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Traffic Control and Monitoring with a Macroscopic Model in the Presence of Strong
Congestion Waves

Denis Jacquet⋆, Carlos Canudas de Wit and Damien Koenig
Laboratoire d’Automatique de Grenoble

BP. 46, 38 402 St. Martin d’H̀eres, France

Abstract— This paper treats the problem of designing con-
trollers and estimators for freeway management applications
using macroscopic models and optimal control. The model is
a nonlinear conservation law that may develop and propagate
discontinuities known as shock waves and thus prevent the
use of variational techniques requiring regularity. We show in
this paper how a valid first variation of the model can be
computed, give an explicit formula of its solution and use it to
evaluate gradients of optimization problems using the adjoint
method. The coordinated ramp metering problem and the state
estimation problem are treated as illustrations.

I. I NTRODUCTION

Traffic control and monitoring is a mature and still active
research field. Given the large size of freeway infrastructures,
macroscopic traffic models are often considered, the simplest
one being the Lighthill-Whitham-Richards (LWR) model [1]
that relies on the vehicle conservation principle and the
constitutive assumption that vehicles travel at an equilibrium
velocity function of the local density only. This model
takes the form of a nonlinear hyperbolic partial differential
equation also called a conservation law, a class known to
be difficult to analyse [2] and simulate [3] because of the
possible presence of propagating discontinuities called shock
waves. For practical applications, the authors proposed in [4]
an extension of the LWR model that takes into account on/off
ramps and on-ramp saturations for heavily congested main
lanes by adding an inhomogeneous term with Dirac distribu-
tions. Thought the consequences of this irregular source term
should be addressed more carefully, we assume this model
to be well-posed when interpreted in the distributional sense,
which is standard for nonlinear conservation laws [5], [2].

The distributed nature of the model led some authors [6]
to discretize the state equation in order to apply finite dimen-
sional control techniques. Nevertheless, valid discretizations
of conservation laws [3] as the Godunov method cannot be
put in a form suitable for control (i.e. continuous or discrete
state equation). A notable exception is the discretization pro-
posed in [7] which is used in [8] but it assumes a piecewise
linear flow function and leads to rather complicated hybrid
controllers. The alternative is to perform the analytical design
with the distributed system directly, discretizations being
used for practical implementation only. Nevertheless, if the
field of partial differential equation control is rather mature
for elliptic, parabolic and hyperbolic linear systems [9], very
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few literature is available for nonlinear conservation laws and
shocks are generally disregarded [10].

The contribution of this paper is to provide a new method-
ology that takes into account the possible propagation of
shocks when solving optimal control problems with conser-
vation laws. The motivation of such work is that many traffic
management applications take the form of optimization prob-
lems. Examples are the design of coordinated ramp metering
strategies that maximise the vehicle-distance-travelled and
the estimation of the distributed traffic density that best
matches the observations at finite sensor locations.

Optimal control problems involving distributed systems
are classically solved iteratively using gradient descent meth-
ods that evaluate gradients of the cost functional based on
the linearized dynamics. The advantage of this approach
is to use the unavoidable discretizations only to solve the
infinite dimensional conditions of optimality, making this
approach computationally efficient and usually more con-
sistent than discretize-then-optimize methods. Unfortunately,
the extended LWR model may develop shock waves and is
thus not linearizable, at least not in the usual sense. Though
some works [11] discard these shocks when linearizing, some
recent results [12] proposed an elegant way to compute para-
metric linearization of conservation laws using a distribu-
tional interpretation. Using the weak form of the conservation
law, this paper provides a rigorous framework to compute
the first variation of the traffic model and gives a formula to
explicitly compute its solution. Though not being exactly a
linearization in the strict sense, this first variation is enough
to solve iteratively optimal control problems where gradients
are evaluated using the classical method of adjoint calculus.
In addition, this setting provides a nice interpretation of the
necessary conditions of optimality that is not available in
discretize-then-optimize approaches.

This paper treats the coordinated ramp metering problem
and the state estimation problem but the proposed methodol-
ogy may be applied to any control or estimation problem as
soon as an optimization formulation is adopted. Numerical
examples using real field data are proposed in the last section.

Notations. C1
0 is the set of continuously differentiable

functions with compact support. Forρ discontinuous on
Γ, ρ|Γ

− and ρ|Γ
+ are its left and right values alongΓ and

[ρ]|Γ=ρ|Γ
+−ρ|Γ

−. Variables of integration are omitted in integrals.



II. T HE EXTENDED LWR MODEL (ELWR)

The authors proposed in [4] a model for freeway sections
with on/off ramps suited for applications in ramp metering,
state estimation and missing data reconstruction. It is based
on the vehicle and flow conservation principles, as in the
LWR formulation [1], where a source term is introduced to
handle ramps. For illustration, we consider a section of the
beltway of Grenoble (France) as depicted on Figure 1.
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Fig. 1. Study case considered for illustration and numerical examples.

Let (x, t) ∈ Ω = (0, L) × (0, T ) be the space and time
independent variables. The vehicle density, aggregated by
lanes, is denotedρ(x, t) and plays the role of the state
variable of the model. The vehicles are assumed to travel
at an equilibrium speedv(x, t) = V (ρ(x, t)), leading to
the flow functionΦ(ρ) = ρV (ρ) known as the fundamental
diagram.We consider the Greenshield model [13] given by
the concave quadratic formΦ(ρ) = ρvf − ρ2vf/ρm with
vf the free flow speed andρm the maximal density. The
Nu on-ramps are located at{x̂1, . . . , x̂Nu

} and theNβ off-
ramps at{x̌1, . . . , x̌Nβ

}. The ith on-ramp flow is set to
ui(t)Ψi(ρ(x̂i, t)) with u(t)=(u1(t), . . . , uNu

(t)) ∈ [0, 1]Nu

the metering rates andΨi(·) a smooth saturation function as
depicted on Figure 2 that limits the inflow for large densities
on the main lanes. Theith off-ramp flow is set to be equal

ρ(t, x̂i)

Ψi(ρ(t, x̂i))

ρm

max ramp flow

0

unsaturated saturated

Fig. 2. Smooth saturation at on-rampi.

to βi(t)Φ(ρ(x̌i, t)) with (β1(t), . . . , βNβ
(t)) ∈ [0, 1]Nβ the

split ratios andΦ(·) the flow function. The functionsΦ(·) and
Ψi(·) should be tuned (for instance by least square estimation
if in parametric form) to reproduce the traffic dynamics in
the region of interest.

With these notations, the traffic model in [4] writes






(DE) ∂tρ + ∂xΦ(ρ) =
∑

i δx̂i
uiΨi(ρ) −

∑

j δx̌j
βjΦ(ρ)

(IC) ρ(0, x) = ρI(x)

(BC)

{
ρ(t, 0) ∼ ρup(t)
ρ(t, L) ∼ ρdo(t)

(1)
where δξ is the Dirac distribution centered atx = ξ. The
symbol ∼ is used to point out that the Dirichlet boundary
conditions are only active on a subset of(0, T ) determined by
the BLN condition [14]. For illustration, atx = 0, this condi-
tion tells thatρup applies only for entering characteristics, i.e.
whenΦ′(ρ(t, 0)) > 0 or if a discontinuous wave has positive
speed, i.e.

(
Φ(ρ(t, 0)) − Φ(ρup(t))

)
/
(
ρ(t, 0) − ρup(t)

)
.

Being a conservation law, Equation (1) is valid only if it is
interpreted in the distributional or weak sense [2] asρ may
develop discontinuities. A standard choice for the space of
test functions isΛ = C1

0 (]−∞, T [×]0, L[), making the weak
sense interpretation of (DE) in (1) of the form

∑

i

∫ T

0

uiΨi(ρ)
∣
∣
x=x̂i

φ
∣
∣
x=x̂i

−
∑

j

∫ T

0

βjΦ(ρ)
∣
∣
x=x̌j

φ
∣
∣
x=x̌j

+

∫ T

0

∫ L

0

ρ∂tφ + Φ(ρ)∂xφ +

∫ L

0

ρIφ
∣
∣
t=0

= 0 , ∀ φ∈ Λ (2)

Equation (2) is a set of integral equations ensuring the
conservation of vehicles and flows on any subset ofΩ.
Though its rigorous wellposedness requires additional anal-
ysis, it is assumed to have a unique piecewise-C1 solution
satisfying the entropy admissibility condition ([5], [15]).
Curves of discontinuity, known as shock waves, are denoted
{Γi}i=1,...,Ns

and correspond to strong congestion waves in
traffic applications. Depending on the initial and boundary
conditions as well as on the ramp flows, shocks may appear
in finite time when characteristics intersect. Each curve
of discontinuity Γi stating at timetIi is parameterized by
Γi = {(si(t), t), t ∈ (tIi , T )}. The entropy admissibility
condition ([5], [15]) tells that shocks are allowed to propagate
with speed ṡi(t) = [Φ(ρ)]|Γi

/[ρ]|Γi
if ρ|Γi

− < ρ|Γi

+, i.e. if
characteristic curves are oriented towardsΓi near the shock.

As ρ is discontinuous atx = x̂i and x = x̌j , the
productsδx̂i

uiΨi(ρ) and δx̌j
βjΦ(ρ) of a Dirac and a dis-

continuous function are ill-defined. This inconsistency can
be removed withΨi(ρ)|̂xi

= Ψi

(
max(limx↑x̂i

ρ, limx↓x̂i
ρ)

)

andΦ(ρ)|̌xj
= Φ(limx↑x̌j

ρ) from the traffic behavior.
To ease forthcoming calculus, Equation (DE) in (1) can be

formulated with a divergence operator in the frame(ex, et)

∇ ·

(
Φ(ρ)

ρ

)

= b(ρ, u, β) in Ω (3)

with b(ρ, u, β) =
∑

i δx̂i
uiΨi(ρ) −

∑

j δx̌j
βjΦ(ρ). This

formulation makes the method of characteristics [15] very
explicit by showing thatρ is the integral of the inhomoge-
neous termb(ρ, u, β) along the integral curves of the field

η(ρ) =

(
Φ′(ρ)

1

)

Contrary to linear hyperbolic equations,η is not a structural
property of the model as it depends on the solutionρ.



III. F IRST VARIATION OF THE ELWR MODEL

It is a known fact [16] that nonlinear hyperbolic equations
cannot be linearized along a trajectorȳρ. The reason is
that in the presence of shocks, small perturbationsρ̃ will
propagate with increasing magnitude in time as they modify
the shock speeds. Recently, a method was proposed in
[12] to compute the linearized dynamics with respect to a
finite dimensional parameter in the initial condition using
distributional calculus. We present in what follows a new
method based on the weak formulation to compute the first
variation of the ELWR model. This operator will then be
used to solve iteratively optimization problems.

Theorem (first variation of ELWR) The first variation
of the state equation along the trajectory(ρ̄, ρ̄I , ū) with
perturbation(ρ̃, ρ̃I , ũ) is given by






∂tρ̃ + ∂x (Φ′(ρ̄)ρ̃) =
∑

i δx̂i

(
ūiΨ

′
i(ρ̄)ρ̃ + ũiΨi(ρ̄)

)
−

∑

j δx̌j
βjΦ

′(ρ̄)ρ̃

ρ̃(0, x) = ρ̃I{
ρ̃(t, 0) = 0 when ρup applies.
ρ̃(t, L) = 0 when ρdo applies.

(4)
The dynamical part of (4) should be interpreted in the weak
sense and can be put in the divergence form

∇ ·

(
Φ′(ρ̄)ρ̃

ρ̃

)

= bρ(ρ̄, ū, β)ρ̃ + bu(ρ̄)ũ (5)

with

{
bρ(ρ̄, ū, β) =

∑

i δx̂i
ūiΨ

′
i(ρ̄) −

∑

j δx̌j
βjΦ

′(ρ̄)

bu(ρ̄) =
∑

i δx̂i
Ψi(ρ̄)

Proof: The weak formulation (2) is a set of equations
of the form F : (ρ, ρI , u) ∈ (L1

loc)
3 → R. A Taylor

expansion ofF around(ρ̄, ρ̄I , ū) with perturbation(ρ̃, ρ̃I , ũ)
can be performed by settingρ = ρ̄ + ρ̃, ρI = ρ̄I + ρ̃I and
u = ū + ũ. The functionΦ(·) being quadratic, we have
the expansionΦ(ρ̄ + ρ̃) = Φ(ρ̄) + Φ(ρ̄)′ρ̃ + 1

2Φ′′ρ̃2 with
Φ′′ a negative constant. The first variation of (2) is then
obtained by removing the nonlinear terms that vanish as
(ρ̃, ρ̃I , ũ) → (0, 0) and setting the boundary conditions of
ρ̃ to 0 as there are not allowed to vary.

It makes sense that the first variation of a conservation
law is itself a conservation law as the conservation principle
should be fulfilled by the unperturbed and perturbed systems.

Theorem (Solution of the first variation of ELWR) The
solution of Equation (4) is

ρ̃ = ρ̃c +

Ns∑

i=1

δΓi
κi (6)

with ρ̃c the solution inΩ \ (∪iΓi) of
{

∂tρ̃c + Φ′(ρ̄)∂xρ̃c = bρ(ρ̄, ū, β)ρ̃c + bu(ρ̄)ũ
ρ̃c(0, x) = ρ̃I(x)

(7)

and κi with i = 1, ..., Ns, the solutions of
{

d
dt

κi =bρ(ρ̄, ū, β)|Γi
κi+ ˙̄si[ρ̃c]|Γi

−[Φ′(ρ̄)ρ̃c]|Γi

κi(t
I
i ) = 0

(8)

This result states that the solution of (4) is the sum of the
piecewise-C1 solution of (7) constructed from the charac-
teristic field η(ρ̄) and Dirac measures on the shock curves
Γi. Equation (7) is well-posed at the shock locations as the
entropy condition ([5], [15]) states that the characteristics
are leaving the computational domain near these boundary
curves. In (8),d/dt is the full time derivative along a shock.

Proof: The proof relies on the integration by parts formula
that states that forF a continuously differentiable vector field
andg a continuously differentiable functional, we have

∫

Ω

(∇ · F ) g = −

∫

Ω

F · ∇g +

∫

∂Ω

F · νg

with ν the unit outward normal vector to∂Ω. Let consider
the special case of̄ρ with a single shockΓ on x = s̄(t).
We can writeρ̄ = ρ̄1 + (ρ̄2 − ρ̄1)H(x− s̄(t)) with H(·) the
Heaviside distribution,̄ρ1 and ρ̄2 being theC1 solutions at
the left and right of the shock. A formal differentiation would
give ρ̃ = ρ̃1 +(ρ̃2− ρ̃1)H(x− s̄(t))− s̃(ρ̄2− ρ̄1)δ(x− s̄(t)),
which suggests a solution of the form̃ρ = ρ̃c +

∑

i δΓi
κi as

proposed in [12]. Interpreting (5) in the weak sense, we have
the following set of equations for allφ ∈ C1

0 (]0, T [×]0, L[)

0 =

∫

Ω

(
Φ′(ρ̄)ρ̃

ρ̃

)

· ∇φ + bρ(ρ̄, ū, β)ρ̃φ + bu(ρ̄)ũφ

0 =
∑

k

∫

Ωk

(
Φ′(ρ̄)ρ̃c

ρ̃c

)

· ∇φ + bρ(ρ̄, ū, β)ρ̃cφ + bu(ρ̄)ũφ

+

Ns∑

i=1

∫

Ω

δΓi
κi

((
Φ′(ρ̄)

1

)

· ∇φ + bρ(ρ̄, ū, β)φ

)

with
⋃

k Ωk a decomposition ofΩ whereρ̄ is C1. Note that
δΓi

Φ′(ρ̄) is ill-defined asΦ′(ρ̄) is discontinuous along the
curve Γi. Nevertheless, this difficulty can be overcame by
using generalized characteristics [17] and Filippov’s theory
[18] of discontinuous fields. Without going into details, we
set Φ′(ρ̄)|Γi

= [Φ(ρ̄)]|Γi
/[ρ̄]|Γi

which generalizes the way
information propagates. An integration by parts gives

0 =

∫

Ω

(

−∇ ·

(
Φ′(ρ̄)ρ̃c

ρ̃c

)

+ bρ(ρ̄, ū, β)ρ̃c + bu(ρ̄)ũ

)

φ

+

Ns∑

i=1

∫ T

tI
i

(
−[Φ′(ρ̄)ρ̃c]|Γi

+ ˙̄si(t)[ρ̃c]|Γi

)
φ|Γi

+

Ns∑

i=1

∫ T

tI
i

κi

((
Φ′(ρ̄)|Γi

1

)

· ∇φ|Γi
+ bρ(ρ̄, ū, β)|Γi

φ|Γi

)

The first term is equal to 0 withρc the strong solution of
(7), which can be computed by the method of characteristics
[15] on each subsetΩk. The second term is obtained using
the fact thatφ is continuous along the shocks asφ ∈ C1

0 .
Finally, given the value affected toΦ′(ρ̄)|Γi

, we recognize
the directional derivative ofφ along the shock curveΓi

d

dt
φ|Γi

= ∂tφ|Γi
+ Φ′(ρ̄)|Γi

∂xφ|Γi
= ∂tφ|Γi

+ ˙̄si(t)∂xφ|Γi
(9)



leading to

0 =

∫ T

tI
i

κi

d

dt
φ|Γi

+
(

− [Φ′(ρ̄)ρ̃c]|Γi
+ ˙̄si(t)[ρ̃c]|Γi

+ bρ(ρ̄, ū, β)|Γi
κi

)

φ|Γi

An integration by parts in time concludes the proof.
It should be pointed out that (4) is not rigorously a

linearization of the state equation (1) as its solution (6) is
a distribution whereas the solution of (1) is inL1

loc. This
mismatch of functional spaces does not allow the mapping
H : u 7→ ρ to be linearized asH(ū + ũ) ≁ H(ū) + H′(ū)ũ.
Nevertheless, all the information of a linearization is in (6)
as the shock sensitivity is contained in its singular part.
The same kind of inconsistency appears for the Heaviside
distribution asH(x − ā − ã) ≁ H(x − ā) + δ(x − ā)ã.

Note that the shock sensitivity is given by a time integra-
tion in Equation (8) as perturbations of the state near a shock
modify the shock speed.

Optimization problems are often solved using iterative
algorithms that evaluate gradients of the cost based on the
first variation of the constraints. This result is thus a first step
towards the development of methods able to solve optimal
control problems involving nonlinear conservation laws.

IV. A PPLICATION TO OPTIMIZATION PROBLEMS

A. Problem formulation

Many traffic management problems can be casted as opti-
mal control problems with the traffic model as a dynamical
constraint and possible constraints on the admissible states
and controls. Using barrier techniques to move the last
constraints to the cost function, these problems take the form

Min
y

J (ρ, u) = Jobs(ρ) + Jbar(u)

=
∫ T

0

∫ L

0
Q(ρ) +

∫ T

0
R(u)

Subj. to (DE) − (IC) − (BC) of Eq. (1)

(10)

where the decision variabley can be any variable of the
problem depending on the application (generally the initial
conditionρI or the metering ratesu).

B. Gradient evaluation by the adjoint method

A simple variational analysis of Equation (10) by setting
ρ = ρ̄ + ρ̃ andu = ū + ũ gives the perturbed cost

J̃ (ρ̃, ũ) = J̃obs(ρ̃) + J̃bar(ũ)

=

∫ T

0

∫ L

0

DρQ(ρ̄)ρ̃ +

Nu∑

i=1

∫ T

0

Dui
R(ū)ũi

But ρ̃ is not a decision variable and is defined through the
traffic dynamics (1). A standard approach [9] is to use the
adjoint equation of its first variation to evaluatẽJ . We have
∫

Ω

{∂tρ̃+∂x (Φ′(ρ̄)ρ̃)−
∑

i

δx̂i
ūiΨ

′
i(ρ̄)ρ̃+

∑

j

δx̌j
βjΦ

′(ρ̄)ρ̃

−
∑

i

δx̂i
ũiΨi(ρ̄)}λ =

∫

Ω

{−∂tλ−Φ′(ρ̄)∂xλ−
∑

i

δx̂i
ūiΨ

′
i(ρ̄)λ+

∑

j

δx̌j
βjΦ

′(ρ̄)λ

︸ ︷︷ ︸

A(λ)

}ρ̃

+

∫ L

0

ρ̃λ
∣
∣
t=T

︸ ︷︷ ︸

BT (λ,ρ̃)

−

∫ L

0

ρ̃λ
∣
∣
t=0

︸ ︷︷ ︸

BI(λ,ρ̃)

+

∫ T

0

Φ′(ρ̄)ρ̃λ
∣
∣
x=L

︸ ︷︷ ︸

BD(λ,ρ̃)

−

∫ T

0

Φ′(ρ̄)ρ̃λ
∣
∣
x=0

︸ ︷︷ ︸

BU (λ,ρ̃)

−

Nu∑

i=1

∫ T

0

λ|x̂i
Ψi(ρ̄)|x̂i

︸ ︷︷ ︸

Ci(λ)

ũi

+

Ns∑

i=1

∫

Γi

1
√

1 + ˙̄s2
i

(
−1
˙̄si

)

·

(
[Φ′(ρ̄)ρ̃]|Γi

[ρ̃]|Γi

)

λ|Γi

︸ ︷︷ ︸

D(λ,ρ̃)

By setting






A(λ) = DρQ(ρ̄)
BT (λ, ρ̃) = 0
BD(λ, ρ̃) = 0
BU (λ, ρ̃) = 0
D(λ, ρ̃) = 0

(11)

we obtain

J̃ =

∫ L

0

BI(λ, ρ̃) +

Nu∑

i=1

∫ T

0

{Ci(λ) + Dui
R(u)}ũi

=

∫ L

0

λ(0, ·)ρ̃I +

Nu∑

i=1

∫ T

0

{Ψi(ρ̄(·, x̂i))λ(·, x̂i)+Dui
R(u)}ũi

Theorem (Gradient evaluation) The gradient of the
abstract problem (10) may be evaluated by

∇ρI
J = λ(0, ·) (12)

∇ui
J = Ψi(ρ̄(·, x̂i))λ(·, x̂i) + Dui

R(u) (13)

with the adjoint variableλ solving






(DE) −∂tλ−Φ′(ρ̄)∂xλ = DρQ(ρ̄)
+

∑

i δx̂i
ūiΨ

′
i(ρ̄)λ −

∑

j δx̌j
βjΦ

′(ρ̄)λ

(FC) λ(T, x) = 0

(BC)







λ(t, 0) = 0 when ρup does not apply.
λ(t, L) = 0 when ρdo does not apply.
λ|Γi

= 0, i = 1, ..., Ns

(14)

Proof: The adjoint equation (14) with final condition
(FC) and boundary conditions (BC) is defined so that all
equalities in (11) are satisfied. The boundary conditions of
the adjoint equation (14) and of the first variation (4) apply
on complementary domains that depends on the solutionρ̄ of
(1). Additional homogeneous boundary conditionsλ|Γi

= 0
are provided at the shock locations to remove the singular
part of (6). They make the reverse problem (14) well-posed
as backward characteristics leave the boundariesΓi.

This gradient evaluation method may be embedded in any
descent algorithm to compute iteratively a solution to (10).
Even with the analytic expressions (12,13,14), discretizations



are unavoidable as infinite dimensional calculus is needed.
Numerical schemes solving (1) and (14) are available in [4].

The dual variableλ can be interpreted as a marginal cost.
The backwards differential operator−∂tλ − Φ′(ρ̄)∂xλ in
(14) implies thatλ is the integral of the inhomogeneous
term along the backwards characteristics. The characteristic
field being the same than for the first variation (4), the dual
equation can be interpreted as the following

1) DρQ is used to trig the adjoint variable where improve-
ments are possible. It creates some marginal cost.

2) The marginal cost travels towards some regions where
decision variables are available by following the back-
wards characteristics.

V. TRAFFIC CONTROL AND MONITORING APPLICATIONS

Two traffic related problems are treated as illustrations.
The first one is the optimization of a coordinated and traffic
responsive ramp metering algorithm to reduce congestion on
freeways. The second is the estimation of the traffic state
where no sensor is available.

A. The ramp metering problem

Considering the objective of maximizing the vehicle-
distance-travelled, [4] proposed the following formulation.

Min
u

Jr(ρ) = −
∫ T

0

∫ L

0
Φ(ρ)

Subj. to
{

(DE) − (IC) − (BC) of Eq. (1)

u ∈ Uad = L2
(
(0, T ), [0, 1]

)Nu

(15)

Uad being a compact and convex subset, the barrier function

J M
bar(u) = −

1

M

Nu∑

i=1

∫ T

0

ln
(
ui(1 − ui)

)

can be used, leading to the augmented problem

Min
u

Jaug(ρ, u) = Jr(ρ) + J M
bar(u)

Subj. to (DE) − (IC) − (BC) of Eq. (1)
(16)

The solution of (16) will converge to that of (15) asM → ∞
while keeping solutions of (16) in the admissible setUad.
In this problem, the initial conditionρI is supposed to be
known thus it is not a decision variable and̃ρI = 0. The
first variation of the cost functional thus reduces to

J̃aug =

Nu∑

i=1

∫ T

0

{Ψi(ρ(·, x̂i))λ(·, x̂i) + Dui
J M

bar(u)}ũi

giving the following gradient inL2

∇ui
Jaug = Ψi(ρ(·, x̂i))λ(·, x̂i) + Dui

J M
bar(u) (17)

and the dual equation

− ∂tλ − Φ′(ρ̄)∂xλ = Φ′(ρ̄)

+
∑

i

δx̂i
ūiΨ

′
i(ρ̄)λ −

∑

j

δx̌j
βjΦ

′(ρ̄)λ

This result is in accordance with our previous results in
[4] obtained with a slightly different method.

The following descent algorithm solves (15) iteratively.

Require: ui := uinit
i ∈ (0, 1), M := Minit, ǫi, ǫo, ∆M

while J M
bar(u)/Jr(ρ) > ǫo do

while ‖∇uJaug‖ > ǫi do
Computeρ from (1)
Computeλ from (14)
Compute∇uiJaug from (17)
Updateui := ui − t∇uiJaug, t ∈ (0, 1) s.t. u ∈ (0, 1)

end while
M := M.∆M

end while

Figures 3 and 4 give the obtained results for the ramp
metering optimization of the freeway section of Figure 1. A
time horizon of 1.5 hour at the beginning of the afternoon
rush hours is considered with real field initial and boundary
data courtesy of DDE Is̀ere. We observe that the metering
rates decrease in Figure 4 to cope with the incoming con-
gestion. The weakness of this method is that it requires the
knowledge of the initial conditionρI and of the estimates
of the boundary conditionsρup and ρdo. Receding horizon
techniques may help to avoid propagation of errors in the
estimates ofρI , ρup andρdo.

Jr

Jaug

Iterations

Fig. 3. Reduction of the costsJr andJaug
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Fig. 4. Optimal on-ramp flows before and after optimization in the
afternoon rush hours.



B. The state estimation problem

Consider the problem of estimating the current state
ρ(0, x) based on the density measurementsξi(t) at a finite set
of locations{x̃i}

Nm

i=1 on the time horizon(−T, 0). As nonlin-
ear conservation laws are not invertible (cannot be integrated
backwards), iterations on the final condition would not be
valid. The alternative is to search for the initial condition
that minimizes the square error at the sensor locations, the
final state being given by a one-to-one correspondance. The
state estimation problem is formulated as following

Min
ρI

Jo(ρ) =
∑Nm

i
1
2

∫ T

0
(ρ(·, x̃i) − ξi)

2

=
∑Nm

i
1
2

∫ T

0

∫ L

0
δx̃i

(ρ − ξi)
2

Subj. to (DE) − (IC) − (BC) of Eq. (1)

(18)

In this problem, the ramp metering ratesui are supposed
to be known leading tõui = 0 for all i. We get

J̃o =

∫ L

0

λ(0, ·)ρ̃I

leading to the gradient

∇ρI
Jo = λ(0, ·) (19)

and the adjoint equation

− ∂tλ − Φ′(ρ̄)∂xλ = δx̃i
(ρ − ξi)

+
∑

i

δx̂i
ūiΨ

′
i(ρ̄)λ −

∑

j

δx̌j
βjΦ

′(ρ̄)λ

The marginal cost interpretation gives some insight on
the limitations of the method. As characteristics linking the
sensor locations to the initial condition in(−T, 0) are the
only ones to provide information in the descent method, a
lack of such characteristics would lead to a poor estimation.
Nevertheless, this is a structural limitation of the system that
cannot be overcome by other methods.

The following descent algorithm solve (18) iteratively
and Figures 5 and 6 present the results for 5 sensors.

Require: ρI := ρinit
I ∈ (0, ρm), ǫ

while ‖∇ρI
Jo‖ > ǫ do

Computeρ from (1)
Computeλ from (14)
Compute∇ρI

Jo from (19)
UpdateρI := ρI −∇ρI

Jo

end while

ρ

Space

Jo

Iterations

Fig. 5. Estimated initial condition (dashed: actual, plain: estimated, dot:
linear interpolation of measurements) and cost evolution.

ρ

Time Space

ρ

Time Space

Fig. 6. Actual density distribution (left) and residual error after optimization
(right). The 5 black lines show the sensor locations.

VI. CONCLUSION

This paper propose a rigorous methodology to compute the
first variation of a scalar conservation law by using its weak
interpretation. Though this first variation cannot be called
rigorously a linearization, it can be used to solve optimization
problems. Traffic control and monitoring applications were
considered to show the practical usefulness of the approach.
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