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Stability and Stabilization of Distributed time Delay Systems

Frédéric Gouaisbaut

Abstract— This paper is dedicated to the stability and stabi-
lization of state-distributed delay systems. The key idea is to
express the distributed delay system as a barycentric sum of
linear pointwise time delay systems. By using this reformulation,
new stability criterion is proposed and is formulated in the form
of Linear Matrix Inequality. These conditions for the stability
of the system are obtained by using a Lyapunov Krasovskii
functional . Based on this stability criterion, new types of
controllers, taking into account the delayed part, are designed to
ensure the asymptotic stability of the system. Several examples
illustrate the proposed method.

Index Terms— Distributed delay systems, Stabilization, LMIs.

I. INTRODUCTION

Functional differential equations of retarded type with
distributed delay are often used for the modelisation of many
practical issues : biology, economic, ecology (see [12] for
many examples). Concerning the stability and stabilization
of such systems, several approaches have been proposed.
The first one generally involves some Lyapunov-Krasovskii
functional adapted to distributed time delay systems [6],
[7], [10], [13]. Nevertheless, these techniques provide only
sufficient conditions and they entail a conservatism which
comes from the choice of the Lyapunov functional and the
way to bound cross terms which appear in the derivative
of the Lyapunov functional. Another method, which uses a
Lyapunov-Razumikhin function [13], [14] allows to study
systems with time varying delays. Furthermore, in order to
reduce the conservatism of these technics, Gu et al [5], [6],
[7] have proposed a discretization scheme for the general
form of the Lyapunov Krasovskii introduced by [9]. In return
of an improvement of the results, the computational effort is
increasing. Another way to reduce the conservatism has been
proposed by Fridman et al [3], [4]. Based on a descriptor
model transformation, a new Lyapunov-Krasovskii functional
is introduced which significantly improve the stability esti-
mate. Another idea is to use a comparison principle [2], [15],
which consists of replacing the original system by another
one, simpler to study. The stability criterion is expressed
in terms of matrix measures and matrix norms. Even if the
results are easy to check, many variables have to tuned in
order to optimise the delay upperbound. As technics inherited
from matrix measures, this method allow to study the case
of coefficients which are varying with the distributed delay.
Finally, a original idea has been proposed by [11], who has
extended Popov theory to time delay systems. The resulting
criterion is then formulated in a Linear Matrix inequalities.
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In this paper, we propose a new robust stability condition
for distributed system, which can be solved very efficiently
by semi-definite solvers (see [1]). This criterion takes into
account the case of coefficients variable with the distributed
delay. Based on this result, different types of controllers are
derived, which stabilize the system for all delays less than a
prescribed upper bound.

The paper is organized as follows : after some assump-
tions, the section III proposes to transform the system into
a new system, easier to study. In section IV, based on this
transformation, by using a Lyapunov-krasovskii approach,
we provide a new delay dependent stability criterion. Some
examples and comparisons allow to show the efficiency of
the algorithm.

The section V is devoted to the stabilization of a distrib-
uted system. Two controllers are proposed : the first one
takes account of the delay size, whereas the second one is a
memoryless state feedback. Finally, the last section provide
some examples.

Notations: Throughout the paper, the following notations
are used. For a two symmetric matrices, A and B, A > (≥)B
means that A − B is (semi-) positive definite. AT denotes
the transpose of A, In and 0m,n denote the respectively the
identity matrix of size n and null matrix of size n×n. If the
context allows it the dimensions of these matrices are often
omitted.

II. ASSUMPTIONS

Consider the following time delay system




.
x(t) = (A +4A)x(t) + (Ar +4Ar)x(t− h)

+
0∫
−τ

Ad(w)x(t + w)dw + Bu(t), t > 0,

x(t) = φ(t), for t ∈ [−δ, 0] , δ = max(h, τ)

(1)

where τ, h are constant delays, x(t) ∈ Rn, A,Ar ∈
Rn×n, B ∈ (R)n×m are known constant matrices, Ad is a
function from [−τ, 0] to Rn. u ∈ Rm is the control vector.
We denote the state of the system xt as :

xt(.) :
{

[−h, 0] → Rn

θ 7→ xt(θ) = x(t + θ)

The uncertainties 4A and 4Ar satisfy the following norm-
bounded conditions :

4A = DF (t)E, where FT (t)F (t) ≤ I,
4Ar = DrG(t)Er, where GT (t)G(t) ≤ I,

where D, Dr ∈ Rn×n. E,Er ∈ Rn×n are constant known
weighting matrices.



We assume that function :

Ad

{
[−τsup, 0] −→ IR n×n

w 7−→ Ad(w) (2)

satisfies the following property:

∀ω ∈ [−τsup, 0] , ∃γ > 0, ‖Ad(ω)‖∞ < γ. (3)

III. BARYCENTRIC FORMULATION OF THE ORIGINAL
SYSTEM

the aim of this section is to find a polytopic modelisation
of system (1) in order to developp delay dependent stability
criterion. We propose the following lemma.

Lemma 1: For a given τsup, System (1) can be trans-
formed into:





.
x(t) = (A + ∆A)x(t) + (Ar + ∆Ar)x(t− h)

+
0∫
−τ

r∑
i=1

hi(w)Adix(t + w)dw + Bu(t) + f1(t, xt),

x(t) = φ(t), for t ∈ [−τ, 0] .
(4)

where the functions

hi

{
[−τsup, 0] −→ [0, 1]

w 7−→ hi(w) , ∀i ∈ {1, .., r},

are piecewise continuous and verify the convex sum property
r∑

i=1

hi(w) = 1.

Proof: For a given hsup, function Ad is a continuous
function and using property (3), we know that ∀(i, j) ∈
1, . . . , n, |Adij | ≤ γ which implies that function Ad is
belonging to an hypercube C. Actually, it is not the better
one, since it always exists a minimal convex set P included
in C.

Consequently, we define the convex hull associated to
function Ad by the minimal convex set spanned by matrices
{Ad1, . . . , Adr} such that we can find r functions hi, which

satisfy a convex sum property
r∑

i=1

hi(w) = 1, hi ≥ 0, ∀i ∈

{1, ..., r}. with Ad(θ) =
r∑

i=1

hi(θ)Adi for θ ∈ [−τsup, 0]

Remark 2: By construction, the matrices Adi and func-
tions hi generally depend explicitly on the value of τsup.
The degree of conservatism introduced by this modelisation
will depend on the gap between the delay upper bound of
the system τsup, and the real delay τ of the process.
In the following section, we consider the autonomous system,
and we provide a new stability criterion.

IV. STABILITY OF DISTRIBUTED DELAY SYSTEMS

Let consider the following autonomous system :




.
x(t) = (A + ∆A)x(t) + (Ar + ∆Ar)x(t− h)

+
0∫
−τ

Ad(w)x(t + w)dw, t > 0,

x(t) = φ(t), pour t ∈ [−δ, 0] .

(5)

According to Lemma 1, it can be transformed into the
following form :

x(t) = (A + ∆A)x(t) + (Ar + ∆Ar)x(t− h)

+
0∫
−τ

r∑
i=1

hi(w)Adix(t + w)dw,
(6)

where the functions hi,∀i ∈ {1 . . . r} verify the two proper-

ties hi ≥ 0,∀i ∈ {1 . . . r} and
r∑

i=1

hi(w) = 1.

The following theorem gives a first result on the delay
dependent stability for system (6).

Theorem 3: System (5) is asymptotically stable for all
delays τ ∈ [0, τmax], if there exists S > 0, T > 0, R > 0 of
appropriate dimensions and scalars α > 0, β > 0 satisfying
the following optimization problem :

τmax = max
S,R,T,α,β

(τ),

submitted to constraints:

Θi =




Γ ArS SET SET
r τAdi 0

SAT
r −T 0 0 0 0

ES 0 −αIn 0 0 0
ErS 0 0 −βIn 0 0
τAT

di 0 0 0 −2In S
0 0 0 0 S −R




< 0,

(7)
∀i ∈ {1, . . . , r}
with Γ = SAT + AS + αDDT + βDrD

T
r + T + R

Proof: Define the following Lyapunov-Krasovskii func-
tional for system (6) :

V (xt) = xT Px +
t∫

t−τ

t∫
s

x(w)T Qx(w)dwds

+
t∫

t−h

xT (s)PTPx(s)ds

+β−1
t∫

t−h

xT (s)ET
r Erx(s)ds,

(8)

Remark that since P, Q, T > 0 and β > 0, we can conclude
that for some ε > 0, the Lyapunov-Krasovskii functional
condition V (xt) ≥ ε‖xt(0)‖ is satisfied (see [8]). The
derivative of (8) along the solutions of system (6) leads to
the following equality :

V̇ (xt) = xT (t)(AT P + PA + PTP + 2P∆A)x(t)
+τx(t)T Qx(t) + 2xT (t)P∆Arx(t− h)

+2xT (t)P
0∫
−τ

r∑
i=1

hi(w)Adix(t + w)dw

−
t∫

t−τ

x(w)T Qx(w)dw

−xT
t (−h)PTPxt(−h) + 2xT (t)PArxt(−h)

+β−1(xT (t)ET
r Erx(t)− xT

t (−h)ET
r Erxt(−h))

Defining S = P−1, and using the well known inequality
2xT y ≤ xT Mx + yT M−1y, ∀M > 0, the cross terms can
be bounded as follows:



2xT (t)PArxt(−h) ≤ xT (t)PArST−1SAT
r Px(t)

+xT
t (−h)PTPxt(−h),

2xT (t)P∆Ax(t) ≤ xT (t)(αPDDT P

+α−1ET E)x(t)
2xT (t)P∆Arxt(−h) ≤ βxT (t)PDrD

T
r Px(t)

+β−1xt(−h)T ET
r Erxt(−h)

We get also the following inequality:

2xT (t)P
0∫
−τ

r∑
i=1

hi(w)Adix(t + w)dw ≤
0∫
−τ

r∑
i=1

hi(w)x(t)PAdiQ
−1AT

diPx(t)

+x(t + w)T Qx(t + w)dw.

(9)

Therefore, we obtain:

V̇ (xt) ≤ xT C(τ)x(t).

with

C(τ) =




AT P + PA + τQ + PArST−1SAT
r P

r∑
i=1

(
0∫
−τ

hi(w)dw

)
PAdiQ

−1AT
diP

+PTP + αPDDT P
+α−1ET E + βPDrD

T
r P + β−1ET

r Er




.

System (6) is then asymptotically stable ∀τ ≤ τmax if ∀τ ≤
τmax, C(τ) is a negative definite matrix. Furthermore, it also
proves that system (5) is asymptotically stable. Nevertheless,
since it depends on the functions hi, it is not easy task to
test if C(τ) < 0. In order to construct a systematic criterion,
let remark that C(τ) < 0 is equivalent to:

SC(τ)S < 0, avec S = P−1.

Noting R = SQS,

SC(τ)S < 0,

is equivalent to

r∑

i=1

χi


τ−1




SAT + AS + T
+τR + ArST−1SAT

r

+αDDT + α−1SET ES
+βDrD

T
r + β−1SET

r ErS


 + ∆i


 < 0,

where ∆i = AdiSR−1SAT
di and χi =

(
0∫
−τ

hi(w)dw

)
.

So, if the inequalities

τ−1

max




SAT + AS + τmaxR
+ArST−1SAT

r + T
+αDDT + α−1SET ES

+βDrD
T
r + β−1SET

r ErS


 + ∆i


 < 0,

(10)
are satisfied ∀i ∈ {1, ..., r}, then SC(τmax)S < 0 and sys-
tem (6) is asymptotically stable for all delays τ ∈ [0, τmax].
Furthermore, it can be easily seen that if the asymptotic

stability is proved for a delay τ , the result holds also for
any smaller delay.

Using notations already defined, inequalities (10) can be
written as:

Γ + ArST−1SAT
r

+α−1SET ES + β−1SET
r ErS + ∆i < 0 (11)

First, by a simple change of variable,

R = τmaxR

we have :
Γ + ArST−1SAT

r

+α−1SET ES + β−1SET
r ErS + ∆i < 0 (12)

and

V =
[

In ArST−1 SET

α
SET

r

β τmaxAdi Di

]

(13)
where Di = τmaxAdiS(R)−1, we can easily show that (12)
is equivalent to:

V ΘiV
T < 0, ∀i ∈ {1 . . . r}

So, if inequalities Θi < 0,∀i ∈ {1 . . . r} are satisfied, then
it implies that inequalities (12) also hold. It also implies that
C(τ) < 0, and that V̇ (xt) ≤ ε‖xt(0)‖, for some ε > 0,
which concludes the proof.

The following examples show the effectiveness of the
proposed technic.
Examples and comparisons :

Example 4: Let us consider (5) with :

A =




−2 0 1
1.75 −1 0.8
−1 0 −1


 ,

Ad(w) =




−1 0 0
−0.1 0.25 cos(w) 0.2
−0.2 1 1


 ,

Ar =




0.1 0 0
0 0.1 0
0 0 0.1


 .

First, function Ad(ω) can be included into a polytopic set:
indeed, we have the following equality Ad(ω) = h1(ω)Ad1+
h2(ω)Ad2 with h1ω = 1−cos(ω)

2 , h2(ω) = 1+cos(ω)
2 and

Ad1 =




−1 0 0
−0.1 −0.25 0.2
−0.2 1 1


 ,

Ad2 =




−1 0 0
−0.1 0.25 0.2
−0.2 1 1


 .

which show that Ad(ω) is belonging to the convex hull
spanned by (Ad1, Ad2). Using theorem 3, we prove that sys-
tem (1) is asymptotically stable for all delays τ ∈ [0, 0.47].
Based on the comparison principle, previous works (see [15])
find an upper bound of 0.0968.

Remark 5: In this example, the function cos is a bounded
function and do not depend on the chosen value τsup. As a



matter of fact, the vertices of the convex hull Ad1, Ad2 are
independent of the value hsup.

Example 6: This example illustrates the dependence be-
tween the value τsup and τmax, solution of the Linear Matrix
Inequalities (7). Let choose the following system :

ẋ = −x(t) + 0.1x(t− h) +
∫ 0

−τ

ωx(t + ω)dω,

The barycentric modelisation of function Ad(ω) leads to the
following equality ω = h1(−τsup)+h2(ω).0. with h1(ω) =
−ω
τsup

, h2(ω) = τsup+θ
τsup

. It is easy to show that h1 and h2

satisfy h1/2 > 0 and h1 + h2 = 1. The vertices of the
convex hull are then defined by Ad1 = −τsup and Ad2 = 0
and depend on τsup.

Different choices of τsup and the resulting τmax are
summarized in table I.

TABLE I
UPPERBOUND τmax FOR DIFFERENT CHOICE OF τsup

τsup τmax

5 0.15
2 0.44
1 0.89
0.95 0.94
0.949 0.949

The result of the optimisation scheme show that theorem
3 can lead to a conservative result, i.e. a loose bound τmax,
compared with the initial chosen bound τsup. Furthermore,
it is obvious that for τsup1 > τsup2, τmax1 ≤ τmax2 since
the size of generated polytop is increasing. So, to improve
the result, we decrease the size of the convex hull, i.e. the
value of τsup, to find the best τmax. For this example, we
find τmax = 0.945.Using a method proposed by [15] and
based on comparison principle, we find that the system is
asymptotically stable for τ ∈ [0; 0.90]. For this example,
there is no difference between our results and the result
from [15] based on the use of matrix measures. Indeed, this
approach is very efficient for systems of small dimensions.

V. STABILIZATION OF DISTRIBUTED DELAY SYSTEMS

In this section, we consider system (4). The aim of this
section is to develop two types of controllers : the first one
is based on the knowledge of the functions hi and the value
of the delay. The second one is designed, when the value of
the delay τ is unknown.

A. Case of a known delay
We propose to design a controller of the form :

u(t) = Kx(t) +

0∫

−τ

r∑

i=1

hi(w)Kix(t + w)dw. (14)

The system (4) with (14) is governed by the following
differential equations :

.
x(t) = (A + ∆A−BK)x(t) + (Ar + ∆Ar)x(t− h)

+
0∫
−τ

r∑
i=1

hi(w)(Adi −BKi)x(t + w)dw + Bu(t), t > 0,

(15)

We propose the following theorem :
Theorem 7: System (15) with the control law (14) is as-

ymptotically stable for all delays τ ∈ [0, τmax], if there exists
S, R, T > 0 of appropriate dimensions, W,W1, . . . , Wr ∈
Rm×n and scalars α > 0, β > 0 satisfying the optimization
problem :

τmax = max
S,R,T,W,W1,...,Wr,α,β

(τ)

submitted to the constraints:

Ξ =




Γ ArS SET SET
r τIn 0

SAT
r −T 0 0 0 0

ES 0 −αIn 0 0 0
ErS 0 0 −βIn 0 0
τIn 0 0 0 −2In κi

0 0 0 0 (κi)T −R




< 0,

(16)
∀i ∈ {1, ..., r}, with κi = AdS − BWi, Γ = SAT + AS −
BW −WT BT + αDDT + βDrD

T
r + T + R.

The gains of the controller are then given by

K = WS−1

Ki = WiS
−1, ∀i ∈ {1, . . . , r}.

Proof: By using theorem 3, system (15) is asymptoti-
cally stable if there exists S, R, T ∈ IR n×n 3 positive definite
matrices, and α, β two positive reals such that
Γ = SAT + AS − BW − WT BT + αDDT + βDrD

T
r +

T + R,δi = (AdiS −BWi)R
−1

(AdiS −BWi)T .
Let W = KS, Wi = KiS, R = τmaxR and

Z =
[

In ArST−1 SET

α
SET

r

β τmaxIn Di

]
(17)

where Di = τmaxAdiS(R)−1

We show that inequation (12) is equivalent to:

ZΞZ < 0

This last inequality conludes the proof

B. Case of a unknown delay

In this case, we propose to design a controller of the form:

u(t) = Kx(t) (18)

The system (4) with (18) is governed by the following
differential equations :

.
x(t) = (A + ∆A−BK)x(t) + (Ar + ∆Ar)x(t− h)

+
0∫
−τ

r∑
i=1

hi(w)Adix(t + w)dw + Bu(t), t > 0,

(19)
We have the following corollary :

Corollary 8: System (19) with control law (18) is asymp-
totically stable for all delays τ ∈ [0, τmax], if there exist
S, R, T > 0 of appropriate dimensions,W ∈ Rn×n and
α, β > 0 satisfying the optimization problem :

τmax = max
S,R,T,W,α,β

(τ)



submitted to the constraints :



Γ ArS SET SET
r τAdi 0

SAT
r −T 0 0 0 0

ES 0 −αIn 0 0 0
ErS 0 0 −βIn 0 0
τAT

di 0 0 0 −2In S
0 0 0 0 S −R




< 0,

(20)
∀i ∈ {1, . . . , r}, with Γ = SAT + AS − BW −WT BT +
αDDT +βDrD

T
r +T + τmaxR. The gain of the controllers

are then given by

K = WS−1.

Proof: The proof of this corollary is based on the proof
of theorem 7

VI. EXAMPLES

Example 9: Let consider system (1) which has been stud-
ied by [11] :

ẋ(t) = (1 + 0.2sin(t))x(t) + (1 + 0.2cos(t))x(t− h)
+

∫ τ

0
θx(t− θ)dθ + u(t)

Here D = Dr = 0.2 and E = Er = 1. The problem
is to achieve the closed loop stability with a memoryless
controller u(t) = Kx(t). Solving optimisation problem
from theorem (7), we propose the following results in table
II:

TABLE II
MAXIMUM DELAY FOR DIFFERENT CONTROLLERS

τmax K
1.6 −4.98
2.7 −9.55
4.1 −19.92
6.1 −39.9
9.8 −99.95

Based on generalized Popov theory, the method of
Ivanescu et al [11] yields to a controller u(t) = −94.041x(t)
for a maximal delay of 4.21s.

Example 10: Let us consider system (1) with

A =




−2 0 1
1.75 0.25 0.8
−1 0 1


 , (21)

Ad(w) =




−1 0 0
−0.1 0.25 cos(w) 0.2
−0.2 1 1


 , (22)

Ar =




0.1 0 0
0 0.1 0
0 0 0.1


 , B =




0
0
1


 . (23)

The weighting functions hi are the following h1(w) =
1−cos(w)

2 , and h2(w) = 1+cos(w)
2 . The different vertices for

the convex hull are the following :

Ad1 =




−1 0 0
−0.1 −0.25 0.2
−0.2 1 1




Ad2 =




−1 0 0
−0.1 0.25 0.2
−0.2 1 1




Case of a known delay :
Using theorem 7, we prove that the system (23) with (14) is
asymptotically stable for τ ∈ [ 0, 3.33 ].
Case of an unknown delay :
Using theorem 8, we prove that the system (23) with (18)
is asymptotically stable for τ ∈ [ 0, 2.29 ]. Indeed, the
use of a control law,taking into account the size of the delay
allows to find a better upperbound for the delay.

VII. CONCLUSION

This paper has provided a new technique for checking the
stability of distributed state delay system. The main idea is to
write the kernel of the distributed delay as a barycentric sum
of constant matrices. By this way, a Lyapunov-Krasovskii
functional is provided and lead to a delay dependent criterion
expressed in terms of LMIs. Based on this result, two
different controllers have been derived. The first controller,
which takes account of the distributed part of the system can
be used when the delay value is exactly known, while the
second is a simple feedback controller. The effectiveness of
our approach has been tested on several examples. Remark
that this method is straightforward and can be extended to
the case of time-varying delay.
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