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Abstract— This paper focuses on the localization problem for
a mobile camera network. In particular, we consider the case
of leader-follower formations of nonholonomic mobile vehicles
equipped with vision sensors which provide only the bearingto
the other robots. We prove a sufficient condition for observabil-
ity and show that recursive estimation enables a leader-follower
formation if the leader is not trapped in an unobservable
configuration. We employ an Extended Kalman Filter for the
estimation of each follower position and orientation with respect
to the leader and we adopt a feedback linearizing control
strategy to achieve a desired formation. Simulation results in a
noisy environment are provided.

I. I NTRODUCTION

Distributed vision systems or camera networks are widely
employed today in order to monitor the environment. De-
ployment of camera networks can be static at fixed positions
or on mobile platforms in formations, possibly guided by a
leader. On the other hand, collaborative sensing might not
be the ultimate goal and just needed for the navigation of a
formation of robots. In all cases where a cooperation between
robots exists, we need to solve the localization problem:
find the relative position and orientation of all robots with
respect to a reference coordinate system. In the case of
formation navigation, this is needed because the desired
positions might be with respect to a common frame. In the
case of camera-sensor networks, we need to relate spatial
information gathered by one sensor to the rest of the network
in order to support location-aware applications and facilitate
exploration and map building. The common ingredient in all
these problems is the use of passive vision systems –off-
the-shelf cameras– which can provide only the projection of
points in the world. This is dual to wireless networks where
only distance or some function of distance (inverse square)
can be measured.

In this paper, we address the case of leader-follower for-
mations of nonholonomic ground vehicles each one equipped
with a camera which provides only the bearing to the other
robots. We explicitly list here the assumptions we make about
sensing, communication, and control:

• Sensing: We assume each robot equipped with a cal-
ibrated vision sensor (e.g. a panoramic camera). The
bearing is obtained through the reciprocal observation
of cameras. A colored marker placed on the follower
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is observed by the cameras and will help to detect the
line of sight. The robots cannot see other points on the
environment.

• Communication: All computation is carried out on the
leader, who receives the measurements from all follow-
ers, and transmits the control velocities to all followers.

• Actuation and control: Vehicle kinematics obey the uni-
cycle model. The controller’s goal is to keep a desired
position and orientation with respect to the leader.

The problem is to find the relative position and orientation
with respect to the leader so that it can be provided as
feedback to the control loop or so that all information
gathered by the entire network can be expressed with respect
to a single reference coordinate frame, the one of the leader.
We conduct a change of variables so that the resulting
measurement equation is linear but the plant is nonlinear. We
prove a sufficient condition for observability depending only
on the bearing rate of change (optical flow) and the leader’s
angular velocity. Then we employ an Extended Kalman
Filter for the estimation of position and orientation of each
follower with respect to the leader. We used the estimated
state as feedback in achieving a desired relative pose for each
follower using feedback linearization. The contribution of
this paper is twofold: analytical because we prove a condition
sufficient for observability, and constructive because we show
that recursive estimation enables a leader-follower formation
if the leader is not stuck in an unobservable set-up. It is the
first time in the literature that the localization problem for a
mobile camera network is solved using only bearing.

The paper is organized as follows. In Sec. II we recall
notions of nonlinear observability. In Sec. III the general
leader-follower kinematic model is presented together with
a discussion on the communication network. In Sec. IV we
present an analytical formulation of observability for the
leader-formation robot setup. Sec. V reports the description
of the nonlinear observer and of the leader-follower control
law. Simulation results are presented in Sec. VI for noisy
measurements. Finally, in Sec. VII the major contributions
of the paper are summarized.

A. Previous work

The problem of mobile robot localization using optical
information is intrinsically nonlinear [2], in fact linearized
approximations can be non-observable, while tools from
differential nonlinear system theory prove the possibility to
reconstruct the robust state. This localization problem is
often referred to as the observability ofperspective dynam-
ical systems[10] [9] and can be embedded in the more



general problem of current state estimation using input-
output measurement. In [4] the current state estimation
for single robot is approached using a local Luemberger-
like nonlinear observer, based on projections of stationary
landmarks in the environment. Other mobile approaches use
range measurements [3], [5]. Grabowski and Khosla [7] as
well as Doherty et al. [6] use range only measurements in
mobile setups. In [1], a function of the Fisher Information
Matrix resulting from the probability density function of
multiple range measurements is maximized with respect to
motions of the network nodes so that uncertainty in locations
is minimized. In stationary setups, localization from bearing
only has been studied in [15], [17]. Moore et al. [14] use
only range measurements and solve the stationary case as a
graph realization problem.

II. OBSERVABILITY FOR NONLINEAR SYSTEMS

In order to approach the observability study for multi non-
holonomic robots in a leader-follower configuration equipped
with omnidirectional cameras, we present some basic facts
about observability for nonlinear systems [11] [12]. We then
derive Proposition 2 that will be used in characterizing the
observability in our multi-robot context.

Consider a vectors , [s1, s2, ..., sn]
T ∈ R

n. For a scalar-
valued functionλ : R

n 7→ R and a vector-valuedf : R
n 7→

R
n we define the two following operators:

dλ(s) ,
∂λ(s)

∂s
=

[
∂λ(s)

∂s1
,
∂λ(s)

∂s2
, ...

∂λ(s)

∂sn

]

(1)

Lfλ(s) ,
∂λ(s)

∂s
f(s) =

n∑

k=1

∂λ(s)

∂sk
fk(s)

where theLfλ(s) is calledLie derivativeof λ alongf .
Higher Lie derivativesLifλ(s) (i = 0, 1, 2, ..., n) are re-

cursively defined as [10]:

L0
fλ(s) , λ(s) , Lifλ(s) ,

(
∂

∂s
Li−1
f λ(s)

)

f(s).

Consider now a generic nonlinear systemΣN of the form

ΣN :

{
ṡ(t) = f(s(t),u(t)), s(0) = s0 ∈ R

n

y(t) , h(s(t)) = [h1, h2, ...hm]T
(2)

where s(t) , [s1(t), s2(t), ..., sn(t)]T ∈ S is the system
state,y(t) ∈ Y is the observation vector andu(t) ∈ U is the
input to the system.S, Y andU are differential manifolds
of dimensionn, m andp, respectively.

The problem ofobservabilityfor this kind of systems can
be roughly viewed as the injectivity, with respect to the ini-
tial condition, of the input-output mapRΣN

: S × U 7→ Y.
Two statess1 and s2 are indistinguishable[16] (s1Is2), if
ys1,u(t) = ys2,u(t), i.e. there exists an inputu(t) and a
time t for which, starting from differents1 ands2 then the
system (2) exhibits the same outputs.

Observability and observation space concepts directly fol-
low from that one of indistinguishability.

Definition 1 (Observability [16]):Given two states
s1, s2 ∈ S, a systemΣN as in (2) isobservableif we have

s1Is2 ⇒ s1 = s2.
Definition 2 (Observation Space [16]):The observation

spaceof ΣN is defined as:

H = span
R

{

Lj−1
f hk(s) | k = 1, ...,m ; j = 1, ..., jm

}

wherej1, j2, ...jm are positive integers satisfyingj1 + j2 +
...+ jm = n.
From these two definitions the following proposition follows:

Proposition 1 (Observability rank condition [13]):The
system in (2) is said to be observable at a pointŝ ∈ R

n, if
there exist an open setU ⊂ R

n of ŝ and positive integers
j1, j2, ..., jm satisfyingj1 + j2 + ...+ jm = n such that, for
arbitrarys ∈ U the set of row vectors defined by

H = {Lj−1
f dhi(s) | i = 1, ...,m; j = 1, ..., jm} (3)

is linearly independent.
It is important to note that the above proposition is a
sufficient condition i.e. we can still have that the codistri-
butionH is rank deficient but the system is still observable.
Note moreover that, for general nonlinear systems, global or
complete observability can not be usually expected. Due to
this fact local observability would be suitable notions. Note
however that the above proposition implies the local weak
observability [8].

Condition (3) can be also tested by checking the full rank
of the so-called Extended Output Jacobian matrixJ [4]. In
the following Proposition we give a formal proof of this
assertion.

Proposition 2: Consider the generic nonlinear systemΣN
as in (2). Then the observability condition 3 in Prop. 1
is equivalent to the set of row vectors (j is the order of
differentiation):

{dh
(j−1)
i (s) | i = 1, ...,m ; j = 1, ..., n} (4)

being linearly independent. From (4) we define the Extended
Output Jacobian (EOJ) matrixJ ∈ R

mn×n, built by stacking
the rows in (4).

Proof: The proof is constructive. Computing the Lie
derivatives in (3) and from (1) it results that (∀i = 1, ...,m),

k = 1 : L0
fdhi(s) =

∂hi
∂x

(s) = dh
(0)
i (s) (5)

k = 2 : L1
fdhi(s) =

∂

∂s

(
L0
fdhi(s)

)
f(s) =

= d

(
∂hi
∂s

f(s)

)

= d

(
∂hi
∂s

∂s

∂t

)

= dh
(1)
i (s) (6)

k = 3 : L2
fdhi(s) = d

(
∂

∂s

(
L1
fhi
)
f(s)

)

=

= d

(

∂h
(1)
i

∂s
ṡ

)

= d

[

∂
(
∂hi

∂t

)

∂s

∂s

∂t

]

= dh
(2)
i (s)(7)

...
...

...

k = n : Ln−1
f dhi(s) = dh

(n−1)
i (s) (8)

and by stacking (5),(6),(7) and (8) in a matrix, from Prop. 1
we obtain the thesis.



Remark 1:Roughly speaking the above proposition sug-
gests testing the observability of a nonlinear system simply
checking the rank of a matrix made of the state partial
derivative of the output vector and of all itsn − 1 time
derivatives. Moreover, from Prop. 2, it is straightforwardto
observe that for our control purposes it is not necessary to
check for all determinants of all possible minors inJ, but it
is sufficient thatat least onen×n minor of J has full rank
in order to guarantee the system observability.

III. PROBLEM FORMULATION

In order to apply the concepts of observability for the
collective localization of multiple robots, we propose the
leader-follower kinematic modeling together with a brief
discussion about the communication network.

A. Leader-follower kinematic model

The setup we will consider throughout this work is repre-
sented in Fig. 1 and consists ofq + 1 velocity-controlled
nonholonomic mobile robots whose individual kinematics
can be abstracted as a unicycle model

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω (9)

where the position is(x, y) andθ represents the orientation
with respect to the world frame. One of these robots is the
leader 〈L〉 whose configuration vector in the world frame
〈WF 〉 is (xL, yL, θL)T . The otherq robots are thefollowers
〈Fi〉 (i = 1, ..., q) described by(xFi

, yFi
, θF i)

T . The control
inputs of both leader and followers are the translational and
angular velocities(vL, ωL)T and (vFi

, ωFi
)T , respectively.

The kinematic modeling for the setup with many follower
robots will be obtained as a direct extension of the simplified
case with q = 1. The leader〈L〉 is equipped with an
omnidirectional camera and is able to observe thei−th
follower through a colored markerPi placed at a distanced
along its translational axis (see Fig. 1) thus measuring the
i−th follower heading directionξi with respect to the leader.

< WF >

θ
Fi

θL

d

< Fi >

< L >

Pi

ψ
i

(xFi,yFi)

(xL,yL)

< Fq >

Pq

θ
Fq

(xFq,yFq)

vFqωFq

vFiωFi

vL
ωL

ηi

ρi

βi

x

y

ξi

. . .

Fig. 1. Basic leader-follower setup in polar coordinate representation with
panoramic cameras.

In analogous way also〈Fi〉 is equipped with a panoramic
camera and can measure the angleηi.

In order to simplify the notation we introduce the polar
coordinate representation [5]. Letρi be the length of the line
of sight from the panoramic camera〈L〉 to the marker inPi.
Let ψi be the angle from the leadery−axis and the line
of sight of Pi and βi the relative orientation between the
two robots, i.e the bearing. It is an easy matter to show that
βi = ξi − ηi + π.

Proposition 3 (One-leader-one-follower kinematics):
Under the above conditions, the one-leader-one-follower
kinematics (Fig. 1) can be written in the following way:

ṡi = Gi(si)ui, i = 1, ..., q (10)

where

Gi =





cos γi d sinγi − cosψi 0
− sin γi

ρi

d cos γi

ρi

sinψi

ρi
−1

0 −1 0 1





being ui = [vFi
ωFi

vL ωL ]T , si , [ρi ψi βi]
T and

γi , βi + ψi.
Proof: Consider the setup in Fig. 1. It may be seen

thatρi =
√

ρi2x + ρi2y ,whereρix , (xL−xFi
−d cθFi

) and

ρiy , (yL − yFi
− d sθFi

) (sθ = sin θ,cθ = cos θ), whose
derivative leads to:

ρ̇i =
1

ρi

[

ρix(ẋL − ẋFi
+ θ̇Fi

d sθFi
)+

+ ρiy(ẏL − ẏFi
− θ̇Fi

d cθFi
)
]

(11)

and putting the unicycle kinematics (9) in (11), after few
computations we can write

ρ̇i=(ρix cθL + ρiy sθL
︸ ︷︷ ︸

(a)

)
vL
ρi

−(ρix cθFi
+ρiy sθFi

︸ ︷︷ ︸

(b)

)
vF i
ρi

+ d(ρix sθFi
− ρiy cθFi

︸ ︷︷ ︸

(c)

)
ωFi

ρi
(12)

The factor(a) is the scalar product between(ρix , ρiy)T

and (cθL, sθL)T that corresponds to−ρi cψi. Analogously
(b) is −ρi cγi whereγi = ψi + βi. Note thatβi = θL −
θFi

. Moreover(c) corresponds toρi sγi. By substituting the
retrieved values of(a), (b) and (c) into (12), we obtain the
desired expression foṙρi

Let us now retrieve the expression forψ̇i. From Fig. 1
it is possible to see thatψi = arctan

(
ρiy/ρix

)
−

θL from which the first time derivative yields to
ψ̇i = 1

ρ2ix
+ρ2iy

[
ρ̇iyρix − ρ̇ixρiy

]
− ωL and substituting the

above expressions foṙρix and ρ̇iy and grouping all terms
with the same velocities then it follows:

ψ̇i =
vL
ρ2
i

(
ρix sθL − ρiy cθL

)

︸ ︷︷ ︸

(a′)

+
vF i
ρ2
i

(
ρiy cθF i − ρix sθF i

)

︸ ︷︷ ︸

(b′)

+

−
ωFi

d

ρ2
i

(
ρix cθF i + ρiy sθF i

)

︸ ︷︷ ︸

(c′)

−ωL



and in an analogous way it is possible to show that(a′),
(b′) and(c′) correspond respectively toρi sψi , −ρi sγi and
−ρi cγi.

The results obtained in (10) are now extended to the “one-
leader-many-follower” case.

Proposition 4 (One-leader-many-follower Kinematics):
Consider the one-leader-many-follower setup in Fig. 1. In
this case the kinematic model can be readily retrieved as an
extension of the one-leader-one-follower case (10) and is:

ṡ = G(s)u (13)

where the state vector is
s = [ρ1, ψ1, β1, ..., ρq, ψq, βq]

T ∈ R
3q, G(s) is

as in (14), γi , βi + ψi ∀i = 1, ..., q and
u = [vF1

, ωF1
, vF2

, ωF2
, ..., vFq

, ωFq
, vL, ωL] ∈ R

2(q+1).

G(s) =















cγ1 d sγ1 ... 0 0 −cψ1 0

− sγ1
ρ1

d cγ1
ρ1

... 0 0 sψ1

ρ1
−1

0 −1 ... 0 0 0 1
...

...
. . .

...
...

...
...

0 0 ... cγq d sγq −cψq 0

0 0 ... − sγq

ρq
d
cγq

ρq

sψq

ρq
−1

0 0 ... 0 −1 0 1















(14)

B. Distributed architecture/communication network

We here briefly describe the communication network be-
tween the leader and the followers. In Fig. 2 we represented
a scheme for the information flow. In particular we will
assume that the leader transmits to thei-th follower the
velocity control(vF i, ωF i) needed to bring the multi-robot
configuration toward a desired value. The computation of
the control law is made by the leader, together with the
estimation of the state. The bearingβi is computed through
the knowledge ofηi that is transmitted by thei-th follower to
the leader. To simplify the discussion we will henceforth refer

OmniCam

State Estimator (EKF)

L

F1

OmniCam

F2

OmniCam

Fq

OmniCam. . . .

η1 ηq

vF1ωF1
vF2ωF2 η2

vFqωFq

Fig. 2. Communication network architecture. All computation is carried
out on the leader who receives the measurements (the angleηi) from all
the follower and transmits the control input(vFi

, ωFi
)T .

only to the bearingβi implicitly assuming the transmission
of ηi.

IV. L EADER-FOLLOWER LOCALIZABILITY

In this section we will use the Observability Rank Condi-
tion (Prop. 2) together with the kinematic leader-follower
models proposed in Sec. III-A, in order to provide an
analytical description on observability in the case of mobile
camera network using only bearing. We will also give a
physically meaningful interpretation of it.

A. Case I : one-leader-one-follower

We here present the localizability study for the setup
presented in Fig. 1 with one follower (q = 1). As previously
discussed we suppose that the leader can observe thei-
th follower and measure a two dimensional output vector,
namely

yi , [y1 y2]
T = [ψi βi]

T (15)

From Prop. 2 it may be seen that the observability of
system (10) (withi = 1), under the hypothesis of outputs as
in (15), is guaranteed when at least one3×3 submatrix of the
whole Extended Output JacobianJ ∈ R

6×3 is nonsingular.
For each follower let us consider, e.g. the submatrixJi:

Ji =






∂y1
∂ρi

∂y1
∂ψi

∂y1
∂βi

∂ẏ1
∂ρi

∂ẏ1
∂ψi

∂ẏ1
∂βi

∂y2
∂ρi

∂y2
∂ψi

∂y2
∂βi




 =





0 1 0
∂ψ̇i

∂ρi

∂ψ̇i

∂ψi

∂ψ̇i

∂βi

0 0 1



 (16)

whose determinant is:

det(Ji) = −
∂ψ̇

∂ρi
=

1

ρi

[

ψ̇i + ωL

]

(17)

It results that ifdet(Ji) 6= 0 then the states(t) of the leader-
ith follower is observable.

B. Case II: one-leader-many-follower

In the general case ofq followers we can adopt the
whole system description in Prop. 4 to compute the Extended
Output Jacobian. It is an easy matter to verify that the3× 3
structure ofJi in (16), when extended for the one leader
many follower case is not singular when

1

ρ1 · · · ρq
(ψ̇1 + ωL)(ψ̇2 + ωL)· · · (ψ̇q + ωL) 6= 0. (18)

C. Unobservability geometrical interpretation

We want to give here a geometrical interpretation of the
singularity of (16) in the basic example depicted in Fig. 3 in
which a leader observes two moving followers at different
time instantst = 0 and t = 1. At t = 0 the Follower#1
has the same heading of the leader (i.e.β1 = 0) while the
second (#2) has not (β2 6= 0). Then after a translational
motion with equal velocity modulus, it results thatψ1 did
not change (ψ1(0) = ψ1(1) i.e. no temporal change in
visual information), whileψ2(0) 6= ψ2(1). From this we
have thatdet(J1) = 0 while det(J2) 6= 0, i.e. differently
from follower #2, the state of leader#1 is not observable.



V. NONLINEAR OBSERVER AND FORMATION CONTROL

In the previous section we obtained sufficient conditions
for the perspective observability of a group of nonholonomic
mobile robots equipped with vision sensors and moving in
a leader-follower configuration. We here apply the Extended
Kalman Filter (EKF) to estimate the robot configurations and
we design an input-output feedback linearizing control law
to make all the robots able to follow the leader.

A. Observer design: Continuous-Discrete EKF

For the sake of simplicity we assumed no model uncer-
tainty:

ṡ(t) = g(s(t), t,u), s(0) = s0, 0 ≤ t ≤ τ

We moreover assume discrete measurements
z(tk) = h(s(tk)) + v(tk) (with k = 1, 2, ..., N ) where
z(tk) ∈ R

2q is the discrete measurement output from
sensors evaluated at discrete timetk. h(s(tk)) is the output
model and will be henceforth referred to ashk. The sensor
random errorv(tk) is assumed to have gaussian distribution
, i.e. v(tk) ∼ N (0,R(tk)) where R(tk) is the error
covariance matrix. Initial condition iss(0) ∼ N (ŝ(0),P0).
It must be remarked that these outputs are retrieved without
any need of camera model knowledge. Beingtk the sensor
sampling time andTp , Ts/η the microcontroller sampling
time (with η ∈ N), then the EKF Propagation and Update
steps are

(Propagation)

P(Tp + 1) = P(Tp) + Tp
[
FP(Tp) + P(Tp)F

T
]

ŝ(Tp + 1) = ŝ(Tp) + Tp g(ŝ(Tp), Tp,u)

(Update)

K(tk) = P−(tk)H
T
[
HP−(tk)H

T + R
]−1

P(tk) = (I− K(tk)H)P−(tk)

ŝ(tk) = ŝ−(tk) + K
(
ztk − hk(x̂

−(tk))
)

B. Controller design

In the spirit of [5] the control strategy to move the
sensor formation from an initial towards a target config-
uration w.r.t. the leader has been designed via aninput-
state feedback linearizingcontrol law. Note that in the
leader-to-follower controlβi is controlled to0 as ρi and

t=0

t=1

Leader Follower #1 Follower #2

ψ
1
(0)=ψ2(0)

ψ
1(1)=

ψ
2(1)

s1 s2

Fig. 3. Geometrical interpretation for the indistinguishability and singu-
larity of observability matrix.

ψi approach to the desired values. This lead us to con-
sider a reduced state vectorsr = [ρ1, ψ1, ... ρq, ψq]

T and
sdesr = [ρdes1 , ψdes1 , ..., ρdesq , ψdesq ]T . Moreover the kinematic
model as in (10) can also be written asṡr = H(sr)uF +
F(sr)uL whereuF , [vF1

, ωF1
, ..., vFq

, ωFq
]T and uL =

[vL, ωL]T , and H(sr) is made of the first2q columns of
G(sr). MoreoverF(sr) is made of the last two columns of
G(sr). Note that due to the above considerations onβi the
rows corresponding tȯβi are not considered inH(sr) and
F(sr).

The linearizing control inputuF to the followers is

uF = H−1(sr)(p − FuL) (19)

where p is an auxiliary control input given by
p = K(sdesr − sr) where the control gain matrixK
is:

K =










k1
1 0 ... 0 0
0 k2

1 ... 0 0
...

...
...

...
...

0 0 ... k1
q 0

0 0 ... 0 k2
q










Note that to guarantee the asymptotic convergence we must
ensure thatk1

i , k
2
i > 0 (∀ i = 1, ..., q).

VI. SIMULATIONS

In this section, we present results of the estimation of po-
sition and orientation of one or more followers with respect
to a leader, using an Extended Kalman Filter. We simulate
the leader-follower control law (19). We present some results
for the case in which the input-output linearizing control law
proposed in Sec.V-B is applied, in order to make all robots
(in this case twoq = 2) able to follow the leader. In the first
case the leader is moving on a straight line and the desired
relative pose of a follower with respect to leader isρdes1,2 =
0.5m, ψdes1 = 3/4π rad andψdes2 = 5/4π rad. We assumed
an initial uncertainty of1m onρ1(0) and measurement noise
of σ = 1 deg. Robot trajectories are showed in Fig. 4(a). Both
estimation and trajectory errors converge to zero (Fig. 4(b)-
(f)). In the second case the leader is moving with velocities
(vL, ωL) = (2, cos(t)/2). The same uncertainties than above
are assumed. Robot trajectories are showed in Fig. 5(a). Also
in this case all estimation and trajectory errors converge to
zero (Fig. 5(b)-(f)).

VII. C ONCLUSIONS AND FUTURE WORK

We have presented the localization problem for a camera
network and we solved it in the case of cameras mounted
on mobile nonholonomic robots moving in leader-follower
formations, using only bearing. In particular we proved a
sufficient condition for observability and we showed that
recursive estimation enables a leader-follower formationif
the leader is not stuck in an unobservable set-up. Please
remember that the leader-follower control here presented
is only based on the visual information provided by the
observation of colored blobs on the robots. Future research
lines include (1) better understanding of closed-loop control
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Fig. 4. (Leader moving on a straight line) Estimation and trajectory errors
in the case of leader-to-followers stabilization control.

effects on the observer performances, (2) the design of a con-
trol law that selects inputs which minimize the uncertainty
of the location estimates, (3) the investigation of collective
localization with minimal communication between agents,
(4) use of estimators like Unscented Kalman filters which are
less dependent on the assumption of Gaussian distributions.
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