|[[C,Hi], HSB]|ξ〉 = 0



LKI
LKi

LK0
y =〈ξ|[[Ċ,Hi], HSB]

+[[[C,H0], Hi], HSB]|ξ〉 = 0

LKI
LK0

LK0
y = 0

= LKI
〈ξ|[Ċ,H0] + [[C,H0], H0] +

d2

dt2
C(t)

+
d

dt
[C(t), H0(t)]|ξ〉 = 0

i.e 〈ξ|[[Ċ,H0], HSB] + [[[C,H0], H0], HSB]

+ [ ¨C(t), HSB] + [
d

dt
[C(t), H0(t)], HSB ]|ξ〉 = 0

LKI
LK0

LKi
y = LKI

〈ξ|
d

dt
[C,Hi] + [[C,Hi], H0]|ξ〉 = 0

i.e 〈ξ|[
d

dt
[C,Hi], HSB] + [[[C,Hi], H0], HSB]|ξ〉 = 0

We are now ready to state the condition for output invariance
of non-demolition measurements with respect to perturbation
or interaction Hamiltonian.

Theorem 3.1:Let

C̃1 = span{adjHi
C(t)|j = 0, 1, . . . ; i = 1, . . . , r}

C1 =

{

(

adH0
+
∂

∂t

)j

C̃1; j = 0, 1, · · ·

}

C̃2 = span{adjHi
C1(t)|j = 0, 1, . . . ; i = 1, . . . , r}

C2 =

{

(

adH0
+
∂

∂t

)j

C̃2; j = 0, 1, · · ·

}

...

C̃n = span{adjHi
Cn−1(t)|j = 0, 1, . . . ; i = 1, . . . , r}

Cn =

{

(

adH0
+
∂

∂t

)j

C̃n; j = 0, 1, · · ·

}

...

Define a distribution of quantum operators,̃C(t) =
∆{C1(t), C2(t), · · · , Cn(t), · · · }. The output equation (1) of
the quantum system is decoupled from the environmental
interactions if and only if,

[C̃(t), HSB(t)] = 0 (20)
Proof The proof follows by noting the equivalence of equa-
tion (12) with the above condition. Consider the following
term LKi0

· · ·LKik
y(x) for any k ≥ 1, and i0, · · · , ik ∈

{0, · · · r}. From the calculations above it is the expected
value of an operator of Lie brackets ofHi0 , Hi1 , · · ·Hir , C
and their time derivatives. In particular fork = 0, and

LKi0
y = 〈ξ|[C,Hi0 ] + δ(i0)

d

dt
C|ξ〉 = 〈ξ|T1|ξ〉

where δ(i0) is the delta function that takes value1 when
i0 = 0 and the operatorT1 as defined is such thatT1 ∈ C1.

Similarly for k = 1 we have

LKi1
LKi0

y = 〈ξ|[[C,Hi0 ], Hi1 ] + [δ(i0)
d

dt
C,Hi1 ]

+ δ(i1)
d

dt
([C,Hi0 ] + δ(i0)

d

dt
C)|ξ〉

= 〈ξ|T2|ξ〉

andT2 ∈ C2. Continuing so, in general we haveTn ∈ Cn.
And by using condition (12), we have[HSB, Tn] = 0 in
general for decoupling. Since the condition is true for any
n ≥ 0 and anyTn and since the vector space of bounded
linear operators is complete we have[HSB,

∑∞
i=0 αiTi] =

∑∞
i=0 αi[HSB, Ti] = 0 for αi ∈ R. The converse is true by

noting that any operator in the distributionC (i.e) for any
T ∈ C can be decomposed into a sum of operators

∑

αiTi
for Ti ∈ Ci and given[HSB,

∑∞
i=0 αiTi] = 0∀αi which

is true only when[HSB, Tn] = 0 for any n. Hence from
the previous equationsLKI

LKin
LKin−1

· · ·LKi0
= 0 for

i0, · · · , ik ∈ {0, · · · r}.

IV. EXAMPLES

Decoherence as studied by many authors[21][9][7], en-
tangles the states of the system and the environment and
amounts to forcible collapse of the wave function corre-
sponding to preferred pointer basis decided by the environ-
ment. The evolution of such a system can only be described
at best at a statistical level.

We present two qualitatively different examples to illus-
trate the applicability of the above formalism in practical
quantum control systems.

A. Electro-optic Amplitude Modulation

Consider a driven electromagnetic system in a single mode
subject to decoherence. The control system describing the
oscillator under the semiclassical approximation is

d

dt
ψ(t) =(ωa†a+

∑

j

ωjc
†
jcj + iu(t)(a† − a)

+ a
∑

j

κ∗jcj + a†
∑

j

κjcj)ψ(t)

where the system represented by modea is coupled to a
bath of infinite number of oscillators,cj with corresponding
coupling constantsκj and whereψ(t) is the combined wave
function of the system and bath. The controlu(t) is the
strength of the input current and letH0 = ωa†a+

∑

j ωjc
†
jcj

andH1 = (a† − a). Let the system be monitored by a non-
demolition observable

C(t) = a exp(iωt) + a† exp(−iωt)

with the corresponding output given byy(t) =
〈ψ(t)|C(t)|ψ(t)〉. Following theorem 3.1, we
have [C(t), H1] = eiωt + e−iωt = 2 cos(ωt)
with vanishing higher order commutators. Hence
C̃1 = {c1 ∗ C + c2 ∗ I ∗ cos(ωt), ∀c1, c2 ∈ R} and
since [C(t), H0] + ∂C/∂t = 0 we haveC1 = C̃1 and
the sequence converges toC1 which in general need not



converge at all. Since the commutator of the interaction
hamiltonian HSB = a

∑

j κ
∗
jcj + a†

∑

j κjcj with the
elements of the setC1 are not all zero, condition (20) is
not fulfilled and the non-demolition measurement is(i)
not invariant of the interaction hamiltonian,(ii) no longer
back action evading due to the presence of the interaction.
The measurement of the observableC(t) would thus reveal
information about the decoherence of the system.

B. Decoherence free subspaces(DFS)

The techniques developed in the previous sections can be
applied to the problem of analyzing the decoherence free sub-
spaces(DFS) discussed in [12]. Decoherence free subspaces
(DFS) camouflage themselves so as to be undetected by the
interaction hamiltonian due to degeneracy of their basis states
with respect toHSB .

Decoherence of a collection of 2-level systems:For a
collection of 2-level systems interacting with a bath of
oscillators the corresponding hamiltonian is

H =
ω0

2

N
∑

j=1

σ
(j)
3 +

∑

k

ωkb
†
kbk +

∑

k

N
∑

j=1

σ
(j)
3 (gkb

†
k + g∗kbk)

where the system is assumed to interact through the col-
lective operator

∑

j σ
(j)
3 and gk’s describe coupling to the

modek. An inquiry into what information about the system
is preserved in the presence of the interaction could be
answered by expressing the operatorC acting on the system
Hilbert space in its general form in terms of the basis
projection operators,

C(t) =
∑

i,j=0..2N−1

cij |i〉〈j|

and solving for condition (20). For a simple N=2 system we
have after straight forward calculations

C̃ = span{
∑

i,j

cij |i〉〈j|.(j
(1) − i(1) + j(2) − i(2))K ,

∀K = 0, 1, 2...}

wherej(l) etc., stands for thelth letter (either0 or 1) of the
binary wordj. Condition (20), which is[C̃, HSB] = 0 now
translates to
∑

i,j

cij |i〉〈j|.(j
(1) − i(1) + j(2) − i(2))K = 0, ∀K = 1, 2, 3...

or nontrivially,j(1)+j(2) = i(1)+i(2), or that the two words
have equal number of1′s.

The above calculations are valid for any finiteN , a specific
example forN = 3 is C = |000〉〈000| + |001〉〈001| +
|010〉〈100| + |011〉〈101|. Of particular interest are terms
like |011〉〈101| and |010〉〈100| as the correspondingy(t) =
〈ψ(t)|C(t)|ψ(t)〉 which is a function of the coherence
between the basis states|011〉, |101〉 and |010〉, |100〉 is
predicted to be invariant under the interaction. It is worth
noting that the operatorC(t) acting on system Hilbert space
here need not necessarily be hermitian and only describes
preserved information in a loose sense.

Decoherence in the presence of control:In the presence of
the external controlsHi = uiσ

(i)
1 , the invariance condition is

no longer satisfied for the operatorC as [[C, σ(i)
1 ], σ

(j)
3 ] 6= 0

and hence the coherence between the states is not preserved.
This is because of the transitions outside DFS caused by
the control hamiltonian. The above formalism is helpful
in analyzing general class of information that would be
preserved in the presence of interaction hamiltonian whichin
turn would tell us about how to store information reliably in
a quantum register. Though the procedure outlined above to
determineC(t) could get computationally intensive even for
modest systems it is nevertheless helpful in learning about
any ansatzC(t).

V. FEEDBACK CONTROL

The technique of using feedback has been considered
by a number of authors [14], [19], [18] etc. Although one
cannot extract information from a quantum system without
disturbing it to some extent, due to rapid advances in
quantum control technology a good deal of work carried out
on weak measurements[6], probabilistic state estimators[1],
non-demolition measurements and filters[28][23][25] that
prevent systematic back action on the system, enable us
to extract information with minimal disturbance and can
now be applied to practical quantum systems. In reality a
system is coupled to a probe which in turn is immersed in
the environmental bath in order to extract state information
of the system. The effects of feedback and probe coupling
are currently being investigated by the authors under this
framework. In this section we analyze the effects of minimal
back action feedback on the control of decoherence problem
and derive conditions for decouplability.

Consider the augmented system equation (3) that describes
a time dependent quantum system and a feedback of the
form u = α(ξ)+β(ξ).v in order to preserve the input-affine
structure of the state equation, whereα, β are r × 1 vector
andr × r matrix respectively of scalar functions depending
on state|ξ〉 of the system.

∂

∂t

(

x1
ξ(t, x)

)

=

(

1
(H0 +He +

∑

αiHi)(x1, x)ξ(t, x)

)

+

(

0
∑

vi
∑

βijHj(x1, x)ξ(t, x)

)

+

(

0
HSB(x1, x)ξ(t, x)

)

(21)

where again the following vector fields can be iden-

tified K̃0 =

(

1
(H0 +He +

∑

αiHi)ξ(x, t)

)

, K̃i =
(

0
∑

βijHjξ(x, t)

)

andKI =

(

0
HSBξ(x, t)

)

.

As stated above the necessary and sufficient conditions
for a scalar functiony(t) of the system to be invariant of the
interaction vector field is,

LKI
y(t) = 0

LKI
LK̃i0

· · ·LK̃in
y(t) = 0 (22)



for 0 ≤ i0, · · · , in ≤ r and n ≥ 0. Translating the above
conditions into operators for the above system we obtain
the following conditions. In the equations below we omit
the summation symbol and following Einstein’s convention
a summation has to be assumed where ever a pair of the
same index appears.

LKI
y = 〈ξ|[C,HSB ]|ξ〉 = 0

LKI
LK̃i

y = 〈ξ|[[C, βijHj ], HSB] + [C,Hj ]LKI
βij |ξ〉 = 0

LK̃i
LK̃0

y =〈ξ|[Ċ, βilHl] + [[C,H + αjHj ], βilHl]

+ [C,Hj ]LK̃i
αj |ξ〉 = 0

LKI
LK̃i

LK̃0
y

=〈ξ|[[Ċ, βilHl], HSB] + [[C,Hj ]LK̃i
αj , HSB]

+ [[[C,H0 + αjHj ], βilHl], HSB]

+ [Ċ,Hl]LKI
βil + [C,Hj ]LKI

LK̃i
αj

+ [[C,H0], Hl]LKI
βil + [[C,Hj ], Hl]LKI

αjβil|ξ〉

=0 (23)

The first two lines of RHS of the above equality is found to
belong to the distribution[C̃(t), HSB ] and the last two lines
belong to C̃(t). The above calculation can be extended to
any number of terms to encompass the result. In general one
finds that, in the presence of feedback terms the condition
for decouplability is relaxed to

[C̃(t), HSB] ⊂ C̃(t) (24)

In order to solve eq.(23) and consequently (24) for the
feedback parameters, it has to be noted that the first two
lines and last two lines of eq.(23) denote operators acting
on different Hilbert spaces, namely the system-environment
and just the system respectively and the two terms cannot
be reconciled unless they vanish individually which leads us
back to original conditions for open loop invariance.

In other words, in order for the feedback to be an ef-
fective tool in solving the decoherence problem, the control
hamiltoniansHi have to act non-trivially on both the Hilbert
spaces which would enable all the operators in (23) act on
system-environment Hilbert space.

VI. I NVARIANT SUBSPACE

As stated above the fundamental conditions for invariance
were,

LKI
y(t, ξ) = 0

LKI
LKi0

· · ·LKin
y(t, ξ) = 0

where0 ≤ i0, · · · , in ≤ r;n ≥ 0. We now explore a larger
class of vector fieldsKτ containingKI that also satisfy the
above conditions, i.e,

LKτ
y(t, ξ) = 0 (25)

LKτ
LKi0

· · ·LKin
y(t, ξ) = 0

Set of such vector fields form a vector space or a distribution
and constitute a invariant distribution in the sense described
by the following theorems.

Definition The vector field Kτ satisfying equations
(25) is said to be in the orthogonal subspace of
the observation space spanned by the co-vector fields
dy(t, ξ), dLKi0

· · ·LKin
y(t, ξ), · · · for all 0 ≤ i0, · · · , in ≤

r andn ≥ 0. Denoted byKτ ∈ O⊥

Lemma 6.1:The distributionO⊥ is invariant with respect
to the vector fieldsK0, · · · ,Kr under the Lie bracket opera-
tion. (i.e) ifKτ ∈ O⊥, then[Kτ ,Ki] ∈ O⊥ for i = 0, · · · , r

proof: Assuming a form for the vector fieldKτ =
(

0
Hτξ

)

, the Lie bracket of[Kτ ,Ki] for i = 1, · · · , r

can be computed as follows,

[Kτ ,Ki] =

[

0 0

Ḣi|ξ〉 Hi

](

0
Hτ |ξ〉

)

−

[

0 0

Ḣτ |ξ〉 Hτ

](

0
Hi|ξ〉

)

=

(

0
[Hτ , Hi]|ξ〉

)

Now using Jacobi identity,

L[Kτ ,Ki]y(t) = 〈ξ|[C, [Hτ , Hi]]|ξ〉

= −〈ξ|[Hτ , [Hi, C]]|ξ〉 − 〈ξ|[Hi, [C,Hτ ]]|ξ〉

= −LKτ
LKi

y(t)− LKi
LKτ

y(t)

= 0

Now for i = 0 andK0 =

(

1
H0|ξ〉

)

we have,

[Kτ ,K0] (26)

=

[

0 0
0 H0

](

0
Hτ |ξ〉

)

−

[

0 0

Ḣτ |ξ〉 Hτ

](

1
H0|ξ〉

)

=

(

0

([Hτ , H0]− Ḣτ )|ξ〉

)

L[Kτ ,K0]y(t) = 〈ξ|[C, [Hτ , H0]]− [C, Ḣτ ]|ξ〉 (27)

We already have,

LKτ
LK0

y(t, ξ) = 〈ξ|[Ċ,Hτ ] + [[C,H0], Hτ ]|ξ〉 = 0

LK0
LKτ

y(t, ξ) = 〈ξ|
d

dt
[C,Hτ ] + [[C,Hτ ], H0]|ξ〉 = 0

Adding the above equations and using Jacobi Identity we
conclude that[Kτ ,K0] ∈ O⊥.

VII. C ONCLUSION

We analyzed the conditions for eliminating the effects of
decoherence on quantum system whose coherence can be
monitored in the form of a scalar output equation. The results
hold globally on the analytic manifold.



VIII. F UTURE WORK

The invariant distributions possess many desirable qual-
ities and helps in control of decoherence. We wish to
construct an algorithm to determine the invariant distribution
for a given quantum system and its interactions. Design and
study of feedback and analysis of the resulting stability for
quantum control system will help us solve the decoherence
problem for practical quantum systems. The results can be
extended and conditions can be derived for different types
of measurements and information extraction schemes.
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