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Phase Transitions on Fixed Connected Graphs
and Random Graphs in the Presence of Noise

Jialing Liu, Vikas Yadav, Hullas Sehgal, Joshua M. Olsoniféfay Liu, and Nicola Elia

Abstract

In this paper, we study the phase transition behavior emgfigom the interactions among multiple
agents in the presence of noise. We propose a simple digoretenodel in which a group of non-mobile
agents form either a fixed connected graph or a random grapgiegs, and each agent, taking bipolar
value either+1 or —1, updates its value according to its previous value and tligynmoeasurements of
the values of the agents connected to it. We present proofthéooccurrence of the following phase
transition behavior: At a noise level higher than some tioleh the system generates symmetric behavior
(vapor or melt of magnetization) or disagreement; wheréasrmise level lower than the threshold, the
system exhibits spontaneous symmetry breaking (solid @netzation) or consensus. The threshold
is found analytically. The phase transition occurs for amgahsion. Finally, we demonstrate the phase
transition behavior and all analytic results using siniated. This result may be found useful in the
study of the collective behavior of complex systems undenroanication constraints.

Index Terms

Phase transitions, consensus, limited communicatiomarked dynamical systems, random graphs

I. INTRODUCTION

A phase transition in a system refers to the sudden changsydtam property as some parameter of
the system crosses a certain threshold value. Phase imasdiiave been observed in a wide variety of
studies, such as in physics, chemistry, biology, completesys, computer science, and random graphs,
to list a few. It leads to long term attention in the liter&ufrom physicists such as Ising [1] in the
1920’s to mathematicians such as Erdds and Rényi [2] inl8&D’s, from complex systems theorists
such as Langton [3] in the 1990’'s to control scientists suEDHati-Saber [4] in the 2000’s.

Ising and other physicists have thoroughly studied the k&rbpt “realistic enough” Ising model, for
the understanding of phase transitions in magnetismcdatises, etc. In an Ising model, each node
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can take one of two values, and the neighboring nodes haveegetic preference to take the same
value, under some constraints such as a temperature orseoliserved that, for an Ising model with
dimension at least 2, a temperature higher than a criticalt peads to symmetric behavior (e.g., “melt”
of magnetization, or vapor), whereas a temperature lowar that point leads to asymmetric behavior
(e.g., magnetization, or liquid). The Ising model is a ditertime discrete-state model, and is closely
related to the Hopfield networks and cellular automata.

Erdds and Rényi [2] showed that, graphs of sizes slightlgsIthan a certain threshold are very
unlikely to have some properties, whereas graphs with a f@esenedges are almost certain to have
these properties. This is called a phase transition of nangi@phs, see for example [5].

Viscek et al [6] showed that a two-dimensional nonlinear model exhikitphase transition in the
sense of spontaneous symmetry breaking as the noise lesdes a threshold. This model consists
of a two-dimensional square-shaped box filled with parsiclepresented as point objects in continuous
motion. The following assumptions are also adopted: 1) #n#igles are randomly distributed over the
box initially; 2) all particles have the same absolute vatdieselocity; and 3) the initial headings of
the particles are randomly distributed. Each particle tggl#ts heading using the average of its own
heading and the headings of all other particles within ausdj which is called thenearest neighbor
rule. Included for each particle in this model is a random noiskictv may be viewed as measurement
noise or actuation noise) with a uniform probability distiion on the interval—n», 7]. The result of
[6] is to demonstrate using simulations that a phase tiansiiccurs when the noise level crosses a
threshold which depends on the particle density. Below keshold, all particles tend to align their
headings along some direction, and above the thresholgatieles move towards different directions.
Czirok et al [7] presented a one-dimensional model which also exhibjpéase transition for a group
of mobile particles. These two models are discrete-timdicoaus-state models.

Schweitzelet al [8] studied the spatial-temporal evolution of the popwlas of two species, where the
update scheme depends nonlinearly on the local frequenspeagiies. Depending on the probability of
transition from one species to the other, the system evadvesher extinction of one species (agreement)
or non-stationary co-existence or random co-existenca@eement).

We note that phase transition problems are sometimes assoevith flocking / swarming / formation
/ consensus / agreement problems. Though the interest and & these problems are often indepen-
dent of the phase transition study, these problems tygieadhibit phase transitions when parameters,
conditions, or structures change. These problems and theeptransition problems may also share
some common techniques in order to establish stability tabikty over similar underlying models,
such as common Lyapunov function techniques, graph thedesthniques, and stochastic dynamical
systems techniques. More specifically, the phase transitaxcurring in flocking may be classified
into two categories: angular phase transitions that leadslignment (see e.g. [6]), and spatial self-
organization in which multiple agents tend to form specagtgrns or structures in space, such as lattice
type structures. Examples of the latter category include[19]. In [9], Mogilner and Edelstein-Keshet
investigated swarming in which the dynamical objects exté&s depending on angular orientations and
spatial positions, and a phase transition is observed. Of [levine et al presented a simple model
to study spatial self-organization in flocking showing tladltthe agents tend to localize in a special
pattern in one- and in two-dimensions with all-to-all commuation. We refer to [4], [11]-[14] for
some recent studies of phase transitions and the conseaguseiment problems over networks. Olfati-
Saber [4] studied the consensus problem using a randomimgvélgorithm (see also [15]) to connect



nodes, and showed that the Laplacian spectrum of this nktmay undergo a dramatic shift, which is
referred to as a spectral phase transition and leads tamatydast convergence to the consensus value.
In [16], Hatano and Mesbahi established agreement of nhelligents over a network that forms an
Erdds random graph process, in which each agent updat&siiéslinearly according to the perfect state
information of its nearest neighbors. Hatano and Mesbatu atudied another facet of the distributed
agreement problem in the stochastic setting in [14], nartiedyagreement over noisy network that forms
a Poisson random graph.

Jadbabaiet al [17] provided a rigorous proof for the alignment of movingtides under the nearest
neighbor rule without measurement noise or actuation nBigkerent from the switched nonlinear model
used in [6], the model in [17] is a switched linear model. Rartore, this model also assumes that
over every finite period of time the particles gointly connectedor the length of the entire interval.
Due to the noiseless assumption made in [17], the phaseitioassobserved in [6] will not occur.
Under these assumptions, Jadbaletial proved that the nearest neighbor rule leads to alignment of
all particles. One may be interested in finding Lyapunov fiams (preferably quadratic) to show the
convergence or alignment (see [12], [13] for convergenoefsrbased on common Lyapunov functions
for models different from [17]). However, [6] showed that@mmon quadratic Lyapunov function does
not exist for this switched linear model. On the other handpa-quadratic Lyapunov function can be
constructed to prove the convergence, as suggested by tdiediE8] and later independently found by
Moreau [19]. See also [20], [21] for extension of [17].

In this paper, we propose a discrete-time discrete-statéelrin which a group of agents form either
a fixed connected graph or a random graph process, and eauh(agde) updates its value according to
its previous value and the noisy measurements of the neigigoagent values. We prove that, when the
noise level crosses some threshold from above, the systhibitsxsspontaneous symmetry breaking. We
may view that the high noise level corresponds to high teatpeg (or strong thermal agitation), where
the molecules exhibit disorder and symmetry; and the loveenéével corresponds to low temperature,
where the molecules exhibit order and asymmetry.

We emphasize that the proposed model is rather simple antkreimits a complete mathematical
analysis of the phase transition behavior. First, the phaseition in a fixed connected graph presented
in this paper is simpler than the phase transition in theglsiodel. As one indicator of the simplicity,
note that the Ising model of dimension higher than two ingshintractable computation complexity
when attempting to solve for the value for each node undeteéh®perature constraint, namely, such
a problem is NP-complete [22]. Also the Ising model needsedision two or higher to generate the
phase transition, whereas our phase transition occursnfpdienension. To the best of our knowledge,
the proposed model is one of the simplest that exhibits ael@ssition in a fixed graph, and is
mathematically provable to generate a sharp phase t@msiNote that many other phase transitions
elude rigorous mathematical analysis due to their comiydgi, [4], [6], [7], [22]. Second, the phase
transition on a random graph is also simpler than the phasesition on a random graph observed in
[2]. Compared with the models in [6] and [7], our models havscigtte-states and do not allow the
mobility of agents, which greatly simplifies the systems aiyics and allows rigorous proofs of the
phase transition behavior. The simplicity of our phasediteons may help us to identify the essence of
general phase transition phenomena.

Our study also sheds light on the research on the consensblems, cooperation of multiple-agent
systems, and collective behavior of complex systems, aleuigommunication constraints. Hence, this



study fits into the general framework of investigating theeiactions between control/dynamical systems
and information; see e.g. [23]-[29] and references theMore specifically, we may interpret our phase
transition in the consensus problem framework, where teagiteement due to unreliable communication
is replaced by agreement when the communication qualitydkrgs to a certain level. In other words, our
work characterizes the significance of information in réagtagreement. However, unlike the average-
consensus problem (cf. [13]) with the properties that, Erahexists an invariant quantity during the
evolution, and 2) the limiting behavior reaches the averdghe initial states of the system, our models
reach agreement without these properties when the noisé ileVow. This is because the presence of
noise prevents the conservation of the sum of the node vdlurésg the evolution. The study of entropy
flows (or information flow) [23], [30] may help identify an iaviant quantity of the system. We remark
that a more thorough study of the consensus problem raiséusrpaper is beyond the scope of this
paper and will be pursued elsewhere.

Organization: In Section 2 we introduce the models. In Section 3 we statenoain results and
provide the proofs. In Section 4 we present numerical examinally we conclude the paper and
discuss future research directions.

[I. MODELS ON THE GRAPHS

This section introduces some of the terms that are frequeséd in this paper as well as the two
models to be investigated. We focus only on undirected graph

A. Graphs and random graph processes

A graph G := (V, E) consists of a se¥ := {1,2,..., N} of elements called vertices or nodes, and a
set E of node pairs called edges, withi C E. := {(¢,7)]i,j € V'}. Such a graph isimpleif it has no
self loops, i.e(i,j) ¢ E if i = j. We consider simple graphs only. A graphis connectedf it has a
path between each pair of distinct nodeand j, where by apath between nodes and j we mean a

sequence of distinct edges @f of the form (i, k1), (k1, k2), ..., (kn,J) € E. Radiusr from nodei to
nodej means that the minimum path length, i.e., the minimum nunatbexdges connectingto j, is
equal tor.

A fixedgraphG has a node sdt and an edge sdf that consists of fixed edges, that is, the elements
of E are deterministic and do not change dynamically with time.
A randomgraphG consists of a node séf and an edge set := E(w), wherew € Q, (2, F, P)
forms a probability space. Hefe is the set of all possible graphs of total numbemofwhere
n .= ZW; (1)
F is the power set of); and P is a probability measure that assigns a probability to euery Q). In
this paper, we focus on the well-known Erdds random graphsnamely, it holds that

P(w) = ~. 2)

In other words, we can view eadhi(w) as a result of V(N — 1)/2 independent tosses of fair coins,
where a head corresponds to switching on the associatedagniea tail corresponds to switching off
the associated edge. Notice that the introduction of ramé®s1to a graph implies that, all results for
random graphs hold asymptotically and in a probability sessich as “hold with probability one”.



A random graph process a stochastic process that describes a random graph myokith time.
In other words, it is a sequend&(k)};2, of random graphs (defined on a common probability space
(Q, F, P)) wherek is interpreted as the time index (cf. [5]). For a random grppitess, the edge set
changes withk, and we denote the edge set at tilmas E (k). In this paper, we assume that the edge
formation at timek is independent of that at timeg if k& # [.

The neighborhoodN; (k) of the ith node at timek is a set consisting of all nodes within radius 1,
including theith node itself. The value that a node assumes indt$e value The valenceor degreeof
the ith node is(|N;(k)| — 1), where|N;(k)| denotes the number of elementsii(k). The adjacency
matrix of G(k) is an N x N matrix whose(i, j)th entry is1 if the node pair(i,j) € E(k) and O
otherwise. Note that the graphs can model lattice systertisamy dimension.

B. System on a graph

A system on a graphonsists of a graph, fixed or forming a random process, ailiciondition that
assigns each node (agent) a node value, and an update rbke méde values. In this paper, we assume
that each node can take value either or —1, and theupdate rulefor the ith node at the(k + 1)st
instant is given by

zi(k + 1) = signfu; (k) + & (k)] @3)

where¢; (k) is thenoiserandom variable, uniformly distributed in intenjatn, n| and independent across
time and space and independent of the initial conditiof), and
Yjen, k) Ti(k) @
INi(k)|

that is, v;(k) is the average of the node values in the neighborh®pd). Heren is called thenoise
level This update rule resembles the one in [7], with their amtis\etric function being replaced by a
sign function. It may also be viewed as a specific update i@ fHopfield neuron whose connections
with others are noisy.

Thestate of the systeat time instant, denoted:(k), is the collection of all node valués; (k),--- ,zn(k)).
The state sunmat time instant:, denotedS(k), is defined as

Ul(k‘) =

N
S(k):=>_xi(k). (5)
=1

With a slight abuse of notation, we represent the state Withls and all -1s (i.e. the consensus states)
as+N and —N, respectively. We call a stateansientif this state reappears with probability strictly
less than one. We call a statecurrentif this state reappears with probability one. We call a sfste
absorbingif the one-step transition probability frod¥ to X is one.

C. Model with a fixed graph

The first model considered is a system on a fixed graph. In tludei the node connections or
the edges remain unchanged throughout. Hence, every nade fieed neighborhood at all times, and
the degree of each node as well as the adjacency matrix astaconThe node value gets updated
according to the update rulel (3). We will assume that the fogeeghh is connected. An example of such
a fixed graph model is a communication network with fixed naes fixed but noisy channels. Another
example is a Hopfield network with fixed neurons and fixed busyhchannels connecting them.



D. Model with a random graph process

The second model considered is a system on a graph formingd@maprocess. In this model, the
node connections, hamely the edges of the random graphgeltymamically throughout, and the edge
formations at timek are random according to distributid?(k). Hence every node may have different
neighborhoods at different times, and the adjacency mainck degrees change with time. The node
value gets updated also according to the update [flile (3).xAmple of this model could be an ad-hoc
sensor network in which the communication links betweerstiresors appear and disappear dynamically.
Another example is an erasure network in which the commtinicghannels are noisy and erasing with
some probability, see for example [31].

In both models, the system state can takevalues, where

J:=2N"1 (6)

and the state sum takes values in the/§et= {—N,—N +2,--- | N —2, N}, whereN > 2 is the total
number of nodes. Note that/| = N + 1 > 3. Both models also form Markov chains, since the next
state does not depend on previous state if the current stajiedn.

We useé(k) to represent(é;(k),--- ,&n(k)), €F to represent(£(0),--- ,&(k)), GF to represent
(G(0),--- ,G(k)), andz(k) to representzy(k),--- ,xn(k)).

I1l. M AIN RESULTS AND PROOFS

Our main result states thdgr a system on a fixed connected graph or on a graph forminghdaen
process, there is a provable sharp phase transition whemthge level crosses some threshdttere
the phase transition is in the sense that the symmetry eégdilait high noise level is broken suddenly
when the noise level crosses the threshold from above, dvaguatly the disagreement (or disorder)
of the nodes at high noise level becomes agreement (or obaédésyv the threshold. In what follows,
we first discuss the case in which the graph has a fixed stejcind then the case in which the graph
forms a random process.

A. Model with a fixed graph

Proposition 1. For any given fixed connected graph, 1Bt be the maximum number of nodes in one
neighborhood.

i) If the noise level is such that € (1 —2/D, 1], then the system will converge agreementnamely
all nodes will converge to either al-1s or all —1s.

ii) If the noise level is such that > 1, thenES(k) tends to zero a& goes to infinity, i.e., the system
will converge todisagreemenin which approximately half of the nodes afels and the other half are
—1s.

Remark 1. Notice that(1 —2/D) is guaranteed to be nonnegative for any connected graphmatie
than one node, sincB > 2. Note also that ify < (1 —2/D), the system does not necessarily converge
to statest N. To see this, simply consider a one-dimensional cellulaoraaton with N nodes forming

a circle. The neighborhood of a node is defined as one nodetiefith one node to the right, and itself.
ThereforeD = 3, and if n < 1/3, the update rule becomes a majority voting rule. Then thialni
conditionz(0) of the system with alternate 1s and—1s will lead to constant oscillations betwee(D)

and a left cyclic shift ofz(0), i.e., it will not reach agreement if < 1/3. However, this does not mean



that in general our condition > n > (1 — 2/D) is a necessary condition for agreement; a sufficient
and necessary condition is under current investigatiotraétors like thisz(0) may be viewed as local
attractors (whereas N may be viewed as global attractors) which can be eliminateddmsidering a
randomizedgraph, see the next subsection.

The proof of Propositio]1 needs the following lemmas.

Lemma 1. For any given fixed connected graphypiE (1—2/D, 1], then the states N are absorbing,
and all other states are transient.

Lemma 2. For any given fixed connected graphyit> 1, then the states form an ergodic Markov chain
with a unique steady-state distribution for any initial ion x(0).

Proof of Lemmal[ll At states-N, the noise is not strong enough to flip any node value. ThiS,
are absorbing. On the other hand, all other states are neitierbing nor recurrent. To see this, let
M # £N be any state, which leads to thift contains a mixture of-1s and—1s. Due to the connectivity

of the graph, we can always find a nodevith node valuez;(k) = —1 whose neighborhood; (k)
(including z; (k) itself) contains both+1s and—1s. Then for such;(k), it holds that
D -2
(k)| <
[vilk)] < =5 (7)

with equality if only one node inV;(k) has a different sign than all other nodes an@ifk) contains
D nodes. Hence a noise larger th@h — 2)/D flips z;(k). Precisely,

Pr[z;(k +1) = +1|x;(k) = —1]
(

= Prvi(k)+&(k) > 0|x; (k) = —1]
> Pr|eh) > 22wk = —1] ®)
1 D -2

Note that the conditioning is removed due to the indepengl@ssumptions on noise. Thus, for state
M, the probability that onlyz; flips and no other node changes its value is non-zero. Thisviel
that, with a positive probability the state sum fof will be increased by2. Likewise, with a positive
probability M can be decreased by 2. Sinké £ +N is an arbitrary state, by induction, the probability
of transition (in possibly multiple steps) frof/ to =N is nonzero. SaV/ is transient.

Proof of Lemma[2 It is sufficient to prove that the state forms an irreducibie aperiodic Markov
chain.

To see the irreducibility, note that if > 1, M # £N can jump to any other states with a positive
probability, similar to Lemma&]1. Additionallys-= N can also jump to any other states with a positive
probability. For state+ N, it holds that

Pr[z;(k+ 1) = —1|zy(k) =+1,l=1,--- ,N]
= Prlvi(k)+&(k) <0|x(k) =+1,1=1,--- ,N]

= Prlei(k) < —1ay(k) = +1,0=1,--- , N] ©)
1

so any node can flip its value with a positive probability. Bamresult holds for state- N. Then this
Markov chain is irreducible.



To see the aperiodicity, let us user; to denote the flipped:;. The state transition cycle from
(x1(k), z2(k), %) to (—x1(k), —x2(k),*) to (—z1(k), z2(k), *) and back to(z;(k), z2(k), *) has period
3, wherex is any fixed configuration fofzs(k),--- ,zn(k)). However, the state transition cycle from
(x1(k),A) to (—z1(k),A) and back toz;(k), A) has period 2, wheré is any fixed configuration for
(z2(k), -+ ,xn(k)). Note that such cycles occur with positive probabilitieeef the Markov chain is
aperiodic.

Proof of Proposition[I If n € (1—2/D, 1], by LemmdL, the associated Markov chain will converge
to either+N or —N with probability 1, namely agreement. if > 1, from Lemmal2 we know that
the associated Markov chain is ergodic, and notice that thek® chain has a symmetric structure
for statesr and —z. Thenn(z) = w(—x) (rigorous proof is included in Appendix), wherdz) is the
stationary probability of state. Hence the expectation of state sum is

N
EgorS=)_ (w(m) in> =0. (10)
x i=1

Therefore ES (k) converges to zero, and the numberstds and—1s will asymptotically become equal.

B. Model with a random graph process

For an Erdos random graph, we assume that the edge comeeatie randomly and independently
changing from time to time. The randomization of the conio&st symmetrizes the system behavior
and leads to agreement even for an arbitrarily small buttipesnoise level.

Proposition 2. Consider an Erds random graph process.

i) If the noise level is such thdt < n < 1, then the system will converge &mreementnamely the
state will converge to+ N or —N.

i) If the noise level is such thay > 1, then ES(k) exponentially converges to zero with decay
exponeninn as k goes to infinity, i.e., the system will exponentially cogedio disagreemenin which
about half of the node values arels and the other half are-1s.

The proof of this proposition needs the following lemmas. Wmark that it is straightforward to
generalize the lemmas to a binomial random graph, in whiehptobability of forming an edge is
changed fronD.5 to an arbitraryp € (0, 1).

Lemma 3. For any Erdds random graph process,if € (0, 1], then+N are absorbing, and all other
states are transient.

Lemma 4. For any Erdbs random graph process,sf > 1, then it holds thalES (k) exponentially tends
to zero ask goes to infinity. The decay exponentis;.

Proof of Lemmal® If 0 < <1, it is easy to see that N are absorbing. For any stald # +N,
it holds thatM must be a mixture of both-1s and—1s. Hence we can find and j in V' such that
zi(k) = —1 and z;(k) = +1. Since each of the: graphs (recall[{1)) has a positive probability, the
probability thatz; is connected ta:; only is positive. Then in this case;(k) is 0 and hence an arbitrarily
small but positive noise may flip; with a positive probability. In addition, each node otheairthy; has
a positive probability to keep its previous value, thus vatlpositive probability, the state sum far
can be increased . Therefore anyM # +N are transient.



Proof of Lemmald For any Erdds random graph,qjf> 1, then no state is absorbing, since with a
positive probability the noise can flip any node value in aopfiguration. Therefore, with a nonzero
probability the state of the system can jump to any otheestat

Now let us analyze the evolution &S (k). Fix the time to bek. Assumex(k) is given. Then for

eachi, z;(k + 1) is given by [3). The randomness ip(k + 1) is due to the noisé&;(k) and the graph
G(k). It holds that

Elzi(k +1)|z(k)]
E signjv;(k) + &(/f)!w(/f)
Prlvi (k) + &i(k) x
+Privi(k) + z(k‘) Ol (k )] -1
= Pii&i(k) > —vi(k)[x(k)] — Prig&i(k) < —vi(k)[z(k)]
= ZPV& ) > —vi(k)[vi(k)]Pru; (k) |z (k)]

/—\

- Z P& (k) < —vi (k)[v: (k)] Prv; (k) |2(k)] (11)
v; (k)
= > WZ(M - n_ﬁﬁ;(k) Priv; (k)| (k)]
v; (k)
= > %;k)Pr[vka(k)]
v; (k)

1
= EE[UZ'(]C”:E(]C)]-

Then we computdE(v;(k)|z(k)). Since conditioned omr(k), the randomness in;(k) comes from
G (k) only, this expectation boils down to the expectation of therage of node values in a neighborhood,
averaged over all possible graph structures. Let us count in thegraph structures the number of
different neighborhood types containing nodeAmong those neighborhoods containing nadéhere

are
o 2N-D(N-2)/2 <N - 1) (12)
m

types of neighborhoods for whidiV; (k)| = (m + 1) wherem = 0,1,--- , N — 1. To see this, simply
notice that the graph formed by nodes other thaan have any edge formation and hence the number

of types of20N-1D(N=2)/2 " and that nodé needs to seleat: out of the othe N — 1) nodes in order
to have|N; (k)| = (m + 1).

Therefore,
E[vi(k)|z (k)]
= 3" [ilk)[a(k), G(R)PYG (k)]
G(k)
- Ly [Tt )
”c%l (u)vz-(kn (h), G(k) )
1 €T; k
= 22w (1), G(1)] +
1y | Biemmzi i) | 1
" Gk [ |N; (k)| (k), G(F)
Now first note that 0 o "
S Nak), G| = 30 | ) )| 14
(%){INM)I (%) ”} mzo[mﬂ <>] (14)




Then note that in the summation

D e (k)i Ti(k)
2 [ NAGI

z(k), G(k)] : (15)

G(k)
each node # 7 will be countedm x 5 times for those neighborhood types such that N;(k) and
|N;(k)| = (m + 1), so it holds that

|Ni (k)|

16
2 m=0 m+1 N-1
Thus, we have
Elvi (k)| (k)] = evi(k) + Y co; (k). a7
J#i
where (N1)(N-2)/2 N-1
N-1)(N-2)/2 N— _
. 2 Z N —1 » 1 7
n o m m+1 (18)
o(N=1)(N=2)/2 N=1 /nr 4 m
“ n(N —1) mzzjl m ><m+1
This yields that, in view of[(11),
1
Efzi(k + 1)]z(k)] = ~ lcm(k) + e ij(k)] : (19)
l i
and hence
E[S(k + 1)] (k)]
N
= Y Elzi(k + 1)]e(k)]
i=1
1
= —|[c1S(k) 4+ co(N — 1)S(k)|x(k
7 S+l — 1Sl 0)
1 1 —~ (N -1
- ;2]\7_1 e m )(S(k)’w(k))
N
= 1Zﬂcz'(k)
i3
Therefore, the expected state sum at the next time is
E(S(k+1)) = E[E(S(k+1)x(k))]
21
) (21)
n
Sincen > 1, the above recursion converges to zero exponentially, @di¢cay exponent is
1. ESk) 1

Proof of Proposition & If 0 < n < 1, from Lemma[B, the system state sum will converge to the
absorbing states with probability 1. #f > 1, from Lemmal#, the system state will converge to zero
exponentially with probability 1.



IV. NUMERICAL RESULTS

Consider first a fixed one-dimensional 500-agent system.abeats are arranged along a circle and
each agent has two neighbors. The initial value of every taigearbitrarily assigned to be-1 or —1.
The simulation results demonstrate the phase transites,Fsigure il (a) and (b). In Figuté 1 (a), the
vertical axis represents the state sum of the system, antdheontal axis represents the simulation
steps. Figurgll (a) demonstrates that, when the noise Esech that /3 < n < 1, then all node values
converge to agreement of altls (or all —1s), that is, the state sum of the system is +500 (or -500).
In Figure[1 (b), the vertical axis represents the time awghe state sum, and the horizontal axis is
for the simulation steps. By ergodicity of the system, tineetiaverage should converge to the ensemble
average of the state sum. Figlide 1 (b) shows that, if the rieis is such thay > 1, then the nodes
reach disagreement in which about half of the node values-aseand the other half are1s.

500

15

400
10

200

State sum
Time average of the state sum

-200
0

. . . _ L . . .
10000 20000 30000 40000 0 2000 4000 6000 8000 10000
Time (steps) Time (steps)

(a) (b)

Fig. 1. Fixed graph simulation. (a) Noise level is 0.75, amel $ystem converges to agreement offalls. (b) Noise level is
2, and the system reaches disagreement in which about h#iedftates are-1s and the other half are 1s.

For the random graph process case, in our simulation we d@anisinomial random graphsin a
binomial random graph, each edge has a probability be formed at each time step and is independent
of all other edges and other times. This means that to genswah a binomial random graph, we only
need to generate at each step an adjacency matrix whosesentthe strictly upper triangular part are
independent and identically distributed. The initial \&alof every agent is randomly assigned to-be
or —1 according to an arbitrary distribution. The simulationulés are shown in Figurgl 2 (a) and (b),
and are similar to the fixed connected graph case, excepinthibe random graph case, an arbitrarily
small but positive noise level can lead to agreement.

We can also compute the decay exponentEff(k) from the numerical results. To obtain the
probability mean€ES (k) numerically, we can run many independent trials of the ramgoocess and
take the average of the state sums across the trials. SeeBdar the simulated decay exponents (with
different edge probability) and the theoretic decay exponént), which are almost identical.

Notice thatp does not play any role in the decay exponent. The rojeisfreflected in other quantities,
such as the stationary distribution. To see this, let usidens two-node binomial graph, i.&V = 2,
and compute the stationary distribution as well as the desgpnent directly based on the transition
probability matrix. Let us first order the state values(ad,+1), (+1,—1), (—1,—1), and(—1,+1).
Based on this ordering, the transition probability matgx i
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Fig. 2. Random graph process simulation. (a) Noise leveld8%) p = 0.1, and the system converges to agreement of all
—1s. (b) Noise level is 2p = 0.2, and the system reaches disagreement in which about halfeo$tates are-1s and the
other half are—1s.
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Fig. 3. The simulated decay exponents (averaged over 10r@¥pendent trials ang = 1.05) and the theoretic decay
exponent.
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and the stationary distribution is

- . B p+ 4qgb
t+ = - =
2 4(1 b
(p +2b( +q)b) (24)
= = T+ = p+4(1+q)b’
whereq := (1 — p), and
(n— 1) (m—1n+1) (n+1)°
= b = = . 25

Clearly, the edge probability influences the stationary distribution. Now assume that stage is
distributed according to distributiopy := (p++,p+—,p—+,p——_)", which has the expected state sum
as2(py+4+ — p——). Then the state at the next time is distributedfas py and the expected state sum
become(p,+ —p__)/n. Therefore, we have verified the dependence anthe stationary distribution
and the independence gnin the decay rate of the state sum.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed simple dynamical systems moaeibitng sharp phase transitions, and
presented complete, rigorous proofs of the phase transjtiwith thresholds found analytically. Our
analysis also provided a characterization of how infororafor noise) affects the collective behavior of
multi-agent systems, which gives an analytic explanatothe intuition that, to reach consensus, high
quality of communication is needed. These results hold fyrdimension; in contrast, phase transitions
in the well known Ising models do not occur for dimension oared for dimension three or higher,
Ising models are NP complete and intractable.

In particular, we have shown that for a fixed connected grdipthe noise level is greater than
(1-2/D) and less than, all the agents reach agreement, i.e. the state sum of thensy®nverges to
+N, the only absorbing states of the system. For noise levgétathanl, the group of agents fail to
reach any agreement; instead they reach “complete digagreéor disorder. Thus, a phase transition
occurs aty = 1. For random graph processes, the system reaches agreemeiribenoise level smaller
than(1—2/D). This is because randomization is immune to the artifactéo@al attractors) for smaller
noise which stops fixed graphs from reaching any agreemeaekkr, the tradeoff is that in random
graphs, the nodes’ neighbors may not be “geographicallgetjowhich might not hold true in some
practical situations.

Our study was concentrated on the leaderless case. The leaskeis when there is a leader with a
fixed value and it tries to convince all other agents to folitswalue. Simulation obtained in this case
suggested that a complete analysis is a bit involved edpeitiahe high noise regime, which is subject
to further research. Another direction could be to obtairuigable Lyapunov function for the models.
One advantage of doing so is that the Lyapunov function baggioach may be extended to rather
general nonlinear systems, as suggested by [18], [19]. TaApunov function is preferably a quadratic
one, leading to mean-squre stability, which is strongen th& mean stability obtained in this paper. The
applications of our approach and results are also subjdatuce research, including the extension of our
approach to more realistic models; note that our modelsignghaper are simple and not quite realistic,
though the simplicity helped us to completely charactettimephase transition. We will also explore the
connections of our model to relevant models, e.g. the Isindets, Hopfield networks, cellular automata,
other random graphs, etc. Finally, we remark that the agbread results developed in this paper may



be found useful to study more general dynamical systemsrucm®munication constraints, such as
cooperation with limited communication, complex systemghe presence of noise, etc. The study of
such problems would help establish insights on how infoimnator limited information) interacts with
system dynamics to generate various types of interestiatgsybehavior.

APPENDIX

We prove thatr(x) = n(—x) for any x in four steps.

Step 1: Establish a one-to-one mapping between2thegossible values (se€l(6)) that the state of
the system can take and integefs$, +-2,--- , +.J, such that if stater is mapped totj, then state-z
is mapped to—;. Now aggregate the states as follows. Liet= (j, —j) for anyj = 1,---,J. Then
we induce from the Markov proceds:(k)}7°, another Markov proces§z(k)}72,, where the latter
is defined on the induced state space consisting ofsalNote that it is straightforward to verify that
{zr}72, forms a Markov process on the induced state space, and thisoMarocess is ergodic.

Step 2: Denote the transition probability matrix for pracés(k)}7°, asp, and the corresponding
stationary distribution vector as := (7(1), 7(2), ..., 7(J))’. Then it holds thatr = p7. By ergodicity,
7 is non-zero and unique (i.e., the matfik— p) must be rank deficient).

Step 3: For the Markov procegs(k)}72,, denote the stationary distribution vectorras= (7}, m5)’,
whererr; = (w(+1), 7(+2),...,7(+J)) andmry = (7 (—1),7(-2),...,7(=J))". It can be verified that, by
the symmetry that the state transitibr+> j has the same probability as the state transitiet) — (—j),
the transition probability matrix has the following pattiar form:

A B
p::<BA>. (26)

Step 4: By ergodicity ofz(k)}2,, it holds that

T =pw (27)
or equivalently,
m = Am + Bmy 28)
my = Bm+ Ams.

However, it can be easily seen that= A + B. Notice that
T =Ty =T (29)

solves [(2B), i.e.;rg := (7,7')" solves [(2V) and is non-zero. By ergodicity, the non-zeratsm is
unique, and hence, must be the solution td (27), which follows thatj) = =(—j) for any j or
m(x) = w(—x) for any z.
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