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Abstract— This paper presents a nonlinear control design for
a first-principles based model of an argon plasma process. In
this study, a Hammerstein-type structure was employed as a
basis for a feedback control design. Artificial neural networks
were used to accurately model the static nonlinearity. In the de-
veloped Hammerstein model, variations in the process dynamics
were accounted for by considering parametric uncertainty. A
control design strategy based onµ-synthesis was applied to
deliver good tracking performance and disturbance rejection.

I. INTRODUCTION

In recent years, the reactive ion etching (RIE) process has
received tremendous attention and nowadays it has no equal
in value alternative in the semiconductor industry. RIE is
a low-pressure plasma system, which involves chemical and
physical reactions to achieve an etching process with suitable
properties such as selectivity, uniformity and anisotropy. The
physical and chemical mechanisms in RIE are known to be
very complex, and are currently not entirely understood.

The modelling of plasma processes requires a thorough
understanding of the plasma dynamics, which is naturally
hard to analyse. This process is known to be sensitive to
various parameters, such as chamber geometry, accuracy of
measurement sensors, chemical disturbances, etc., [1]. In
other words, a data-based model obtained for a particular
plasma chamber would not necessarily be good enough
for another chamber of the same brand and specifications,
exploited under the same operating conditions. A more
sophisticated approach to model plasma processes is to
exploit the information that is available about the physical
and chemical interactions that occur in the process. Models
based on this methodology are referred to as first-principles
models. As opposed to data-based models, first-principles
models take advantage of parameters that describe chamber
geometry, delivery of radio-frequency (RF) power to the
chamber, actuators, etc. While a lot of work has been done
on first-principles based models for RIE, various literature
sources have pointed out that these models are not suitable
for analysis and control system design, [2]. Although such
models are typically quite complex and may exhibit severe
nonlinearities, once fully developed, they can be applied for
control design of any plasma system designated for RIE.
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Model complexity (model order) can be reduced through
eliminating static and dynamic components that have none
or very little effect on the plasma model behaviour. How-
ever, parametric variations and neglected dynamics can be
accommodated in the model as structured and/or unstructured
model perturbations. Although the majority of control design
techniques are based on linear models, such models are only
adequate for a relatively small operating space. Since real
process models are essentially nonlinear, it is more natural
to use nonlinear models for control design. Despite the
fact that such models are typically difficult to analyse, they
provide more accurate system representation of the process
and allow exploiting larger operating space. In recent years,
nonlinear model structures based on separation of static and
dynamic responses have become quite popular. However,
such separation is not always possible. Models of this
type are normally referred as to Wiener and Hammerstein
structures. In Hammerstein structures, which are preferred by
researchers, the memoryless static nonlinearity is followed by
a linear dynamic block, as shown in Fig.1. Such decomposi-
tion facilitates the feedback design procedures and provides
valuable information regarding the system characteristics.
Plasma processes used for RIE can be modelled as Hammer-
stein systems, under certain operating conditions. It should
be noted that neural network based models and Hammerstein
systems are widely used in modelling and control of RIE
processes, [2]-[6]. However, these models are identified using
data-based approaches, which do not take advantage of the
information that first-principles models provide. Using a
first-principles model, parametric uncertainty in the linear
dynamical model can be easily estimated. An appropriate
control design tool to deal with this type of uncertainty is
µ-synthesis, [7], [8].

The use of artificial neural networks and Hammerstein
structure to describe a first-principle based model, is con-
sidered in this paper. The Hammerstein model developed
in this study is exploited in conjunction with a robust
control methodology to achieve satisfactory closed-loop per-
formance.

The paper is organised as follows: Section II gives a
brief description of the first-principles based model of the
plasma process, including some notable features of the
model. Development of a Hammerstein model that supports
structured model perturbations, is presented in section III.
A µ-synthesis controller design that addresses uncertainty
in the process dynamics and possible modelling inaccuracy
in the static nonlinearity, is detailed in section IV. Finally,
conclusions and future research directions are outlined in
section V.
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Fig. 1. Hammerstein Model Block Diagram

II. PLASMA PROCESS MODEL

A. Model Description

Description of aglobal model of an argon plasma process
is now presented. Here,global means that spatial gradients
within the chamber are not considered, so that the concentra-
tion of each chemical species inside the chamber is described
by a single state variable. The process itself is a one-species
plasma confined in a cylindrical chamber. The model is based
on known physical interactions that are present in the plasma.
Four nonlinear differential equations describe the dynamics
of the process, [9]-[11]:
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Equations (1)-(4) are, respectively, balance equations for
charged particles, neutral density, electron temperature and
gas temperature. These equations describe the dynamics of
the following state variables:

n − electron/plasma density
N − neutral density
Te − electron temperature
Tg − temperature of other gas species

Control of the process is established through the following
manipulated variables:

F − gas flow rate
P − RF power

AE − exhaust port area

Measured variables are the ion flux (charged particle flux),
Γn, and the neutral flux,ΓN . Both, ion flux and neutral flux,
are nonlinear functions of the state variables, and typical
expression for them are:

Γn = nh

√
kBTe

M
(5)

ΓN =
N

4
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The controlled variable of interest is the ion flux,Γn, which
is explicitly related to the etch rate in RIE reactors. A list
of the parameters involved in equations (1)-(4) is given in
Table I.

TABLE I

PLASMA MODEL PARAMETERS

Parameter Description
A Internal surface area of the chamber
V Volume of the chamber
h Parameter that accounts for

reduction onn near the walls
M Neutral mass
m Electron mass
δ Mass ratio,2m/M
εi Ionisation energy
ε∗ Excitation energy
kB Boltzman constant
ke Energy rate

ki Ionisation rate,ki = k
(0)
i e

−
(

εi
kBTe

)
k∗ Excitation rate,k∗ = k

(0)
∗ e

−
(

ε∗
kBTe

)
γ Accommodation coefficient,γ ∈ [0, 1]
Tw Temperature of chamber wall
Tin Temperature of inlet gas

In this study, several assumptions related to the description
of the current plasma model are taken into account, [9].
Firstly, the approximation that all species other than electrons
have the same temperature is justified if there are sufficiently
frequent collisions that share energy between particles of
different species. Secondly, it is assumed that there are no
losses in delivering RF power to the chamber, i.e. power
deposition model is not considered. In addition, actuators
are not presently included in the problem formulation. The
complexity of the power deposition model and the actuators,
and their influence on the process behaviour is a subject of
further development.

B. Model Characteristics

A notable feature of the plasma model under consideration
is the presence ofArrheniustype of nonlinearities (terms like
e−E/RT ). Such nonlinearities are “severe” and complicate
the analytical computation of steady-state solutions. For the
model described by (1)-(4), state equilibria was determined
through numerical simulations. It should be noted that at each
operating point, defined by{Fi, Pi, AEi}, only one plausible
steady-state solution,{n◦, N◦, T ◦e , T ◦g }, can be located. An-
other feature of the system of differential equations is their
stiff nature. For the considered model, at certain operating
points the ratio of the largest and smallest time constants can
be as large as105.



The above discussed features suggest that the plasma pro-
cess model given by (1)-(4), is inappropriate for model-based
control design. Analysis has shown that in the following
operating range

F ∈ [10−5, 10−4] kg/s
P ∈ [400, 1200] W
AE = 10−2m2

variations in the dynamics of bothΓn andΓN , are not signifi-
cant. Consequently, the plasma model in this operating range
can effectively be approximated by a Hammerstein structure.
In the present study,AE is constant, and consequently is not
considered as a manipulated variable. The development of
the Hammerstein model is discussed in the next section.

III. MODELLING FOR CONTROL DESIGN

A model-based control strategy is considered in this work,
[6]. The closed-loop system interconnection is presented in
Fig.2. The main objective of this structure is to linearise the
open-loop process. In the block diagram, the plasma model
has a Hammerstein structure, whereN is the memoryless
static nonlinearity andPL is the linear dynamic block.
The controller device,K = N−1KL, consists of a linear
controller KL(s) and the inverse model nonlinearity,N−1.
If N−1 is an exact inverse ofN , then there will be an identity
mapping fromKL to PL.
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Fig. 2. Ion flux control structure

The use of feedforward backpropagation neural networks
was employed to model bothN andN−1. The nonlinearity
N was modelled by using 10 neurons in the only hidden
layer, while N−1 was approximated by 20 neurons. Hy-
perbolic tangent sigmoid transfer functions (tansig) were
used in the hidden layer. The accuracy of the resulting
approximations were tested using the following indicators:

∆F (F, P ) =
|F − F̃ |

F
× 100% (7)

∆P (F, P ) =
|P − P̃ |

P
× 100% (8)

where [
F̃

P̃

]
= NN−1

[
F
P

]
(9)

Here, ∆F and ∆P were computed at a grid of differ-
ent operating points spanning the operating space. Ideally,
NN−1 = I, which would ensure that∆F = 0 and
∆P = 0. A grid of 400 operating points,{Fi, Pi}, was

generated for this analysis. At all tested operating points,
∆P < 0.4% and ∆F < 3%. The imperfection of the
nonlinear model given by (1)-(4) and the inaccuracy in the
approximation of the static nonlinearity was addressed by
introducing parametric uncertainty in the linear block. The
linear part of the Hammerstein model is a2 × 2 transfer
matrix PL(s), which can be expressed as an upper linear
fractional transformation (denoted byFu) of Pn

L (s) with
respect to the perturbation∆, i.e.,

PL(s) = Fu(Pn
L (s),∆) (10)

∆ =


δ1 0 . . . 0

0 δ2 . . .
...

...
...

...
...

0 0 . . . δ6

 , |δi| ≤ 1 (11)

Here, Pn
L (s) denotes the nominal linear model, whileδi’s

represent the uncertainty in the time constantsτ1 and τ2,
and gainsk11, k12, k21 andk22. The linear blockPL(s) has
a general form given by

PL(s) =

[
k11

τ1s+1
k21

τ2s+1
k12

τ1s+1
k22

τ2s+1

]
(12)

where

τ1 = τ1(1 + w1δ1) (13)

τ2 = τ2(1 + w2δ2) (14)

k11 = k11(1 + w3δ3) (15)

k21 = k21(1 + w4δ4) (16)

k12 = k12(1 + w5δ5) (17)

k22 = k22(1 + w6δ6) (18)

In this notation,τ1, τ2, k11, k12, k21 andk22 are the nominal
values of the parameters, whilewi’s represent the level
of parametric uncertainty. A block diagram of the nominal
model,Pn

L (s), is shown in Fig.3. Here, the constant matrices
M1 andM2 are:

M1 =
[

τ−1
1 −w1

τ−1
1 −w1

]
, M2 =

[
τ−1

2 −w2

τ−1
2 −w2

]
(19)

In the figure,pi andqi denote the inputs and outputs of the
structured perturbation∆. The nominal model was generated
at the operating point{F = 5.5 × 10−5, P = 800}, which
corresponds toΓn = 6.05 × 1020 at DC. The parameters
w1 and w2, representing bounds on the time constants,
were obtained from time-domain analysis, which includes
generation of step responses at various operating points. In
this analysis, ranges of variation in step magnitudes for flow
rate and power were[10−6, 10−5]kg/s and [10, 100]W,
respectively. The weightsw3, . . . , w6 cater for an uncertainty
level of up to30% in the effective static nonlinearity reflected
by (1)-(4). The identified parameters of the linear model are
presented in Table II.
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Fig. 3. Block diagram of the nominal linear model

TABLE II

PARAMETERS OF THE LINEAR MODEL

Parameter Value
τ1 2.87× 10−3s.
τ2 1.1× 10−3s.

k11 0.863

k21 0.124

k12 0.951

k22 0.171
w1 0.285 (= 28.5%)
w2 0.23 (= 23%)
w3 0.3 (= 30%)
w4 0.3 (= 30%)
w5 0.3 (= 30%)
w6 0.3 (= 30%)

IV. CONTROLLER DESIGN

The next step after development of a Hammerstein model,
is to design a linear controllerKL that stabilises the lin-
ear portion of the plant and provides satisfactory closed-
loop performance in the face of the specified parametric
uncertainty. The conventionalµ-synthesis controller design
strategy, [7], [8], also known as theD-K iteration, was
applied in this work. This robust control strategy naturally
addresses design problems involving dynamic and parametric
model perturbations. The D-K iteration approach is based on
the structured singular valuemetric, [12], referred to asµ.

For this design, uncertainty in the time-constants,τ1 and
τ2, and gainsk11, k12, k21 andk22, is considered. To ensure
robustness to parametric uncertainty, the objective is to find
a controllerKL that maximises

min
i
|δi|, δi ∈ R, i = 1, . . . , 6

while retaining closed-loop stability. Performance weights
are introduced to define the desired closed-loop performance
criteria. The robust control design structure is shown in Fig.4.
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In the block diagram,r is the reference forΓn, while
d1 and d2 are disturbances inΓn and ΓN , respectively.
The spectrum of the disturbances are modelled by the
weighting filtersWd1(s) and Wd2(s). The desired closed-
loop performance is to achieve a tracking error at DC of
less than3%, no overshoot, and a settling-time of less than
0.2s. This requirement is specified by the filterWS(s). The
weight WKS was introduced to minimise the mass flow
rate. For the purpose of presentation, letTxy(s) denote the
transfer function from the inputx to the outputy. Then, the
performance transfer matrix can be defined as

H(s) =


Trz1(s)
Trz2(s)
Td1z3(s)
Td2z4(s)


The control design objective is to produce a stabilising

controller KL(s) such that, for all admissible perturbations
∆, with ‖∆‖ ≤ 1, the perturbed closed-loop system remains
stable, and the perturbed weighted performance transfer
function, H(s), has anH∞ norm of less than unity for all
such perturbations. These mathematical objectives exactly fit
in the µ framework. Note that robust stability and perfor-
mance specifications are satisfied ifµ < 1. For the following
selection of weighting filters and a single D-K iteration, a
robust performance ofµ = 0.96 was achieved.

WKS = 30 , WS(s) =
2000

6s + 1

Wd1(s) =
15

10s + 1
, Wd2(s) =

3
300s + 1

A constant scaling matrix was used in the synthesis, which
resulted in a low-order controller,KL, described by 5 states.

Closed-loop transient responses are shown in Fig. 5, where
the step sequence was arbitrarily chosen. For this analysis,
the original model described by (1)-(4) was used as a plant
model. A more detailed look at the transient behaviour can
be seen in Fig.6. The response indicates a negligible steady-
state error and a settling time of less than0.2s. The flow
rate and power signals that correspond to the outputΓn in
Fig.5, are shown in Fig.7 and Fig.8. It can be seen from
the figures that control force is mainly provided by the
power. As a result of the minimisation ofTrz1 , which is
virtually equivalent to minimisation of the gas consumption,
the gas flow rate was set to its minimum operating point,



F = 10−5kg/s. Figures indicate good performance well
away from the nominal model (represented by a dashed
line in Fig. 5, 7 and 8), thus highlighting the robustness
of the design. Rejection to input and output disturbances is
illustrated in Fig.9. In this figure, step changes in flow rate,
power and ion flux were applied att = 3s, t = 4s and
t = 5s, respectively. The three responses are indicated in the
figure by 1, 2 and 3.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, a control of a first-principle based model of
an argon plasma process has been considered. The differen-
tial equations that describe the model contain severe non-
linearities and exhibit stiff nature, which make the process
model inappropriate for many feedback design procedures.
To facilitate the design, a Hammerstein model that accounts
for variations in the process dynamics has been derived. A
model-based control design strategy was exploited in this

0 5 10 15 20 25 30 35
1

2

3

4

5

6

7

8

9
x 10−5

time [sec]

Fl
ow

 ra
te

 [k
g/

s]

Flow rate (F)

Fig. 7. Flow rate control signal

0 5 10 15 20 25 30 35
400

500

600

700

800

900

1000

1100

1200

time [sec]

P
ow

er
 [W

]

RF power (P)

Fig. 8. Power control signal

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
4

5

6

7

8

9

10
x 1020

time [sec]

Γ n [m
−2

s−1
]

Disturbance Rejection 

1 

2 3 

1 : F=F+10−5kg/s 

2 : P=P+100W
3 : Γ

n
=Γ

n
+1020m−2s−1

Fig. 9. Responses to input and output disturbances



study, where parametric uncertainty was readily addressed
by the conventionalµ-synthesis approach. The synthesised
nonlinear controller is of low complexity, and provides excel-
lent performance in both command tracking and disturbance
rejection.

The present work is an attempt to investigate the use of
first-principle based plasma models for controller design.
Although this research is in its early stage, such results can be
of tremendous help as progress advances. As the complexity
of the studied models will increase, future work will focus on
the development of control strategies that will ensure higher
production efficiency in the semiconductor manufacturing, in
particular, plasma etching.
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