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Traffic Control and Monitoring with a Macroscopic Model in the Presence of Strong
Congestion Waves

Denis Jacquét Carlos Canudas de Wit and Damien Koenig
Laboratoire d’Automatique de Grenoble
BP. 46, 38 402 St. Martin d’Bres, France

Abstract— This paper treats the problem of designing con- few literature is available for nonlinear conservation laws and

trollers and estimators for freeway management applications shocks are generally disregarded [10].
using macroscopic models and optimal control. The model is

3. nonlinear conkservation 'a"r‘]’ thlf‘t may dev%‘ophand propaga:]e The contribution of this paper is to provide a new method-
Iscontinuities known as shock waves and thus prevent the : : :

use of variational techniques requiring regularity. We show in ology that takes !nto ac.count the possible propagatlon of
this paper how a valid first variation of the model can be SPhOcks when solving optimal control problems with conser-
computed, give an explicit formula of its solution and use it to  vation laws. The motivation of such work is that many traffic
evaluate gradients of optimization problems using the adjoint management applications take the form of optimization prob-
method. The coordinated ramp metering problem and the state  |ems. Examples are the design of coordinated ramp metering
estimation problem are treated as illustrations. strategies that maximise the vehicle-distance-travelled and
the estimation of the distributed traffic density that best
matches the observations at finite sensor locations.

Traffic control and monitoring is a mature and still active

! . . : Optimal control problems involving distributed systems
research field. Given the large size of freeway infrastructures . . . ) .
ate classically solved iteratively using gradient descent meth-

macroscopic traffic models are often considered, the simplesés that evaluate gradients of the cost functional based on

. . . : ; 0
one bel_ng the Lighthill Wh|tham R|cha_rds (L\.NR.) model [1] the linearized dynamics. The advantage of this approach
that relies on the vehicle conservation principle and the . . A

- . . .. . IS to use the unavoidable discretizations only to solve the
constitutive assumption that vehicles travel at an equilibrium

velocity function of the local density only. This modellnflmte dimensional conditions of optimality, making this

takes the form of a nonlinear hyperbolic partial dif'ferentiafa‘.pproaCh computgtmnally efﬂqept and usually more con-
. : istent than discretize-then-optimize methods. Unfortunately,
equation also called a conservation law, a class known f

be difficult to analyse [2] and simulate [3] because of th Re extended LWR model may develop shock waves and is

ossible presence of propagating discontinuities called sho(ﬁc?<us not linearizable, at least not in the usual sense. Though
b P propagating me works [11] discard these shocks when linearizing, some

waves. qu practical applications, the authprs proposed in [i cent results [12] proposed an elegant way to compute para-
an extension of the LWR model that takes into account on/o . Y . . o
: . metric linearization of conservation laws using a distribu-

ramps and on-ramp saturations for heavily congested main " . . :

: : : . .. tional interpretation. Using the weak form of the conservation
lanes by adding an inhomogeneous term with Dirac distriby- . ) )
) o aw, this paper provides a rigorous framework to compute
tions. Thought the consequences of this irregular source ter,

) H]t]a first variation of the traffic model and gives a formula to
should be addressed more carefully, we assume this mo explicitly compute its solution. Though not being exactly a
to be well-posed when interpreted in the distributional sens plcitly P ) g 9 y

which is standard for nonlinear conservation laws [5], [2] finearization in the strict sense, this first variation is enough
The distributed nat f th del led th, " 10 solve iteratively optimal control problems where gradients
ne distributed nature of the model led some authors [ re evaluated using the classical method of adjoint calculus.

to discretize the state equation in order to apply finite dlmeq

onal trol techni N thel lid di tizati n addition, this setting provides a nice interpretation of the
S|fona con r(t)' ef mqu;s. ter:/erG edess, vall th |Zcre za Ito cessary conditions of optimality that is not available in
ot conservation faws [3] as the odunov MEthod canno bo":‘iscretize—then-optimize approaches.

put in a form suitable for control (i.e. continuous or discrete

state equation). A notable exception is the discretization pro- This paper treats the coordinated ramp metering problem
posed in [7] which is used in [8] but it assumes a piecewisgnd the state estimation problem but the proposed methodol-
linear flow function and leads to rather Complicated hybl’l(bgy may be app“ed to any control or estimation prob|em as
controllers. The alternative is to perform the analytical deSiggoon as an optimization formulation is adopted_ Numerical

with the distributed system directly, discretizations beingxamples using real field data are proposed in the last section.
used for practical implementation only. Nevertheless, if the

field of partial differential equation control is rather mature Notations. Cj is the set of continuously differentiable
for elliptic, parabolic and hyperbolic linear systems [9], veryfunctions with compact support. Fg# discontinuous on
I, pr and p} are its left and right values alonfj and

*Corresponding authogteni s.j acquet@ag.i nsi eg.i npg.fr  [p]=pit—pir. Variables of integration are omitted in integrals.

I. INTRODUCTION



[l. THE EXTENDEDLWR MODEL (ELWR) With these notations, the traffic model in [4] writes

_ - [(DE) Op+ 0:.2(p) = 32, 62,uiWi(p) — 32, 62,0;%(p)
The authors proposed in [4] a model for freeway section (IC) p(0,2) = p;(x)

with on/off ramps suited for applications in ramp metering, p(t,0) ~ pup(t)
state estimation and missing data reconstruction. It is base| ) p(t, L) ~ pao(t)
on the vehicle and flow conservation principles, as in the Q)

LWR formulation [1], where a source term is introduced tovhere . is the Dirac distribution centered at = £. The
handle ramps. For illustration, we consider a section of theymbol ~ is used to point out that the Dirichlet boundary
beltway of Grenoble (France) as depicted on Figure 1.  conditions are only active on a subse{0f7") determined by
the BLN condition [14]. For illustration, at = 0, this condi-
tion tells thatp,,, applies only for entering characteristics, i.e.
when®’(p(t,0)) > 0 or if a discontinuous wave has positive
speed, i.e(®(p(t, 0)) — ®(pup(1)))/ (p(t,0) — pup(t)).

Being a conservation law, Equation (1) is valid only if it is
interpreted in the distributional or weak sense [2]pamay
develop discontinuities. A standard choice for the space of
test functions is\ = C}(]—oo, T[]0, L[), making the weak
sense interpretation of (DE) in (1) of the form

T T

i

@ Counting stations

TprL L
+// PO+ B(p)Duh +/o"’¢’|t:0 —0,VécA ()

Fig. 1. Study case considered for illustration and numerical examples.Equa‘tlon (2) IS a S_et of integral equations ensuring the
conservation of vehicles and flows on any subsetof
Though its rigorous wellposedness requires additional anal-
Let (z,t) € Q@ = (0,L) x (0,T) be the space and time ysis, it is assumed to have a unique piecewigesolution
independent variables. The vehicle density, aggregated Bytisfying the entropy admissibility condition ([5], [15]).
lanes, is denotech(z,t) and plays the role of the state Curves of discontinuity, known as shock waves, are denoted
variable of the model. The vehicles are assumed to travet,},_, \ and correspond to strong congestion waves in
at an equilibrium speed(z,t) = V(p(z,t)), leading to traffic applications. Depending on the initial and boundary
the flow function®(p) = pV'(p) known as the fundamental conditions as well as on the ramp flows, shocks may appear
diagram.We consider the Greenshield model [13] given by finite time when characteristics intersect. Each curve
the concave quadratic for(p) = pur — p*vi/pm With  of discontinuity I'; stating at timet! is parameterized by
ve the free flow speed ang,, the maximal density. The 1, = {(s,(¢),t),t € (t/,7)}. The entropy admissibility
N, on-ramps are located 4ti1, ..., 2y, } and theNg off-  condition ([5], [15]) tells that shocks are allowed to propagate
ramps at{ii,...,&n,}. The i™ on-ramp flow is set to with speeds;(t) = [®(p)]y /ol if p < pit, ie. if
ui ()W (p(&,t)) with u(t)=(usr(t), ..., un,(t)) € [0,1]"  characteristic curves are oriented towaFdshear the shock.
the metering rates andl;(-) a smooth saturation function as As p is discontinuous atr = 3; and z = %, the
depicted on Figure 2 that limits the inflow for large densitiegroductsd;, u;¥;(p) and d;,3;®(p) of a Dirac and a dis-
on the main lanes. Th&" off-ramp flow is set to be equal continuous function are ili-defined. This inconsistency can
be removed with¥;(p). = ¥; (max(limgz, p, limg |z, p))

Pm
unsaturated saturated

Ti(p(t, 2:)) and ®(p),,, = ®(lim,3, p) from the traffic behavior.
max ramp flow To ease forthcoming calculus, Equation (DE) in (1) can be
\ formulated with a divergence operator in the fratag, e;)
o oo v (") <o) ma @)

with b(p,u, ) = >, 0z,u:¥i(p) — >, 65,8;®(p). This
formulation makes the method of characteristics [15] very
explicit by showing that is the integral of the inhomoge-
neous ternb(p, u, 3) along the integral curves of the field

Fig. 2. Smooth saturation at on-ramp

to f;(t)(p(#:, 1) with (B1(t),.... B, (1) € [0,1]V the ,
split ratios andb(-) the flow function. The function&(-) and n(p) = (‘I’ (P)>
U, () should be tuned (for instance by least square estimation 1

if in parametric form) to reproduce the traffic dynamics inContrary to linear hyperbolic equationsgjs not a structural
the region of interest. property of the model as it depends on the solufion



IIl. FIRST VARIATION OF THE ELWR MODEL

It is a known fact [16] that nonlinear hyperbo”c equations This result states that the solution of (4) is the sum of the
cannot be linearized along a trajectopy The reason is Piecewise&" solution of (7) constructed from the charac-
that in the presence of shocks, small perturbatipnsill teristic field n(p) and Dirac measures on the shock curves
propagate with increasing magnitude in time as they modifli- Equation (7) is well-posed at the shock locations as the
the shock speeds. Recently, a method was proposed GAtropy condition ([5], [15]) states that the characteristics
[12] to compute the linearized dynamics with respect to are leaving the computational domain near these boundary
finite dimensional parameter in the initial condition usingcurves. In (8)d/dt is the full time derivative along a shock.

distributional calculus. We present in what follows & new proof: The proof relies on the integration by parts formula
method based on the weak formulation to compute the firgist states that foF a continuously differentiable vector field

variation of the ELWR model. This operator will then beang a continuously differentiable functional, we have
used to solve iteratively optimization problems.

Theorem (first variation of ELWR) The first variation / (V-F)g= —/ F-Vg+ F-vg
of the state equation along the trajectofy, pr,u) with Q Q o0
perturbation (p, pr, @) is given by with » the unit outward normal vector t8). Let consider
Bep + 0, (¥ (p)) = the special case o with a single shock™ on = = 5(¢).

Zi 8z, (ﬂz\:[l;(ﬁ)ﬁ + aijz(ﬁ)) _Z ' 55;./6j(1)/(ﬁ)ﬁ We can writep = ﬁl + (ﬁQ _ ﬁl)H(CC — E(t)) with H() the
50,2) = pr 7 Heaviside distributionp! and p? being theC! solutions at
;i)(t 0) =0 when py, applies the left and right of the shock. A formal differentiation would
) - up . . ~ ~ ~ ~ _ ~y _ _
{ ﬁ(t7L) =0 when Pdo applies. give p = p1—|—(p2—pl)H(.I‘—S(t))—S(pQ—pl)(s(Jj—S(t)),
(4) which suggests a solution of the forin= p. + 3, dr,; as
The dynamical part of (4) should be interpreted in the weaRroPosed in [12]. Interpreting (5) in the W?ak sense, we have
sense and can be put in the divergence form the following set of equations for a§} € C;5(]0, 7[x]0, L)

v (YO ppamsenen © 0= L (D7) %o a0, mp0 + vulphio

o bp(pB) = 3, 0a, V(D) — X, 65,89 () _ ' (p)pe | 5 0. 8)5 Vil
win {40 ) ' 2/9( 27 v a0l

N, P
Proof: The weak formulation (2) is a set of equations +Z/ or, ki ((q) 1(p)> ~V¢+bp(p,u,ﬂ)¢>
of the form F : (p,pr,u) € (Li.)® — R. A Taylor i=1 74

expansion ofF around(p, p;, @) with perturbation(p, p;, @)
can be performed by setting= p + 5, pr = pr + pr and

u = 4 + 4. The function®(-) being quadratic, we have
the expansion®(p + p) = ®(p) + ®(p)'p + " p* with
®” a negative constant. The first variation of (2) is the
obtained by removing the nonlinear terms that vanish
(p,pr,u) — (0,0) and setting the boundary conditions of
p to 0 as there are not allowed to vary.

u o' (p)pe N -
It makes sense that the first variation of a conservatior’ ~ /Q (‘V' ( 3 +b,(p, @, 3)pe + bu(p) | ¢
law is itself a conservation law as the conservation principle N, .1
should be fulfilled by the unperturbed and perturbed systems. / (-[‘P'(ﬁ)ﬁchp +5(t) [ﬁc]\r-) dir,
2 ; i ’

Theorem (Solution of the first variation of ELWR) The .

solution of Equation (4) is < (T (D). _
+ / Ki (( ({0' ) Vo, +bp<p,u76)ri¢>h)
t

with [J,, Q2 a decomposition of2 wherep is C*. Note that

dr, ®’(p) is ill-defined as®’(p) is discontinuous along the
curve I';. Nevertheless, this difficulty can be overcame by
using generalized characteristics [17] and Filippov’s theory
18] of discontinuous fields. Without going into details, we
et d'(p)r, = [®(p)r,/[plr, Which generalizes the way
information propagates. An integration by parts gives

N, I
- . : i=1"%
p=rpe+ Y Orki (6)
i=1 The first term is equal to 0 with, the strong solution of
with 5. the solution in® \ (U,T;) of (7), which can be computed by the method of characteristics

. Vna < L N [15] on each subse&®,. The second term is obtained using
{ Ope + ' (p)Oxpe = bp(p, u, B)pe + bu(p)u (7) the fact that¢ is continuous along the shocks asc C.
pe(0,2) = pi(z) Finally, given the value affected t&'(p),.,, we recognize
and k; with ¢ = 1, ..., Ny, the solutions of the directional derivative of along the shock curve;

4 t:b P, U, r, ki Li Dc F»_(D/ D)pec I, .
{ e e e SOy g 00 0ur, = B0, + 500,04, @



leading to /{ IA—D' (p)D A Z%uz )\+Z(5mjﬁj (P)A}D

T dq .
0= [ migyor,+ (~ @@+ 5Ol ne
4 L L T T
+bp(ﬁ>ﬂ7ﬁ)\rﬁi>¢\m +/ﬁ)\|t:T7/p~)\|t:O+/ (I)/(ﬁ)/”"m:Lf/ @’(p)ﬁ)\|x:0
' ' 0 N—— W—/ 0 0
An integration by parts in time concludes the proof. m BT AP Br(Ap) Bp (A7) By (A,5)
It should be pointed out that (4) is not rigorously a
linearization of the state equation (1) as its solution (6) is— / e Vi(P)2, Ui
a distribution whereas the solution of (1) is i, .. This c, (A)

mismatch of functional spaces does not allow the mapplng N, y
H :u— p to be linearized a8t (a + ) ~ H(a) + Z/ ( 1> <[¢/(~P)P]|Fi) A,
Nevertheless, all the information of a I|near|zat|0n |s in (6) P V1457 [Plir, '
as the shock sensitivity is contained in its singular part.

D(\,p

The same kind of inconsistency appears for the Heaviside _ P
distribution asH(z —a — a) » H(z —a) + §(z — a)a. By setting

Note that the shock sensitivity is given by a time integra- A = D,0(p)
tion in Equation (8) as perturbations of the state near a shock Brvj) = 0 P
modify the shock speed. BD(): 5 = 0 (11)

Optimization problems are often solved using iterative Bu()\7/3) - 0
algorithms that evaluate gradients of the cost based on the DX [’3) - 0
first variation of the constraints. This result is thus a first step _ ’
towards the development of methods able to solve optimdle obtain
control problems involving nonlinear conservation laws. ) L w T

IV. APPLICATION TO OPTIMIZATION PROBLEMS J = / Br(Ap) + Z/ {Ci(A) + Do R(u) i

A. Problem formulation

Many traffic management problems can be casted as opti- 7/ p1+Z/ {¥:(p JAC, i)+ Dy, R(u) Y,

mal control problems with the traffic model as a dynamical

constraint and possible constraints on the admissible states
Theorem (Gradient evaluation) The gradient of the

and controls. Using barrier techniques to move the Iar%:p bl 10 b | 4b
constraints to the cost function, these problems take the fo stract problem (10) may be evaluated by

Min  J (p, 1) = Jovs(p) + Toar (1) Vo T = A0,) (12)

T (L T Vu, I =V:i(p(-, )N, &) + Dy, R 13
=JoJy Qo)+ Jy R o) o =P B ) DuRl) - (39)
with the adjoint variable\ solving
Subj. to (DE) — (IC) — (BC) of Eq. (1)
n . . (DE) —0,A—%'(p)0:A = D,Q(p)
where the decision variablg can be any variable of the +>, 05,4 Y5(p ))\ > 02,8;9 (p)A
problem depending on the application (generally the initial (FC) \(T,z) =0 ' !
condition p; or the metering rates). A(t,O) =0 when pyp does not apply.
B. Gradient evaluation by the adjoint method (BC) ¢ A(t; L) =0 when pq, does not apply.
A simple variational analysis of Equation (10) by setting Ap, =0, i=1,.., N, (14)
p=p+ pandu = u + @ gives the perturbed cost
T (P, @) = Tobs(p) + Toar () Proof: The adjoint equation (14) with final condition

_ /OT/OL D,Q(p)p + %_; /OT D, R(a)a

(FC) and boundary conditions (BC) is defined so that all
equalities in (11) are satisfied. The boundary conditions of
the adjoint equation (14) and of the first variation (4) apply

But p is not a decision variable and is defined through thgn complementary domains that depends on the solitiaf
traffic dynamics (1). A standard approach [9] is to use ther). Additional homogeneous boundary conditios = 0

adjoint equation of its first variation to evaluate We have

JRCIZEN ONRRALID SALLY
J
- Z(Smai\l’i(ﬁ)}/\ =

are provided at the shock locations to remove the singular
part of (6). They make the reverse problem (14) well-posed
as backward characteristics leave the bounddrjes [ |
This gradient evaluation method may be embedded in any
descent algorithm to compute iteratively a solution to (10).
Even with the analytic expressions (12,13,14), discretizations



are unavoidable as infinite dimensional calculus is needed.The following descent algorithm solves (15) iteratively.
Numerical schgmes solving (1) and (14) are avalla_ble in [4hequire: wp = W € (0,1), M i= M, €1, €0y AM
The dual varlabI.@\ can .be interpreted as a margmall cost. while 7 (u)/Ji(p) > €0 do

The backwards differential operatero,A — ®'(p)9, A in while [|VyJaugll > € do

(14) implies that) is the integral of the inhomogeneous Computep from (1)

term along the backwards characteristics. The characteristic ggmgﬂtgg fro}“ (1f"%m an

. . - E At u; Jaug

field pemg the same than for the first varllatlon (4), the dual Updatew, i— w — tVu, Juugs £ € (0,1) s.t.u € (0,1)
equation can be interpreted as the following end while

1) D,Q is used to trig the adjoint variable where improve- ~ M := M.AM
ments are possible. It creates some marginal cost. —€nd while
2) The marginal cost travels towards some regions where Figures 3 and 4 give the obtained results for the ramp
decision variables are available by following the backmetering optimization of the freeway section of Figure 1. A
wards characteristics. time horizon of 1.5 hour at the beginning of the afternoon
rush hours is considered with real field initial and boundary
V. TRAFFIC CONTROL AND MONITORING APPLICATIONS (515 courtesy of DDE &ve. We observe that the metering
Two traffic related problems are treated as illustrationsates decrease in Figure 4 to cope with the incoming con-
The first one is the optimization of a coordinated and traffigestion. The weakness of this method is that it requires the
responsive ramp metering algorithm to reduce congestion &mowledge of the initial conditiorp; and of the estimates
freeways. The second is the estimation of the traffic statsf the boundary conditiong,,, and pq,. Receding horizon
where no sensor is available. techniqgues may help to avoid propagation of errors in the
estimates oz, pup and pqo.

A. The ramp metering problem

Considering the objective of maximizing the vehicle-
distance-travelled, [4] proposed the following formulation.

Min  Ji(p) = = [y ®(p)

Subj. to {(DE)—(IG)—(BC) of g (1)

u € Upa = L2((0,T),[0,1))™"
U.q being a compact and convex subset, the barrier function

jbj\gr(u) = —% Zu/o In (’U,l(l — ’U,,L))

can be used, leading to the augmented problem
].V.El’l jaug(p7 u) _ \%(p) + jlf\gr(u) 16) Fig. 3. Reduction of the costg; and Jaug
Subj. to (DE) — (IC) — (BC) of Eq. (1)

The solution of (16) will converge to that of (15) 48 — oo 1000 — 1000 —

while keeping solutions of (16) in the admissible $&. w00 o0

In this problem, the initial conditiorp; is supposed to be

known thus it is not a decision variable apd = 0. The

Iterations

On-ramp flow 1 On-ramp flow 2

p
- 1l
600 ! 1\ 6001, | 0

1 Vo
1 '
Nedhn o [ “\ ’
e

flow [veh/h]
flow [veh/h]

. .. . 400P 1 11w Ve V\Iﬁ\’/ ’l’/d 400} 1,y v ap
first variation of the cost functional thus reduces to W " A
N 200t ' P o 200 /
u T
= o N N M ~ 0 0
Jaug — Z/O {\I}z (P(', xl)))\(’ mz) + Duijbar(u)}ui ) 05 Tlrr‘91”‘] 15 0 05 Tlmsl[h] 15
i=1 On-ramp flow 3 On-ramp flow 4
giving the following gradient inZ.2 1000 1000 N /
800 800 N (]

Vui«:faug = qj?(p(7j7))A(7jl) + Dui\jlf\;[r(u) (17) h

g | \ s ot U
g 600 S i g 600 A i h th
. z "J' "”] ‘/H ' \’\\’H f g ) t\’\v‘rl ) W A \/ ‘u‘ A
and the dual equation e (I AP T I N R

200U ! - py 2000 ‘\“ [ !
y 3
— A =D (p)OA=D (p
t (P) T (P) % 05 1 15 % 0.5 1 15
— !/ — /= Time [h] Time [h]
+ E 03, u; V5 (PN — E 6z, 3% (p)A
i J

. . . . _Fig. 4. Optimal on-ramp flows before and after optimization in the
This result is in accordance with our previous results iRfternoon rush hours.

[4] obtained with a slightly different method.



B. The state estimation problem

Consider the problem of estimating the current state »
p(0, z) based on the density measurements) at a finite set
of locations{#;} X on the time horizor{—T’, 0). As nonlin-
ear conservation Iaws are not invertible (cannot be integrate
backwards), iterations on the final condition would not be =~ == ) T
valid. The alternative is to search for the initial condition TM& = gpace Time " gpace
that minimizes the square error at the sensor locations, the
final state being given by a one-to-one correspondance. TRig. 6. Actual density distribution (left) and residual error after optimization
state estimation problem is formulated as following (right). The 5 black lines show the sensor locations.

Mm ‘70( - v: e 2 fo &)
_ Z- 1] f 5- (p_g)g (18) VI. CONCLUSION
Subj. to (DE) . (1(23) v (OBCI)i of qu (1) This paper propose a rigorous methodology to compute the

) ] first variation of a scalar conservation law by using its weak
In this problem, the ramp metering ratesare supposed interpretation. Though this first variation cannot be called

to be known leading tai; = 0 for all i. We get rigorously a linearization, it can be used to solve optimization
. L } problems. Traffic control and monitoring applications were
Jo = / A0, -)pr considered to show the practical usefulness of the approach.
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Fig. 5. Estimated initial condition (dashed: actual, plain: estimated, do
linear interpolation of measurements) and cost evolution.



