
An Orthogonal Array Optimization for the Economic Dispatch
with Nonsmooth Cost Functions

Ying Cai, Student Member, IEEE, and Derong Liu, Fellow, IEEE

Abstract—This paper presents a new algorithm that applies
the Taguchi method to solve the economic dispatch problem
with nonsmooth cost functions. In our approach, we employ
the Taguchi method that involves the use of orthogonal arrays
in estimating the gradient of the cost function. The Taguchi
method has been widely used in experimental designs for
problems with multiple parameters where the optimization of
a cost function is required. The use of the Taguchi method
for the economic dispatch problem is a novel idea and it
leads to efficient algorithms that can find a satisfactory
solution by minimizing the cost function in a few iterations.
Simulation results show that the Taguchi method is insensitive
to initial values of parameters, and is more effective than other
previously developed algorithms. In addition, our algorithm is
suitable for parallel implementations.

I. INTRODUCTION

THE Taguchi method of experimental design has been

widely used in industry for purpose of finding factors

that are most important in achieving useful goals in a

manufacturing process [5], [6], [8], [14]. Several factors

which are related to the goals and are under the user’s

control are selected. The control over achieving the goals

will be best obtained by changes in these primary factors

in the direction indicated by the analysis. The present paper

applies the Taguchi method to solve the economic dispatch

(ED) problem with nonsmooth cost functions.

The ED problem is to determine the optimal combination

of power outputs of all generating units to minimize the total

fuel cost while satisfying the load demand and operational

constraints. Over the past few years, a number of approaches

have been developed for solving the ED problem using

lambda iteration method [1], quadratic programming [3],

and gradient method [10]. In these numerical methods for

solving the ED problem, an essential assumption is that

the incremental cost curves of the units are piecewise-

linear monotonically increasing functions. Unfortunately,

the input-output characteristics of modern power generating

units are inherently highly nonlinear because of valve-point

loadings, multi-fuel effects, etc. Furthermore, they may lead

to multiple local minimum points of the cost function. Clas-

sical dispatch algorithms require that these characteristics

be approximated, even though such approximations are not

desirable as they may lead to suboptimal operations and

hence huge revenue losses over time.

The authors are with the Department of Electrical and Computer
Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
{ycai,dliu}@ece.uic.edu

In order to make numerical methods more convenient for

solving the ED problem, artificial intelligence techniques,

such as the Hopfield neural networks, have been success-

fully employed to solve the ED problem as a nonsmooth

optimization problem [9], [12]. A global optimization tech-

nique known as the genetic algorithm (GA) has also been

successfully applied to solve the ED problem [17]. How-

ever, recent research has identified some deficiencies in GA

performance. The premature convergence of GA degrades

its performance and reduces its search capability that leads

to a higher probability toward a local minimum [4].

The goal of the present paper is to develop a method

with reduced complexity for solving the ED problem with

nonsmooth cost functions by employing the Taguchi method

based on orthogonal arrays. We believe that the present

work is the first systematic investigation into the Taguchi

experimental approach for the ED problem. Overall, the

present Taguchi algorithm will be shown to provide shorter

solution time and has better performance than many existing

algorithms including evolutionary programming [13], [15],

[19], Hopfield neural network [9], [12], hierarchical numer-

ical method [7], and particle swarm optimization [11].

II. PROBLEM STATEMENT

A. The Economic Dispatch Problem With Smooth Cost
Functions

To solve the standard economic dispatch (ED) problem,

consider the operation of a power system with N units,
each loaded to Pi MW, to satisfy a total load demand PD
(including total transmission losses PL).
The objective function for each unit can be represented

by a quadratic cost function given by

Fi(Pi) = ai+biPi+ ciP2i (1)

where ai, bi, and ci are the fuel consumption cost coeffi-
cients of unit i, and Pi represents the value of the power to
be determined for unit i.

B. The Economic Dispatch Problem With Nonsmooth Cost
Functions

In reality, the objective function of an ED problem has

nondifferentiable points according to valve-point effects and

change of fuels. Therefore, the objective function is com-

posed of a set of nonsmooth cost functions. In this paper,

two cases of nonsmooth cost functions are considered. One

is the case with the valve-point loading problem where the

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

MoIB18.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 1264



objective function is generally described as a superposition

of sinusoidal functions and quadratic functions. The other

is the case with multiple fuels where the objective function

is expressed as a piecewise quadratic cost function. In both

cases, the ED problem has multiple minimum points.

1) Nonsmooth cost functions with valve-point effects:

Typically, the fuel-cost function considering valve-point

loadings of a generating unit is given by

Fi(Pi) = ai+biPi+ ciP2i + |ei× sin( fi× (Pi,min−Pi))| (2)
where ai, bi, and ci are the fuel consumption cost coef-
ficients of the ith unit, and ei and fi are the fuel cost
coefficients of the ith unit with valve-point effects.
2) Nonsmooth cost functions with multiple fuels: Gener-

ally, a piecewise quadratic function is used to represent the

input-output curve of a generator with multiple fuels [11].

The piecewise quadratic function is given by

Fi(Pi)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ai,1+bi,1Pi+ ci,1P2i , if Pi,min ≤ Pi < Pi,1
ai,2+bi,2Pi+ ci,2P2i , if Pi,1 ≤ Pi < Pi,2

...
...

ai,n+bi,nPi+ ci,nP2i , if Pi,n−1≤Pi≤Pi,max
(3)

where ai, j, bi, j, and ci, j are the cost coefficients of generator
i for the fuel type j. Both cases of nonsmooth cost functions
for the ED problem will be considered in the present paper.

The ED problem minimizes the total cost given by

J =
N

∑
i=1
Fi(Pi). (4)

The goal is to determine Pi, i= 1,2, · · · ,N, so that the cost
function in (4) is minimized subject to the following two

constraints.

(1) The sum of all Pi should be equal to the total load
demand plus total transmission loss, i.e.,

N

∑
i=1
Pi = PD+PL. (5)

Without loss of generality, the transmission loss is

not considered in this paper for simplicity (i.e., we

can assume that PL = 0) [11].
(2) The operational constraints for unit i is given by

Pi,min ≤ Pi ≤ Pi,max (6)

where Pi,min and Pi,max are the minimum and maxi-
mum power generation of unit i.

III. INTRODUCTION TO THE TAGUCHI METHOD

Suppose that an experimental outcome J is a cost function
of several variables, p1, p2, · · · , pm, whose values can be
controlled. We write J = J(p1, p2, · · · , pm). The controlled
variables pk, k= 1, · · · ,m, are called factors. The goal is to
find the optimal values p̂k, k = 1, · · · ,m, to minimize the
cost function J. This can be done by varying the factors

TABLE I

INITIAL VALUES OF THE FOUR FACTORS

Factor level 1 level 2 level 3

p1 0.3 0.5 0.8
p2 0.3 0.5 0.8
p3 0.3 0.5 0.8
p4 0.3 0.5 0.8

simultaneously in a disciplined manner and recording the

corresponding values of J until we get the optimal p̂k, k=
1, · · · ,m. The Taguchi method involves a disciplined method
of varying two or more factors simultaneously.

We illustrate next an example of design optimization in-

volving four factors. The four factors are denoted by p1, p2,
p3, and p4, and Table I gives the three initial values (which
are called levels) for each of the four factors. Generally

speaking, these initial values are selected randomly in an

ascending order; that is, level 1< level 2< level 3.

We will use the orthogonal array shown in Table II for

purpose of demonstration. In the present example, each

factor has three different levels and they are denoted by

p(1)k = 0.3, p(2)k = 0.5, and p(3)k = 0.8, for k = 1, · · · ,4. If
we use the full factorial method to discover the optimal

combination of these factors, we need to conduct 34 =
81 tests, whereas the orthogonal array L9(34) in Table II
allows us to set up experiments with only nine tests. The

orthogonal array in Table 2 is in the form of LM(qm), where
q is the number of levels each factor has, m is the maximum
number of factors the table can handle, and M is the total
number of tests required using this table. In general, M is
much smaller than the value of qm which is the total number
of combinations for m factors with each having q levels
(choices). A cycle in the present Taguchi method is defined

as a complete set of tests according to the orthogonal array,

consisting of a total of M tests. In an orthogonal array (e.g.,
Table II), the numbers under each factor in a test indicate

the level of that factor to be used in the tests. For example,

in test number 4, we would use p(2)1 –level 2 of p1, p
(1)
2 –level

1 of p2, p
(2)
3 –level 2 of p3, and p

(3)
4 –level 3 of p4.

Using the orthogonal array L9(34), each cycle consists of
nine individual tests. After each cycle of tests, a minimum

cost can be found. While this cost may not be the optimal

cost, more cycles of tests are needed until the minimum

cost of each cycle converges.

In the present example with four factors, after each cycle

of tests, we perform an analysis to determine the trend of

the cost function for each factor. The values of the cost

function from the nine tests are calculated and denoted by

Ji, i= 1,2, · · · ,9. For each of the four factors, we calculate
the total contribution of each level to the cost function, V ( j)

k ,

as the sum of the cost values corresponding to the tests

involving that particular level. For example, after nine tests

1265



TABLE II

ORTHOGONAL ARRAY L9(34)

Test number p1 p2 p3 p4 Cost

1 1 1 1 1 J1
2 1 2 2 2 J2
3 1 3 3 3 J3
4 2 1 2 3 J4
5 2 2 3 1 J5
6 2 3 1 2 J6
7 3 1 3 2 J7
8 3 2 1 3 J8
9 3 3 2 1 J9

Contributions of level 1 V (1)
1 V (1)

2 V (1)
3 V (1)

4

Contributions of level 2 V (2)
1 V (2)

2 V (2)
3 V (2)

4

Contributions of level 3 V (3)
1 V (3)

2 V (3)
3 V (3)

4

are completed, for factor p3, we calculate

V (1)
3 = J1+ J6+ J8,

V (2)
3 = J2+ J4+ J9, (7)

V (3)
3 = J3+ J5+ J7

where V ( j)
k indicates the total contribution of the jth level

of the factor pk to the cost function. V
(1)
3 is the summation

of J1, J6, and J8 since the three tests involving the first
level of p3 are test numbers 1, 6, and 8. We will then have
three total contributions that correspond to the three levels

for each factor calculated according to Table II. These three

total contributions can be plotted versus the three levels for

each factor to determine the trend of the cost function as

shown in Figure 1. In the figure, the numbers “1”, “2”, “3”

along the horizontal axis represent the three levels of each

factor, and V (1), V (2), and V (3) are the total contributions

of each level of a factor.

From these figures for the trend of the cost function,

we know whether we need to increase or decrease the

values for each factor. If the trend of the cost function is

as shown in Figure 1 (a) or (b), that means the value of

this factor should be increased in order to further reduce

the value of the cost function. In this case, we can choose

a step size (e.g., 0.01) and increase all three levels of

every factor by the chosen step size. Likewise, for trends as

shown in Figure 1 (d) or (e), the parameter values should

be decreased. Alternatively, we can also use the estimated

gradient information to determine the direction for each

factor to move in and the amount to adjust. The gradient

of the cost function J with respect to the factor pk can be
estimated from the experiments using [2]

∇kJ =
3

2M

(
V (3)
k −V (1)

k

) 1
δ

where M= 9 and δ = 0.3 in the present example. This indi-
cates that if the trends of cost function from the experiments

are given as in Figure 1 (a), (b), (d), or (e), we have a very

(d)

(a) (b)

(e)

(c)

(f)
1 3 1 23 3

3 3

(1)

(3)

(2)

V
(1)V

V
V

(1)

V

V

V

V
V

V

V

(1)

(1)

(3)

(3)

(2)

V

V V
V

(1)

(2)

(3)
(2)

(3)

V
(3)

1 21 21 2 3

21 2

V

(2)

(2)

V

Fig. 1. Six different trends of the cost function

good estimate of the directions of the gradient of the cost

function. Note that to minimize a cost function, the key is

to determine its gradient with respect to varying parameters

without actually using the values of the gradient. If the trend

is as shown in Figure 1 (c), that means the parameter value

should be set closer to the middle level or the center of the

parabolic curve (with a shrinking coefficient, e.g., η = 0.9).
According to the trend determined for each factor, we

choose a new set of three initial levels for each factor, and

we start a new cycle and perform again nine tests according

to Table II. The procedure is repeated until the value of the

cost function is converged. To determine the convergence of

the present iterative algorithm, we compute the minimum

cost in each cycle. Define

Jmin(k) = min
i=1,··· ,M

{Ji(k)}

where M is the number of tests in each cycle according
to the orthogonal array, Ji(k) is the cost for the ith test
in the kth cycle. The difference between the Jmin of two
consecutive cycles of the Taguchi method will be used to

decide whether to stop the algorithm. Such a method based

on orthogonal arrays is usually referred to as the Taguchi

method [5], [8], [14], which we will use for solving the

economic dispatch problem with nonsmooth cost functions.

IV. THE TAGUCHI METHOD FOR SOLVING THE

ECONOMIC DISPATCH PROBLEM

In this section the economic dispatch problem with non-

smooth cost functions is solved using the Taguchi method.

The cost function is defined in (4), with F(Pi) given in
(2) or (3). The objective is to find the power vector P =
[P1,P2, · · · ,PN ] which minimizes the cost function (4), while
satisfying the constraints defined by (5) and (6).

Since the range of each unit’s power Pi, i= 1, · · · ,N, is
known, we can use the Taguchi method to obtain a solution

that minimizes the cost function in (4). The function in (4) is

therefore chosen as our cost function in the Taguchi method

described earlier. The number of factors to be determined

1266



depends on the number of units, N. We will formulate a
new vector [α1, · · · ,αN ] as the factors to be optimized by
the Taguchi method instead of the vector [P1, · · · ,PN ]. Here,
αi, i = 1, · · · ,N, stands for the relative contribution with
respect to the grand total of load demand, PD. Thus, the
cost function for each test k can be written as

Jk = F1(P1)+F2(P2)+ · · ·+FN(PN) (8)

where for each i, i= 1,2, · · · ,N,
Pi = ηkαiPi,ref if Pi,min ≤ ηkαiPi,ref ≤ Pi,max, (9)

Pi = Pi,max if ηkαiPi,ref ≥ Pi,max, (10)

Pi = Pi,min if ηkαiPi,ref ≤ Pi,min, (11)

where Pi,ref = 0.5× (Pi,min+Pi,max) and ηk is determined
such that the constraint (5) is satisfied. Note that here we

use Pi,ref, which is the average of Pi,min and Pi,max, as the
reference point for scaling. In this way, we can control that
N
∑
i=1
Pi is equal to the total demand PD. In order to make sure

that the constraints given by (6) are satisfied for each Pi and
the constraint for the total power demand given by (5) is

also satisfied, some iterations may be involved to obtain the

final value of each Pi. We will describe next a procedure to
explain how to obtain the final value of each Pi. We then
repeat experiments after adjusting the three levels according

to the trend of the cost function, until a satisfactory solution

is obtained, which corresponds to the case where one of the

three levels is close to or equal to the optimal solution.

The search procedure of the Taguchi method for the

present economic dispatch problem is summarized as fol-

lows.

1) Specify the lower and upper bounds of generation

powers for each unit. Determine the reference point

for each unit. Without loss of generality, set the

same initial values α1i , α2i , and α3i for each unit,
i= 1,2, · · · ,N. Set k = 0.

2) Let k = k+ 1. For test k, determine αi according to
the orthogonal array. Set ηk = η ′

k = 1.
3) Determine Pi according to (9). In case any Pi is
determined by (10) or (11), which means that αi is
saturated, go to Step 3.2. Otherwise, go to Step 3.1.

3.1) Calculate ηk using

ηk =
PD

N
∑
i=1

αi×Pi,ref
.

If ηk = η ′
k, go to Step 4. Otherwise, let η ′

k = ηk,
and go back to Step 3.

3.2) Find all αl , l ∈ K, which are saturated. In order
to satisfy the constraint (5), calculate ηk using

ηk =
PD− ∑

l∈K
Pl

∑
i∈I

αi×Pi,ref

where I is the index set of nonsaturated factors
of αi. If ηk = η ′

k, go to Step 4. Otherwise, let

η ′
k = ηk, and go back to Step 3.

4) Determine the cost Jk according to (8) with the factors
Pi determined from Step 3.

5) Check the difference between the minimum cost of

the previous cycle and the current cycle. If it is less

than 10−2, go to Step 6. Otherwise, determine the
trends of the cost function, adjust the values of the

factors according to the trends, and go back to Step

2 to start a new cycle.

6) Find the factors which gives the smallest cost from

the orthogonal array. The values of these factors will

give the optimal powers of all generating units with

the minimum total cost.

As with most experimental methods for optimization,

there is a concern that the present Taguchi method may

also get stuck in local minimum in some cases. To reduce

the chance of getting stuck in local minimum solutions, we

rotate the orthogonal array so that different variations of the

array are used in different cycles. In the first cycle, we use

the array as it is, e.g., as in Table II. In the next cycle, we

move the second column of the orthogonal array to the first,

the third column to the second, · · · , and the first column to
the last, so that different level combinations are tested for

each factor in different cycles. In this way, we can reduce

the possibility of getting stuck in local minimum. When

the orthogonal array is rotated from one cycle to the next,

different factors will be used in different dimensions when

tests are designed according to the array.

There are several important features of the Taguchi

method developed in this paper. They are enumerated below.

(i) Insensitivity to the choice of initial values of param-

eters αi.
(ii) Easy implementation and fast convergence.

(iii) Suitability for parallel implementation.

V. SIMULATION RESULTS

In this section, we assess the performance of the Taguchi

method developed in the previous section using computer

simulations. Throughout this section, TM shall refer to the

present Taguchi method. In order to show the effectiveness

of the proposed algorithm, test results of some typical

cases [11], [15] are used in three examples. Specifically,

Example 5.1 includes 40 generator units, where valve-point

effects are considered. The genetic algorithm and other

approaches in [11] are used in Example 5.2 to provide

benchmark minimum operating cost. The three initial levels

of each factor αi are chosen as 0.5,0.8,1.2 unless indicated
otherwise. In all examples, we use a fixed step size of 0.01

and η = 0.9 for parameter updates in our examples.
Example 5.1: This case consists of 40 generator units
considering the valve-point effects. Exactly the same data

of all units as given in [15] will be used in this example.

1267



Here the total demand is 10500 MW. Simulation results

are given in Tables III and IV. The orthogonal array used

in this example is L81(340) [16]. The values of population
size, scale factor, and penalty multiplier are chosen as 60,

0.05 and 100, respectively, when FEP, IFEP, CEP and MFEP

are implemented. The number of generations for FEP, IFEP,

CEP and MFEP are 600, 400, 800, and 1000, respectively.

Table III shows the mean and best solution time in

seconds, mean cost, maximum cost, and minimum cost

achieved by various methods over 100 runs. For each run,

before we start the search procedure, we randomly switch

two columns of the orthogonal array L81(340), and assign
experiments according to the new array. Thus, different

initial orthogonal array will be used in each run, and it

results in the variation in the final solution. TM requires

the least amount of solution time, 6 times faster than fast

evolutionary programming (FEP) [15] and improved fast

evolutionary programming (IFEP) [15], and almost 10 times

faster than classical evolutionary programming (CEP) [15]

and modified fast evolutionary programming (MFEP) [15].

We also see that the minimum cost achieved by TM is

smaller than that of CEP, FEP, MFEP and IFEP. Using

evolutionary programming, the population size for the 40

units system in this case is 60 [15]. From Figure 4 of

[15], we see that the fastest among the four methods is

IFEP which takes about 400 generations. The total number

of tests required by IFEP is therefore 24000 = 60× 400.
On the other hand, using the Taguchi method, we use

the orthogonal array L81(340) (which implies an equivalent
population size of 81), and it usually converges in 50 cycles,

and thus the total number of tests required is 4050 =
81× 50. We can see that the number of tests required by
the IFEP is roughly 6 times more than that required by

the Taguchi method. In our table IV, our simulation results

show that the Taguchi method is about 7 times faster than

IFEP.

Table IV shows the frequency of attaining a cost within

the specific ranges out of 100 runs for each of the algo-

rithms. From the 100 runs, 96 (= 10+ 22+ 52+ 12) runs
of the final costs from TM are in the range of 1.22 ∼
1.24×105 (Table IV). For comparison, 90 runs from IFEP,
86 runs from MFEP, 56 runs from FEP, and 6 runs from

CEP are with the final costs in the same range. Table IV

reveals that TM has the highest number of runs to achieve

the cost values in the smallest bracket 1.22 ∼ 1.23× 105
which shows the highest probability of attaining minimum

solutions.

Example 5.2: The present TM has also been applied to
the ED problem with 10 generators where the multiple-fuel

effects are considered. In this case, the objective function

is represented using a piecewise quadratic cost function.

The input data and related constraints of the test system are

given in [7], [9], and [13]. In this case, the total demand is

2400 MW.

TABLE III

COMPARISON RESULTS WITH METHODS IN [15] (40 UNIT SYSTEM

WITH VALVE-POINT EFFECTS)

Method
Mean Best Mean Maximum Minimum
time time cost cost cost

CEP 928.36 926.20 124793.48 126902.89 123488.29
FEP 646.16 644.28 124119.37 127245.89 122679.71
MFEP 1056.8 1054.2 123489.74 124356.47 122647.57
IFEP 632.67 630.36 123382.00 125740.63 122624.35
TM 94.28 91.16 123078.21 124693.81 122477.78

TABLE IV

RELATIVE FREQUENCY OF CONVERGENCE

Range CEP FEP MFEP IFEP TM

1.265∼ 1.27×105 10 6 – – –

1.26∼ 1.265×105 4 – – – –

1.255∼ 1.26×105 – 4 – 2 –

1.25∼ 1.255×105 16 2 – – –

1.245∼ 1.25×105 22 10 – 4 2

1.24∼ 1.245×105 42 20 14 4 2

1.235∼ 1.24×105 4 26 26 18 12

1.23∼ 1.235×105 2 24 50 50 52

1.225∼ 1.23×105 – 6 10 22 22

1.22∼ 1.225×105 – – – – 10

The hierarchical numerical method (HM) [7], the im-

proved evolutionary programming (IEP) [13], the modified

Hopfield neural network (MHNN) [12], the adaptive Hop-

field neural network (AHNN) [9], and the modified particle

swarm optimization [11] are used to provide the benchmark

minimum operating cost against which the Taguchi method

is compared. As seen in Table V, the TM always provides

better solutions than HM, MHNN, AHNN, IEP, and MPSO.

Here in Table V, U means unit, F represents fuel type, TP

means the sum of the power assigned to each unit, and TC

represents the total cost. The orthogonal array used in this

example is L27(313) [16].
Recall that in the previous section, we mentioned that the

Taguchi method is insensitive to the choice of initial values.

We next consider the system performance with different

choices of initial values. Two extreme cases are compared to

the cases we used in Tables V and ??, where the three initial
levels of each factor are chosen as 0.5, 0.8, and 1.2. Case
1: the three initial levels are all smaller than 1; and Case

2: the three initial levels are all larger that 1, but smaller

than 2. Because we choose the reference value as Pi,ref =
(Pi,max+Pi,min)/2, if the initial value of αi > 2, it results in
a saturated Pi, which means Pi,ref×α > Pi,max. Some of the
choices for initial levels in the two cases could be totally

wrong which may be considered as due to an incorrect guess

of the range of the original αi. From Figure 2, we can
see that the system performance after convergence is very

close to each other no matter what initial levels we choose.

Due to the rotation of the orthogonal array, different level

combinations are tested for each factor in different cycles,

which helps to avoid the local minimum. The curves of the

1268



TABLE V

COMPARISON OF OPTIMIZATION METHODS (demand= 2400 MW)

U F HM F MHNN F AHNN

1 1 193.2 1 192.7 1 189.1
2 1 204.1 1 203.8 1 202.0
3 1 259.1 1 259.1 1 254.0
4 3 234.3 2 195.1 3 233.0
5 1 249.0 1 248.7 1 241.7
6 1 195.5 3 234.2 3 233.0
7 1 260.1 1 260.3 1 254.1
8 3 234.3 3 234.2 3 232.9
9 1 325.3 1 324.7 1 320.0
10 1 246.3 1 246.8 1 240.3
TP 2401.2 2399.8 2400.0
TC 488.5 487.9 481.7

U F IEP F MPSO F TM

1 1 190.9 1 189.7 1 190.3
2 1 202.3 1 202.3 1 203.1
3 1 253.9 1 253.9 1 253.3
4 3 233.9 3 233.0 3 233.1
5 1 243.8 1 241.8 1 241.5
6 3 235.0 3 233.0 3 232.5
7 1 253.2 1 253.3 1 252.8
8 3 232.8 3 233.0 3 233.1
9 1 317.2 1 320.4 1 320.1
10 1 237.0 1 239.4 1 240.2
TP 2400.0 2400.0 2400.0
TC 481.8 481.7 481.6

cost function go up and down during the first 250 cycles

of tests, after which they converge to the same value. The

only difference is the time of convergence, which results

from different choices of initial levels for each factor.

VI. CONCLUSIONS

The Taguchi method is capable of solving the constrained

economic dispatch problem for practical power systems.

Our analysis and numerical simulation results show that the

present Taguchi method is insensitive to the choice of initial

values for parameters. Combined with their relatively low

computational requirements as well as their suitability for

parallel implementation, we believe that these features make

the present Taguchi method a viable option for solving the

economic dispatch problems in real-world applications.

REFERENCES

[1] A. Bakirtzis, V. Petridis, and S. Kazarlis, “Genetic algorithm
solution to the economic dispatch problem,” IEE Proceedings-
Generation, Transmission and Distribution, vol. 141, pp. 377–382,
July 1994.

[2] Y. Cai and D. Liu, “Multiuser detection using the Taguchi method
for the DS-CDMA systems,” to appear in IEEE Transactions on
Wireless Communications.

[3] J. Y. Fan and L. Zhang, “Real-time economic dispatch with line
flow and emission constraints using quadratic programming,” IEEE
Trans. Power Systems, vol. 13, pp. 320–325, May 1998.

[4] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy
of Machine Intelligence, 2nd Ed., New York: IEEE Press, 2000.

[5] W. Y. Fowlkes and C. M. Creveling, Engineering Methods for
Robust Product Design: Using Taguchi Methods in Technology and
Product Development, Reading, MA: Addison-Wesley, 1995.

[6] A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal Arrays:
Theory and Applications, New York: Springer, 1999.

0 50 100 150 200 250 300 350 400
480

490

500

510

520

530

540

550

Number of cycles

C
os

t

 Case 1
 Case 2
 Previous case

Fig. 2. Performance comparison of different choices of initial values.
Case 1: the initial three levels of parameters are all smaller than 1; Case
2: the initial three levels are all larger than 1.

[7] C. E. Lin and G. L. Viviani, “Hierarchical economic dispatch for
piecewise quadratic cost functions,” IEEE Trans. Power Apparatus
Systems, vol. PAS-103, pp. 1170–1175, June 1984.

[8] R. H. Lochner and J. E. Matar, Designing for Quality: An Intro-
duction to the Best of Taguchi and Western Methods of Statistical
Experimental Design, Milwaukee, WI: ASQC Quality Press, 1990.

[9] K. Y. Lee, A. Sode-Yome, and J. H. Park, “Adaptive Hopfield neural
networks for economic load dispatch,” IEEE Trans. Power Systems,
vol. 13, pp. 519–526, May. 1998.

[10] S. Naka, T. Genji, T. Yura, and Y. Fukuyama, “Practical distribution
state estimation using hybrid particle swarm optimization,” Pro-
ceedings of the IEEE Power Engineering Society Winter Meeting,
Columbus, OH, Feb. 2001, vol. 2, pp. 815–820.

[11] J. B. Park, Y. S. Kim, J. R. Shin, and K. Y. Lee, “A particle swarm
optimization for economic dispatch with nonsmooth cost functions,”
to apprear in IEEE Trans. Power Systems.

[12] J. H. Park, Y. S. Kim, I. K. Eom, and K. Y. Lee, “Economic load
dispatch for piecewise quadratic cost function using Hopfield neural
network,” IEEE Trans. Power Systems, vol. 8, pp. 1030–1038, Aug.
1993.

[13] Y. M. Park, J. R. Won, and J. B. Park, “New approach to economic
load dispatch based on improved evolutionary programming,” Inter-
national Journal of Engingeering Intelligent Systems for Electrical
Engineering and Communications, vol. 6, no. 2, pp. 103–110, June
1998.

[14] P. J. Ross, Taguchi Techniques for Quality Engineering: Loss Func-
tion, Orthogonal Experiments, Parameter and Tolerance Design,
New York: McGraw-Hill, 1996.

[15] N. Sinha, R. Chakrabarti, and P. K. Chattopadhyay, “Evolutionary
programming techniques for economic load dispatch,” IEEE Trans.
Evolutionary Computation, vol. 7, pp. 83–94, Feb. 2003.

[16] G. Taguchi and S. Konishi, Orthogonal Arrays and Linear Graphs:
Tools for Quality Engineering, Allen Park, MI: ASI Press, 1987.

[17] D. C. Walters and G. B. Sheble, “Genetic algorithm solution of
economic dispatch with valve point loading,” IEEE Trans. Power
Systems, vol. 8, pp. 1325–1332, Aug. 1993.

[18] Z. Wang, E. Gao, and J. Zhang, “An orthogonal optimization
method,” ACTA Automatica Sinica, vol. 15, no. 4, pp. 365–369, July
1989 (in Chinese).

[19] H. T. Yang, P. C. Yang, and C. L. Huang, “Evolutionary program-
ming based economic dispatch for units with non-smooth fuel cost
functions,” IEEE Trans. Power Systems, vol. 11, pp. 112–118, Feb.
1996.

1269


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




