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Abstract

In this paper it is considered a class of infinite-dimensional control

systems in a variational setting. By using a Faedo-Galerkin method, a

sequence of approximating finite dimensional controlled differential equa-

tions is defined. On each of these systems a variable structure control

is applied to constrain the motion on a specified surface. Under some

growth assumptions the convergence of these approximations to an ideal

sliding state for the infinite-dimensional system is shown. Results are

then applied to the Neumann boundary control of a parabolic evolution

equation.

1 Introduction

Variable structure control methods and in particular sliding mode controls, are
by now recognised as classical tools for the regulation of systems governed by
ordinary differential equations in a finite dimensional setting. For an overview
of the finite-dimensional theory see [15].

While being easy to design, they possess attractive properties of robustness
and insensitivity with respect to disturbances and unmodelled dynamics. These
characteristics are all the more important when dealing with infinite-dimensional
systems. In many control applications such as heat transfer processes, chemi-
cal processes, flexible manipulators the state evolution is governed by a partial
differential equation. The complexity of these plants results in models hav-
ing significant degrees of uncertainty. Thus motivated, recent research has been
devoted to the extension of sliding mode control and therefore the use of discon-
tinuous feedback laws, to the infinite-dimensional setting. While earlier works
[9, 10, 12] were confined to some special classes of systems, at present both
theory and application of sliding mode control have been extended to a rather
general setting [13, 11, 14, 4, 3, 5]. In particular in [13] the key concept of equiv-
alent control is introduced in a general Hilbert space framework for evolution
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equations governed by unbounded linear operators that generate C0-semigroups.
Also it is shown that, under some stability assumptions, the ideal sliding can be
uniformly approximated by “real” motions evolving in a boundary layer of the
sliding manifold, thus ensuring the validity of the method for application pur-
poses. The relationship between the equivalent control method and generalised
solutions of infinite-dimensional systems with discontinuous right-hand side is
presented in [4, 3].

All the results in the above cited literature only take into consideration dis-
tributed control systems, i.e. they deal with bounded input operators. In this
paper we make a first attempt to consider the extension of sliding modes to a
class of boundary control problems in a general setting. To the author’s knowl-
edge there exist only a few results in this direction in the linear case [1, 2],
where by application of integral transformations the problem is reduced to the
control of a finite-dimensional differential-difference equation. Our approach
goes instead in the direction of [16]. In Section 2 we define the general abstract
variational framework in which we set up our control problem. In particular,
the main assumptions we make on the operator governing the evolution, are
weak continuity and coerciveness, so that both linear and non-linear opera-
tors are comprised in this setting. In Section 3 we present our main result:
a Faedo-Galerkin method is used to construct a sequence of finite-dimensional
approximations of the given problem. On each of these the standard variable
structure control theory of [15] can be applied. We then assume that for each
approximation a control law is chosen to constrain the evolution in a boundary
layer of a given sliding manifold and study the limit as the dimensions diverge.
We show that, under some growth assumption on the norm of these controls, a
limit motion exists, which satisfies the sliding condition. Then, in Section 4 we
apply the obtained results to the Neumann boundary control of a heat equation.

2 Abstract setting and problem statement

In this paper we are going to consider a class of parabolic partial differential
equations with controllers acting on the boundary. In particular we will study
the case of Neumann boundary conditions and finite dimensional control space.
Also, we suppose that a manifold S is given, on which we want to restrict the
motion of our system. We then analyse the problem of the existence of an
admissible control law for which this ideal sliding motion is possible.

Example 2.1 Before going into the details of the precise abstract setting of the
problem, we show an example of application to give an idea of the family of
systems we intend to study.

Let Ω be a bounded, open subset of IRn with smooth boundary Γ, T > 0 and
∆ be the laplacian differential operator on IRn. Consider the following evolution
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equation

∂Q
∂t (t, x) = ∆Q(t, x) + q(x)Q(t, x) t ∈ (0, T ), x ∈ Ω
∂Q
∂ν (t, σ) = u(t)g(σ) t ∈ (0, T ), σ ∈ Γ
Q(0, x) = Q0(x) x ∈ Ω.

(1)

Here Q : [0, T ] × Ω → IR represents the evolution of the “state vector”, u :
[0, T ] → IR is a scalar control law, g : Γ → IR and q : IRn → IR is bounded.
This equation represents a model of heat conduction with both diffusion and heat
generation (if q is nonnegative). Now for γ : Ω → IR we can define (informally)
a sliding surface S as the set of functions f : Ω → IR such that

∫

Ω

f(x)γ(x) dx = 0

In this case a sliding motion Q(t, x) on S would satisfy

∫

Ω

Q(t, x)γ(x) dx = 0, t > 0

2.1 Variational formulation

The setting of the abstract problem follows [6, 7, 8]: let V be a separable,
reflexive Banach space, H be a Hilbert space, V ⊂ H with continuous injection.
The space H is identified with its dual, while we denote by V ′ the dual space
of V , so that we have

V ⊂ H ⊂ V ′.

For u1, u2 ∈ H the scalar product in H will be denoted by (u1, u2) and the
derived norm by |ui|. We will denote by ‖ · ‖ the norm in V and by ‖ · ‖∗ that
in V ′. The dual pairing between the two spaces will be written as 〈·, ·〉. Also,
we will assume that on V it is defined a semi-norm [·] such that

[v] + λ|v| ≥ β‖v‖, ∀v ∈ V, for some λ, β > 0. (2)

It is assumed that all the above (infinite-dimensional) spaces are real vector
spaces; results can be extended to the complex case with the necessary mod-
ifications. For any T > 0 we can define the following spaces of vector-valued
functions:

L2(0, T ;V ) = {f : [0, T ] → V :

∫ T

0

‖f(t)‖2dt < +∞}

L∞(0, T ;H) = {f : [0, T ] → H : sup
t∈[0,T ]

|f(t)| < +∞}.

The space L2(0, T ;V ′) can be defined analogously. Also, it is possible to define
on these spaces a concept of derivative, in a distributional sense (see i. e. [7]
Chapter III). The following result [8] will be useful in the sequel.
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Theorem 2.1 Let

W (0, T ) =

{

f ∈ L2(0, T ;V ) :
df

dt
∈ L2(0, T ;V ′)

}

.

All functions in W (0, T ) are, after eventual modification on a null measure set,
continuous from [0, T ] in H, i.e. W (0, T ) ⊂ C0(0, T ;H).

For t ∈ (0, T ) let A(t) : V → V ′ be an operator satisfying the following assump-
tions:

• for all v, w ∈ V the map

t 7→ 〈A(t)v, w〉 is measurable; (3)

• for all t and any u, v, ω ∈ V the map

α 7→ 〈A(t)(u + αv), w〉 is continuous; (4)

• there exist constants c1 > 0, c2 ≥ 0 such that

‖A(t)v‖∗ ≤ c1‖v‖+ c2, ∀v ∈ V ; (5)

• there exist constants α > 0 and ν ∈ IR such that

〈A(t)v, v〉 ≥ α[v]2 + ν |v|2∀v ∈ V. (6)

• A(·) is 2-weakly continuous, i.e.

vk → v weakly in W (0, T ) =⇒
A(·)vk(·) → A(·)v(·) weakly in L2(0, T ;V ′). (7)

Let U ⊂ IRm be closed and convex and let f : [0, T ] × U → V ′ satisfy the
following condition: there exists a constant C > 0 such that for any u : [0, T ] →
U , u ∈ L2(0, T )

∫ T

0

‖f(t, u(t))‖2∗ ≤ C‖u‖22, (8)

where ‖u‖2 is the usual L2-norm (it will always be understood that control laws
u take values in U , so that we will write u ∈ L2(0, T ) instead of L2(0, T ;U)).

We are now ready to write the abstract evolution equation we are going to
study. The evolution of the system will be given by a vector-valued function
y ∈ W (0, T ) satisfying the following abstract Cauchy problem

{

dy
dt +A(t)y(t) = f(t, u(t)) q.o. t
y(0) = y0,

(9)
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with u ∈ L2(0, T ) and for some y0 ∈ H (by Theorem 2.1 this makes sense). The
differential equation above as to be understood as an equality in the dual space
V ′, i.e. setting

a(t; v, w) = 〈A(t)v, w〉, t > 0, v, w,∈ V (10)

and in view of Theorem 2.1, the differential problem (9) is equivalent to the
following variational formulation

{

d
dt (y(t), v) + a(t; y(t), v) = 〈f(t, u(t)), v〉 ∀v ∈ V,
y(0) = y0

(11)

Existence and uniqueness results of the solution of such equations, under our
assumptions, can be found in [6] under monotonicity assumptions and in [7, 8]
for the linear case.

Example 2.2 Let us see how Example 2.1 fits into this framework. Let H =
L2(Ω) and

V = H1(Ω) =

{

f ∈ H :
∂f

∂xi

∈ H i = 1, . . . , n

}

.

On V we set [v]2 = |∇v|2 and ‖v‖2 = [v]2 + |v|2. Let v ∈ V be arbitrary; by
scalar multiplication and using Green’s formula one finds that the solution Q of
(1) has to satisfy

d

dt
(Q(t, ·), v) =

∫

Ω

∆Q(t, x)v(x) dx + (q Q(t, ·), v)

= −
∫

Ω

∇xQ(t, v) · ∇v(x) dx

+

∫

Γ

u(t)g(σ) v(σ) dσ + (q Q(t, ·), v).

Therefore setting y0 = Q0 and y(t) = Q(t, ·) we get the (autonomous) variational
formulation of our abstract setting in the form (11) with

a(v, w) = (∇v,∇w) − (qv, w) (12)

and

〈f(t, u), v〉 =
∫

Γ

ug(σ) v(σ) dσ. (13)

Now (4) and (5) are easily verified and (6) follows from

a(v, v) = [v]2 − (qv, v) ≥ [v]2 − (sup
Ω

q) |v|2.

Also, the operator A defined as 〈Av,w〉 := a(v, w) is linear and bounded, there-
fore it is 2-weakly continuous and we have (7).

Moreover, on V the trace operator τ of restriction of a function to the bound-
ary of Ω is well defined [8]. The range of τ is the Banach space Z = H1/2(Γ)
and γ is continuous from V onto H1/2(Γ). Therefore f is well defined for any
g in the dual of H1/2(Γ), hence for example for all g ∈ L2(Γ) and obviously
satisfies (8) with C = ‖g‖L2(Γ) ‖τ‖L(V,Z).
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3 Main results

In this section we introduce the concept of sliding surface for the control problem
(11) and show how sliding motions can be defined in this context.

Assume we are working in the framework set up in Section 2. Thanks to
separability, there exists a countable basis for V , so that it is possible to define
a family {Vk}k∈IN of finite dimensional subspaces of V

Vk = span {v1,k, . . . , vNk,k}

such that
Vk ⊂ Vk+1,

⋃

k∈IN

Vk = V.

Then it is possible to define approximate solutions of (11) by projecting on the
subspaces Vk, using the standard Faedo-Galerkin method. We thus define the
following family of variational problems: find yk : [0, T ] → Vk such that

{

d
dt(yk(t), v) + a(t; yk(t), v) = 〈f(t, uk(t)), v〉 ∀v ∈ Vk,
yk(0) = y0,k

(14)

with y0,k ∈ Vk for all k and a sequence {uk} in L2(0, T ). Note that, since Vk

has dimension Nk, the above problem can be written as an ordinary differential
equation. In fact, since yk(t) ∈ Vk, there exists a vector ξk(t) ∈ IRNk such that

yk(t) =

NK
∑

i=1

(ξk(t))i vi,k.

The differential equation in (14) is satisfied for all v ∈ Vk iff it is valid for every
element of the basis of Vk. Therefore, if

y0,k =

NK
∑

i=1

(ξ0,k)i vi,k,

fk(t) = ( 〈f(t, uk(t)), vi,k〉 )i=1,...,Nk
,

and

Ak(t) = (a
(k)
ij (t))i,j=1,...,Nk

, akij(t) = a(t; vi,k, vj,k),

Mk = (m
(k)
ij (t))i,j=1,...,Nk

, mk
ij(t) = (vi,k, vj,k),

the differential problem (14) is equivalent to the following ordinary Cauchy
problem

{

Mk ξ̇k(t) + Ak ξk(t) = fk(t)
ξk(0) = ξ0,k.

(15)

We now prove a convergence result for the approximations yk, under some con-
ditions on the controls sequence {uk}.
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Theorem 3.1 Let the assumptions in Section 2 be satisfied and {uk} be a se-
quence in L2(0, T ). Let yk be the solution of (14) and suppose that y0,k → y0 in
H for k → +∞. Suppose moreover that the following condition on the growth
of the control norms is satisfied

‖uk‖2L2(0,t) ≤ M

∫ t

0

|yk(s)|2 ds+N, t ≤ T (16)

for some non-negative constants M and N and that f is the following weak
continuity assumption

uk → u∗ weakly in L2(0, T ) then

f(·, uk(·)) → f(·, u(·)) weakly in L2(0, T ;V ′) (17)

Then there exist a control law u∗ ∈ L2(0, T ) and a function y∗ ∈ W (0, T )
verifying (11), such that, for some subsequence,

yk → y∗ weakly in W (0, T )

yk → y∗ weakly* in L∞(0, T ;H)

uk → u∗ weakly in L2(0, T ).

Proof. Writing (14) for v = yk(t) we get

(ẏk(t), yk(t)) + a(t; yk(t), yk(t)) = 〈f(t, uk(t)), yk(t)〉.

As the first term on the left is in fact the time derivative of |yk(t)|2/2, integrating
the above identity we have

1

2
|yk(t)|2 +

∫ t

0

a(t; yk(s), yk(s)) ds =

1

2
|yk(0)|2 +

∫ t

0

〈f(t, uk(s)), yk(s)〉 ds.

By (6), (8) and (2) we obtain the following inequality

1

2
|yk(t)|2 + α

∫ t

0

[yk(s)]
2ds ≤

1

2
|yk(0)|2 − ν

∫ t

0

|yk(s)|2ds

+ c ‖uk‖2
(
∫ t

0

[yk(s)]
2 ds+

∫ t

0

[yk(s)]
2 ds

)1/2

for some constant c > 0. Consider now for x ≥ 0 the function h(x) = (αx)/2 −
c
√
x. It is easy to show that it has minimum for x = (c/α)2, therefore c

√
x ≤

7



(αx+ c2/α)/2, thus

1

2
|yk(t)|2 +

α

2

∫ t

0

[yk(s)]
2ds ≤

1

2
|yk(0)|2 +

(α

2
+ |v|

)

∫ t

0

|yk(s)|2ds+
c2

2α
‖uk‖22.

Now, since by hypothesis |y0,k − y0| tends to zero, the term |yk(0)|2 is bounded.
Moreover by (16)

|yk(t)|2 + α

∫ t

0

[yk(s)]
2ds ≤ c1 + c2

∫ t

0

|yk(s)|2 ds (18)

for some constants c1, c2 > 0. Since α > 0 we get

|yk(t)|2 ≤ c1 + c2

∫ t

0

|yk(s)|2 ds

Therefore, by Gronwall’s lemma we obtain for some constant K > 0

‖yk‖L∞(0,T ;H) = sup
t∈[0,T ]

|yk(t)| ≤ K (19)

therefore from (18) we also have

∫ T

0

[yk(s)]
2 ds ≤ const

and lastly, using (2) and (5)

‖yk‖L2(0,T ;V ) =

(

∫ T

0

‖yk(s)‖2 ds
)

≤ const,

∫ T

0

‖A(t)yk(t)‖∗ dt ≤ const.

Since spheres are weakly compact in both L2(0, T ;V ) and L2(0, T ;V ′), weakly*
compact in L∞(0, T ;H), we can extract a subsequence of {yk} (which for
simplicity we still denote by {yk}) converging to some y∗ ∈ L2(0, T ;V ) ∩
L∞(0, T ;H) for both the weak topology of L2(0, T ;V ) and the weak* topology
of L∞(0, T ;H) and such that Ayk weakly converges to some η in L2(0, T ;V ′).
By (16) we also have that ‖uk‖2 is bounded, thus eventually passing to a further
subsequence, there exists u∗ ∈ L2(0, T ) such that uk converges to u∗ weakly in
L2(0, T ). Also, by (17) we can proceed as in the proof of Theorem 1.1, p. 159
of [6] to conclude that

{

d
dty

∗(t) + η(t) = f(t, u∗(t))
y(0) = y0.

8



Also, by a standard argument (see i.e. [16], Theorem 3) one can prove that
ẏk → ẏ∗ weakly in L2(0, T ;V ′), i.e. yk → y∗ weakly in W (0, T ). Thus, by (7)
η(t) = A(t)y∗(t) and the proof is complete. �

Having achieved the above convergence result, we introduce as in [16], a set D
which can be either V or a sufficiently large open subset of H and a mapping
s : D → IRm continuously Fréchet differentiable on D. The sliding surface S we
consider is defined as S = {y ∈ D : s(y) = 0}. Proceeding as in [16], by slightly
modifying proofs, it is possible to prove the following

Corollary 3.1 Let the assumptions of Theorem 3.1 hold. Let zk(t) = s(yk(t))
and assume that one of the following is satisfied:

(1) D = V , s is affine and zk → 0 uniformly in t;

(2) BH(0,K) ⊂ D, V is compactly embedded in H (here BH denotes a ball
in H, while K is defined in (19) above) and zk(t) → 0 for almost every
t ∈ [0, T ].

Then the limit motion y∗ of Theorem 3.1 belongs to the sliding manifold S.

Remark 3.1 Note that by (15) every yk solves a finite-dimensional problem,
thus for the approximate solutions all results of the classical theory of variable
structure systems and sliding mode control of [15] are valid. Therefore existence
results for system motions satisfying the requirements in Corollary 3.1 and de-
sign methods to achieve them are available. See also the discussion of existence
under relaxed hypotheses developed in [16].

4 An application

In this Section we show an application of the obtained results on the control
problem introduced in Example 2.1. We have already proved (see Example 2.2)
that this partial differential equation with Neumann control fits in the abstract
setting of Section 2. It is also easy to prove that for f as in (13) the condition
(17) is satisfied. In fact, if uk → u weakly in L2(0, T ), for any ϕ ∈ L2(0, T ;V )
we have
∫ T

0

〈 [f(t, uk(t)) − f(t, u(t))] , ϕ(t) 〉 dt =
∫ T

0

[uk(t)− u(t)]

∫

Γ

g(σ)ϕ(t)(σ) dσ dt

which converges to zero since by Hölder’s inequality and continuity of the trace
operator on V

∫ T

0

(
∫

Γ

|g(σ)| |ϕ(t)(σ)| dσ
)2

dt ≤

‖g‖2L2(Γ)

∫ T

0

‖ϕ(t)‖2 dt < +∞.

9



We then set s : H → IR, s(x) = (x, γ) and S = kerS. For convenience
we suppose that the chosen bases of the subspaces Vk are orthonormal, so that
the matrix Mk in (15) is the identity (this is not restrictive since in the general
case Mk is symmetric, positive definite and a linear change of coordinates is
sufficient to reconduct this problem to the orthonormal one). Then, setting
gk = ( (g, τvi,k)L2(Γ) )i=1,...,Nk

, (15) can be rewritten as

{

ξ̇k(t) +Ak ξk(t) = uk(t)gk
ξk(0) = ξ0,k.

Then zk(t) = s(yk(t)) = (yk(t), γ) = γT
k ξk(t), with γk = ( (vi,k, γ) )i=1,...,Nk

. Let
V (t) = z2k(t)/2; then

V̇ (t) = zk(t) żk(t) = zk(t) [γ
T
k (−Akξk(t) + uk(t)gk) ].

By standard finite dimensional theory [15] a sliding mode exists on Sk = {x ∈
IRNk : γT

k x = 0} if γT
k gk 6= 0. Also, in this case, setting

uk(t) = −U(t)
sign (zk(t))

γT
k gk

with U(t) > |γT
k Akξk(t)| the sliding surface is globally attractive and reached

in finite time. Moreover, if δk > 0 and |s(yk(0))| < δk the control

uk(t) = − U(t)

γT
k gk

zk(t)

|zk(t)| + δk

constrains the motion of the system in a δk-boundary layer of Sk. Let us now
consider the term γT

k Akξk(t); since we assumed that the basis of Vk is orthonor-
mal, we have

γT
k Akξk(t) = a(yk(t), Pk γ),

where Pk : V → Vk is the projection on Vk. Likewise we have

γT
k gk =

∫

Γ

g(σ) (Pk γ)(σ) ds.

Thus, if for example γ ∈ V and

∫

Γ

g(σ) γ(σ) dσ 6= 0,

10



since Pk γ → γ in V , there exists K such that γT
k gk 6= 0 for all k ≥ K. In order

to apply Theorem 3.1 we also have to show that (16) holds. Recalling that

a(yk(t), Pk γ) = (∇yk(t),∇Pk γ)− (qyk(t), Pk γ)

we just have to show that, at least for suitable γ-s, the first term can be estimated
using |yk(t)|. Proceeding formally, by Green’s formula we have

(∇yk(t),∇Pk γ) = −(yk(t),∆(Pk γ))

+

∫

Γ

yk(t)(σ)
∂

∂ν
(Pk γ)(σ) dσ.

Thus (16) can be satisfied if sufficiently regular decompositions {Vk} of H1(Ω)
are chosen and if the function γ satisfies ∂

∂ν Pk γ = 0, at least on some subse-

quence. For example this is true if γ ∈ VN for some N and ∂
∂ν γ = 0.

Remark 4.1 In this paper we have chosen a variational setting for our problem,
by which we can encompass also some non-linear partial differential equations.
For the linear case, another common abstract setting involves semigroup the-
ory. In the above example our operator A : V → V ′ could be, in some sense,
substituted by A : D(A) ⊂ H → H, with

D(A) =

{

y ∈ H2(Ω) :
∂y

∂ν
= 0

}

, Ay = ∆y + qy.

Note that the last condition on γ above is related to “γ ∈ D(A∗)”, which is
frequently encountered in the literature on output control of infinite-dimensional
systems.

Remark 4.2 In many applications the function z(t) of the example represents
the system’s output. The modulus of the control law we have chosen depends on
the whole state norm, which could be unavailable for measurement. In [14] ob-
servers are designed to overcome this difficulty in the case of distributed control.
It would be interesting to study their application to this case also.

5 Conclusions and future work

In this paper we have analysed the convergence behaviour of finite dimensional
Faedo-Galerkin approximations of a class of variational problems, when sliding
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motions are taken into consideration. We have thus shown that, under some
growth hypothesis on the norms of the controls, a sliding motion exists.

This is a first attempt to extend variable structure control to boundary
control problems for infinite-dimensional systems and much work has still to
be done in this area. Apart from the need to extend these results to different
boundary control problems, it would be interesting to study how these results
are related to a notion of equivalent control, which has already by introduced in
the infinite-dimensional setting and to approximability of ideal sliding motions
by real ones.
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