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Abstract

A result (see, e.g., [3][complement BIII , page 217]) of
quantum electrodynamics (based on Glauber theorem) says
that classical currents and sources only generate classical
light (quasi-classical states of the field). This paper pro-
vides a control theoretic interpretation of this result when
the classical currents and sources are considered as con-
trol inputs: the dynamics of the quantified electrodynam-
ics field is not controllable; the controllable part is con-
tained into the classical dynamics. This result can be seen
as the infinite dimensional analogue of the following fact
(see [8]): the controllable part of the quantum harmonic
oscillator corresponds to the classical dynamics of the av-
erage ¨〈q〉 = −〈q〉+ u (u is the control input). Thus con-
trollability can only be achieved when the field dynamics
is coupled to some localized quantum dynamics. We de-
scribe here two typical models of such controlled systems:
the Jaynes-Cummings model [6] (one field mode coupled to
a two-level atom) and trapped ions vibrational model. Both
systems correspond to experiments conducted by physi-
cists. We recall their main approximations and validity
domains. We also provide their associated formulation in
terms of PDE with control.

1. Introduction

The interaction of photons and atoms is nowadays one
of the most important topics of interest in the domain of
quantum optics. Finding a reasonable and at the same time
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simple model as well as manipulating the model are the
fundamental questions for physicists. Although a lot of ad-
vances has been made in this aria (see e.g. [4] and the ref-
erences herein) still remains a lot to be done especially for
manipulating the systems (even very simple ones). We be-
lieve that a control point of view in this domain might be
helpful for such questions (see also [7] and the references
herein).

The main contribution of this paper is to study a sim-
ple model of electrodynamics in a cavity corresponding to
a quantized electromagnetic field in an empty cavity where
the system is controlled through a classical localized cur-
rent source in the domain. This model has already been
solved by physicists (see e.g. [3]) but however an under-
standing of the problem by the mean of control tools can be
of some interest especially when more complicated models
are to be taken into account. Another contribution of the
paper is to present two typical systems underlying experi-
ments conducted by physicists: control of vibrational states
of trapped ions via a laser resonant with an electronic tran-
sition; control of a two-level system in an optical cavity of
high quality via a resonant laser. For both systems we ex-
plain the basic modeling assumptions underlying the rotat-
ing wave approximation and provide a formulation in terms
of partial differential equations. This completes [2] where,
for the trapped ions system, a first order system in terms of
the Lamb-Dicke parameter is discussed.

Section 2 is based on [8] where the controllability of har-
monic oscillators is considered. We propose here a sightly
different formulation with the use of the Heisenberg pic-
ture, unitary transformations due to Glauber and annihila-
tion and creation operators.

Section 3 is devoted to the main goal of this paper. We
adapt the formulation developed in section 2 in order to



treat the more complicated model of an electromagnetic
field in an empty cavity where the control source is as-
sumed to be classical. We provide here a control theo-
retic interpretation of a classical result saying that classical
currents and sources only generate classical light (quasi-
classical states of the field) (see, e.g., [3][complement BIII ,
page 217])

In order to overcome the lack of controllability of the
quantum degrees of freedom, one should add to the sys-
tem some quantum sources. A first idea in this direction is
to couple the system with a localized quantum dynamics.
Jaynes-Cummings model [6] and the vibrational model for
trapped ions [5] are two fundamental physical models of
this kind. We introduce these models in Sections 4 and 5
and recall the main approximations and the domains of va-
lidity of these models. Finally, we give the PDE equivalent
form of these systems and present the controllability prob-
lems which arise for these systems.

2. Harmonic oscillators

Consider a single classical harmonic oscillator (reduced
frequency ω = 1):

ẍ = −(x−u) (1)

where x ∈ R is the state of the system and u ∈ R the one
dimensional control term. One can easily see that such a
system is controllable. This equation might be written as

ẋ = p

ṗ = −(x−u) (2)

where p is the momentum of the system. Let us introduce
the complex variable α = 1√

2
(x + ι p) where ι =

√
−1. So

the equation of above will be reduced to:

ια̇ = α − 1√
2

u. (3)

The quantification of such a classical using system consists
in replacing the normal variables α and α∗ (the complex
conjugate of α) by the well-known annihilation and cre-
ation operators a and a† with commutator equal to 1:

[a,a†] = 1.

All the physical quantities, which can be expressed as a
function of x and p and so of α and α∗, become opera-
tors acting in the space of the quantum states of the global
system.

We can quantify system (2) with the following kinetic
and potential energies:

T =
1
2

ẋ2 =
1
2

p2

U =
1
2
(x2 −2u x)

and so the respective Hamiltonian is:

H =
1
2

p2 +
1
2
(x2 −2u x)

Replacing x by the position operator X = a+a†√
2

and p by the

momentum operator P = ι ∂
∂x = a−a†

ι
√

2
, we obtain the follow-

ing Hamiltonian for the quantum system:

H = −1
2

∂ 2

∂x2 +
1
2
(x2 −2u x) = (a†a+

1
2
)− 1√

2
u (a+a†)

(4)
The evolution of the quantum system is thus given by a
bilinear controlled Schrödinger equation (h̄ = 1):

ιΨ̇ = (H0 +u H1)Ψ, (5)

where H0 = (a†a + 1
2 ) the free evolution Hamiltonian and

H1 = − 1√
2

(a + a†) the interaction operator are Hermi-
tian operators. The state Ψ can be seen as an element of
L2(R,C).

In [8], it is proved that (4) is not controllable: its con-
trollable part corresponds to the average dynamics:

ι
d
dt

〈a〉 = 〈a〉− 1√
2

u, (6)

where 〈a〉= 〈Ψ,aΨ〉 denotes the average value of the phys-
ical observable a. We propose here bellow another formu-
lation of the proof of this result.

Following [9], let us compute the Lie algebra generated
by ıH0 and ıH1, using the standard commutation relation:
[a,a†] = 1. We have [a†a,a + a†] = a† −a, [a†a,a† −a] =
a + a† and [a† + a,a† − a] = 2. Thus this Lie algebra is of
dimension 4 and the system is not controllable in a formal
sense.

The purpose of this section is to show that it is possible
to apply a time-dependent unitary transformation (corre-
sponding to a controllable translation in the average sys-
tem), such that in the new representation the dynamics rep-
resent a non-controllable Schrödinger equation modelling
the quantum fluctuations around the average system.

Consider the unitary operator:

T (t) = exp
[〈

a†〉a−〈a〉a†] . (7)

The action of such a unitary transformation on the operator
a is a translation by the quantity 〈a〉 (Glauber theorem):

T (t) a T †(t) = a+ 〈a〉
T (t) a† T †(t) = a† +

〈

a†〉 (8)

Taking Φ = T (t) Ψ the system in the new representation



might be written as:

ι
d
dt

Φ =
(

T (a†a+
1
2
)T † − 1√

2
u T (a+a†)T †

)

Φ+

(

ι
dT
dt

)

T † Φ

=

[

(a† +
〈

a†
〉

)(a+ 〈a〉)+
1
2

]

Φ− u√
2
(a† +a+

〈

a†
〉

+ 〈a〉)Φ

+

[

(−
〈

a†
〉

+
u√
2
)a− (〈a〉− u√

2
)a†

]

Φ

=

[

a†a+
1
2

]

Φ+

[

〈a〉
〈

a†
〉

− u√
2
(〈a〉+

〈

a†
〉

)

]

Φ

Finally taking χ = S(t) Φ where

S(t) = exp ι
∫ t

[

〈a〉
〈

a†〉− u√
2
(〈a〉+

〈

a†〉)

]

dt

is just a global phase change and so a unitary trans-
formation, we obtain the following control independent
Schrödinger equation:

ι χ̇ =

[

a†a+
1
2

]

χ. (9)

The dynamics of Ψ(t,x) can be decomposed into two parts,
a controllable one of dimension two (6), an uncontrollable
one of infinite dimension (9) corresponding to the quantum
fluctuations around the average dynamics.

These computations might be extended to n harmonic
oscillators admitting the same control u but with different
frequencies (see [8] for more details).

3. Quantum electromagnetic fields with clas-
sical control sources

In this section we apply the above formulation to a more
complicated physical system: a quantum electromagnetic
fields in a cavity Ω ⊂ R

3 related by classical sources. We
assume that the sources have an externally imposed motion:
the currents j are not affected by their radiation. In addi-
tion we suppose that the sources are macroscopic so that
the quantum fluctuation of the currents around their mean
value are negligible. These assumptions allow us to ap-
proximate the quantum currents j(r) by well-defined func-
tions of r and t, j(r, t) (r ∈ R

3 is the spatial variable). This
section is directly inspired from the complement BIII of [3].

A quantum electromagnetic field can be modelled by a
set of so-called annihilation operators an. Each an corre-
sponds to the n’th classical mode of the electromagnetic
field, ωn being the associated frequency. One postulates
the following commutation relations:

[an,ak] = [a†
n,a

†
k ] = 0

[an,a
†
k ] = δnk

The δnk indicates that the operators of two different modes
commute.

The evolution of the fields in the Heisenberg picture is
then given by:

ȧn + ιωnan = jn (10)

where

jn =
ι√
2
〈∂ j

∂ t
,φn〉L2(Ω)

φn(r) being the mode n of the operator −4 in the com-
pact smooth domain Ω with Dirichlet’s boundary condi-
tions. The Hamiltonian of the system is then given by:

H = ∑
n

ωn (a†
nan +

1
2
)− jn(an +a†

n) (11)

Formally, the state Ψ belongs to a state-space made of an
infinite tensor product of L2(R,C),

⊗

n L2(R,C). The sys-
tem’s evolution is thus given by the following bilinear con-
trolled schrödinger equation:

ιΨ̇ = HΨ.

Using classical Ehrenfest theroem (or equations (10)), we
have the following dynamics for the mean value of the
fields:

d
dt
〈an +a†

n〉 =
ωn

ι
〈an −a†

n〉
d
dt
〈an −a†

n〉 =
ωn

ι
〈an +a†

n〉−2
jn
ι

(12)

These dynamics correspond to the classical evolution of the
mean value of the electric and magnetic fields. Since −ω2

n
being the n’th eigenvalue of the operator −4 in Ω with
Dirichlet’s boundary conditions, the equations (12) is the
projection on mode n of the following wave equation:

Ë = 4E −
√

2
∂
∂ t

j in (0,T )×Ω (13)

with null boundary conditions. In fact the standard model
for a classical electromagnetic field in a bounded domain
with perfect conductor boundaries is given by the following
Maxwell equations (a simple computation shows that these
equations lead to (13)):

∇ ·E(r, t) = 0
∇ ·B(r, t) = 0

∇×E(r, t) = − ∂
∂ t

B(r, t)

∇×B(r, t) =
∂
∂ t

E(r, t)+
√

2 j (14)

Controllability of the classical system (13) where the con-
trol term appears in a localized current source j, has already
been studied (see e.g. [1, 10] and the references herein).



We will show that the quantized dynamics of (13) (the
control j remains classical) is not controllable: one cannot
control the quantum fluctuation of the electrodynamic field
with a classical control.

Consider the following unitary transformation on
⊗

n L2(R,C):
T =

⊗

n
Tn (15)

where
Tn = exp

[〈

a†
n
〉

an −〈an〉a†
n
]

.

We have (Glauber theorem):

TnanT †
n = an + 〈an〉

TkanT †
k = an for k 6= n

Taking Φ = T (t)Ψ, just as in the Section 2, we have:

ιΦ̇ =

[

∑
n

ωn (a†
nan +

1
2
)

]

Φ

+

[

∑
n

ωn 〈an〉
〈

a†
n
〉

− jn(〈an〉+
〈

a†
n
〉

)

]

Φ

and then taking χ = S(t) Φ where

S(t) = exp
(

ι
∫ t

[

∑
n

ωn 〈an〉
〈

a†
n
〉

− jn (〈an〉+
〈

a†
n
〉

)

]

dt
)

is just a global phase change and so a unitary trans-
formation, we obtain the following control independent
Schrödinger equation:

ι χ̇ =

[

∑
n

ωn (a†
nan +

1
2
)

]

χ. (16)

The observable corresponding to the electro-magnetic field
is thus the sum of two contributions: its average value de-
scribed by (13) those controllability is relevant of the sharp
sufficient conditions given in [1], and the vacuum fluctu-
ations described by (16) and that are not controllable be-
cause their dynamics are completely independent of the
control.

4. Jaynes-Cummings model with control

As we have seen, we cannot control the quantum fluc-
tuations of an electrodynamic field in a cavity via classical
currents. It is thus necessary to add inside the cavity a local-
ized quantum dynamics coupled to the field. The Jaynes-
Cummings model is one of the simplest models describing
the coupling of a two-level system with an electrodynamic
cavity: the Bohr frequency ωb is close to an isolated cavity
mode of frequency ωc (|ωb −ωc| � ωb). The state-space
of the system is made of the tensor product of the infinite

dimensional state-space of a harmonic oscillator, L2(R,C),
and of the two-dimensional state-space of the atom, C

2.
Such a state-space is equivalent to L2(R,C)× L2(R,C).
Let us note by Ψ = (Ψg,Ψe) ∈ L2(R,C)× L2(R,C) the
state of the system: Ψ = Ψg |g〉+ Ψe |e〉 where |g〉 and |e〉
are respectively the ground state and the excited state of
the system. If we still assume that we have at our dis-
posal a classical control u (classical current or coherent
laser light) and when we consider only the isolated reso-
nant cavity mode (ωc ≈ ωb), then the cavity Hamiltonian
may be written as

Hc = ωca†a−u(a+a†).

The internal Hamiltonian of the atom is given by:

Ha =
ωb

2
(|e〉〈e|− |g〉〈g|) =

ωb

2
σz

where σx, σy and σz are the so-called Pauli matrices. Fi-
nally the interaction Hamiltonian between the atom and the
cavity is given by:

Hint =
Ω
2

(a+a†)(|e〉〈g|+ |g〉〈e|) =
Ω
2

(a+a†)σx

where Ω is the vacuum Rabi frequency (Ω � ωc,ωb). The
system Hamiltonian is the sum of all these Hamiltonians:
Hc +Ha +Hint . So a first simplification consists in consid-
ering the system in the rotating wave approximation (inter-
action frame). We set

Ψ = exp
(

−ıωbta†a
)

exp
(

−ı
ωb

2
tσz

)

Φ.

A simple computation shows that

exp
(

ıωbta†a
)

a exp
(

−ıωbta†a
)

= e−ıωbta

exp
(

ı
ωb

2
tσz

)

σx exp
(

−ı
ωb

2
tσz

)

= e−ıωbt |g〉〈e|+ eıωbt |e〉〈g|

where we have used the fact that the operators a†a and aa†

commute. These relation yields to a new formulation for
the system’s Hamiltonian given by

H =(ωc −ωb)a†a−u(e−ıωbta+ eıωbta†)

+
Ω
2

(e−ıωbta+ eıωbta†)(e−ıωbt |g〉〈e|+ eıωbt |e〉〈g|).

Finally, setting u = ve−ıωbt +v∗eıωbt with v a slowly varying
complex amplitude (new control v ∈ C), we get neglecting
oscillating terms e±2ıωbt , the controlled Jaynes-Cummings
Hamiltonian (in the interaction representation)

HJC =(ωc−ωb)a†a+
Ω
2

(a |e〉〈g|+a† |g〉〈e|)−(va† +v∗a)



where ωc −ωb has the same magnitude as Ω. Assume now
that ωc = ωb. We get in PDE language and up to a scaling,
the bellowing system:

ı
∂ψg

∂ t
=

(

v1x+ ıv2
∂
∂x

)

ψg +

(

x+
∂
∂x

)

ψe

ı
∂ψe

∂ t
=

(

x− ∂
∂x

)

ψg +

(

v1x+ ıv2
∂
∂x

)

ψe

where v = v1 + ıv2 ∈C is the control. A unitary transforma-
tion similar to the one used in Section 2 yields to another
version of this control problem. In this aim, we consider
w ∈ C so that it verifies ı d

dt w = −v and we take the unitary
transformation T (t) = exp

[

w∗a−wa†
]

. Transforming the
system by this unitary transformation and up to a global
phase change, we obtain the new version:

H̃JC =
Ω
2

[

(a+w) |e〉〈g|+(a† +w∗) |g〉〈e|
]

where w ∈ C is the new control corresponding to the inte-
gral of the physical control v.

In PDE configuration and up to an appropriate scaling,
the system’s evolution may be written as follows:

ı
∂Ψg

∂ t
=

(

x+w1 +
∂
∂x

+ ıw2

)

Ψe

ı
∂Ψe

∂ t
=

(

x+w1 −
∂
∂x

− ıw2

)

Ψg

where w = w1 + ıw2 ∈ C is the control (time integral of the
physical control v the amplitude and phase modulation).

The Jaynes-Cummings system is equivalent to

ı
d
dt

Ψ = (H0 +w1H1 +w2H2)Ψ

with

H0 = Xσx −Pσy, H1 = σx, H2 = σy

and

X =
a+a†
√

2
, P =

a−a†

ı
√

2
.

The Lie algebra spanned by ıH0, ıH1 and ıH2 is infinite
dimensional now. But one can prove that the linear tan-
gent approximation around any eigen-state of H0 +w1H1 +
w2H2 for any control value w1 and w2 is not controllable.
The controllability of such a system seems to be an inter-
esting problem both from the mathematical and practical
points of view.

5. Laser control of trapped ions

We refer to [5] for a very nice presentation of such sys-
tem. Its Hamiltonian is quite similar to the one presented

for the Jaynes-Cummings model:

H =Ω(a†a+1/2)+
ωb

2
(|e〉〈e|− |g〉〈g|)

+
[

ueı(ωt−kX) +u∗e−ı(ωt−kX)
]

(|e〉〈g|+ |g〉〈e|)

with kX = η(a+a†) and where η � 1 is the Lamb-Dicke
parameter. Here the control u ∈C consists in the amplitude
and phase modulations of the laser of frequency ω that is
quasi-resonant via the internal dynamics ωb: ω ≈ ωb. The
vibration frequency Ω is much smaller than ω and corre-
sponds to a harmonic potential within which the ions are
trapped: Ω � ω ≈ ωb.

Assuming ω = ωb and setting Ψ = exp(−ıωtσz/2)Φ,
the Hamiltonian becomes:

H = Ω(a†a+1/2)+
[

ueı(ωt−η(a+a†)) +u∗e−ı(ωt−η(a+a†))
]

(

e−ıωt |g〉〈e|+ eıωt |e〉〈g|
)

Finally using the rotating wave approximation and neglect-
ing highly oscillating terms of the form e±2ιωt , we obtain
the following averaged Hamiltonian:

H̃ = Ω(a†a+1/2)+ue−ıη(a+a†) |g〉〈e|+u∗eıη(a+a†) |e〉〈g| .

This Hamiltonian in a PDE configuration corresponds to
the following evolution equation (η 7→ η

√
2):

ı
∂ψg

∂ t
=

Ω
2

(

x2 − ∂ 2

∂x2

)

ψg +ue−ıηxψe

ı
∂ψe

∂ t
= u∗eıηxψg +

Ω
2

(

x2 − ∂ 2

∂x2

)

ψe

where u ∈ C is the control and η � 1. Controllability of
this system is another interesting problem to be treated, as
it has already been mentioned in [2], where eıηx is approx-
imated by 1+ ıηx.

6. Discussions and Conclusion

As we have seen, we cannot control the quantum fluc-
tuations of an electrodynamic field in a cavity via classical
currents. It is thus necessary to add inside the cavity a local-
ized quantum dynamics coupled to the field. The Jaynes-
Cummings and trapped ions model are some typical mod-
els where quantum dynamics are coupled to a quantized
electrodynamic field. Such systems show more interesting
controllability properties than a quantized electrodynamic
field alone. The exact controllability or even the approxi-
mate controllability of such systems are questions that are
motivated by physical interest and also that seem to be chal-
lenging from the mathematical point of view.
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