Numerically reliable methods for optimal design of fault detection filters
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_ Abstract—The design problem of fault detection and isolation ~ which is stable and proper. This equation arises by imposing
filters is formulated as a model matching problem and solved for the filter (2) the specification thai{\) = M (\)f()) for
using an’H2- or H.-norm optimization approach. A systematic all d(\) and u()), thus achieving arexact decoupling of

procedure is proposed to choose appropriate filter specifications ‘ . .
which guarantee the existence of proper and stable solutions faults from the disturbance and system inputs. The solution

of the model matching problem. This selection is integral Of & FD problem corresponds to filter specification()
part of numerically reliable computational methods to design  which is stable, proper and full row rank (e.g., a single row
of Ha- or Heo-optimal fault detection filters. The proposed matrix).

design approach is completely general, being applicable to both If for a properly choser\/()) the compatibility condition
continuous- and discrete-time systems, and can easily handle

even unstable and/or improper systems. Gr(\)  Ga(N)

rank

MOV 0 =rank[ G¢(\) Ga(N) |

. INTRODUCTION
Consider the linear time-invariant system described by tHg fulfilled (for example, iff G¢(A) Ga(A) | is left invertible),
input-output relations then the rational matrix equation (3) can be solved using,
for example, the recently developed numerically reliable ap-
y(A) = Gu(Mu(A) + Gr(NE(N) + Ga(AN)d(A), (1) proach proposed in [3] based on orthogonal pencil reduction
where y(XA), u(A), f(A\), and d(\) are Laplace- or Z- methods. ) ) L
transformed vectors of the-dimensional system output Jnfortunately, in many practical applications the above
vector y(t), m.,-dimensional plant input vecton(t), m- rank condition is not fulfilled and therefore the equation (3)
dimensional fault signal vectof (t), and mg-dimensional €N not be exactly solved. Instead, we can deternii(g)
disturbance vectord(t), respectively, and wherer,()), DY SOIVINg thety- or Hoc-norm minimization problem
Gs(N) andGg4(X) are the@ransfer-function matricesTFMs) IRANG(A) — M(A)E(N)|| = min 4)
from the plant control inputs to outputs, fault signals to
outputs, and disturbances to outputs, respectively. Accordingth

to the system type) = s in the case of a continuous-time ~ Gr(\) GaWWa(\)  Gu(N)Wu(N)

system or\ = z in the case of a discrete-time system. G = 0 9] Wa(\)
The fault detection and isolatiorfFDI) problem can be _

formulated as follows: determine a physically realizable (i.e., FN=[1n, O O]

proper and stable) linear residual generator filter (or fau\'/tvherer(A) and W, (A) are optional frequency weightings.

detector) of least dynamical order having the general formFor example, by chooSING/s(A) = v, and W,()) —
() = R()) y(\) ) Yudm,,» With 74 > 1 and~, > 1, we can achieve an in-
u(A) creased attenuation of the effects of disturbances and control
such that:(i) rs(t) — 0 when f,(t) = 0; and (id) r+(t) # 0 mhputs in thg L?SIdtL;‘a| s;?nals.tAlternatl\t/)ely, b%/. appCiroprllatgly
when f,(t) # 0, for i = 1,....m;. The simplerfault chosen weights, the attenuation can be achieved only in a

detection(FD) problem requires besid€s) above the sim- certain frequency regipn of interest.
pler con(gitiogu E)ii’) (1) 72 0 when aiy)f(t) £ 0, for The H,- andH .-optimal solution of the FDI problem has
i—1 my ! ' been considered by many authors (see [4], [2] and references

One possibility to determine a least ord&(\) which cited therein). In what follows we discuss shortly the two

solves the FDI problem is to solve the following model™2!" apprqaches used to solve the_se problems.
matching problem [1], [2]: choose a suitabld’()) (ie., The filtering based approaches, pioneered in [5], (s_ee also
stable, proper, diagonal and invertible) and find a Ieag?‘] for recent developments) convert the problem into a

McMillan degree solution?()\) of the linear equation with standard?,- or Hoofilter synthesis problem to be solved
rational matrices using standard Riccati equation based techniques [7], [8].

The applicability of this approach is conditioned by several
Gr(A) Ga(\) GuN) | _ ro0 7. 0 01 (3) technical assumptions, as for example, full row rankoh)
o) 0 I M) [ I, 1 ® > Tull 0N
Mo and lack of zeros on the extended imaginary axis in the
- continuous-time or on the unit-circle in the discrete-time.
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fulfilled. Since the filtering-based approach provides no cledfote that in this setting, there are no restrictions of any
guidance how to choose appropriate filter specification fddnd on G(\) and F'(\) (they are arbitrary and can be even
successful design, the whole filter design reduces tadin polynomial matrices), but we assume that &f{\) can be
hoc trial-and-error procedure [9]. chosen such that a proper and stable solufiof\) exists
The second approach, proposed in [10], is basicallgnd the corresponding norffR(\)|| is finite.
a continuous-timeH-optimal design. It compensates the The approach we propose has two main computational
presence of zeros ofi(s) on the imaginary axis or at stages. The first stage is common to both He or Ho.-
infinity by including the same zeros contents in the filtenorm minimization and basically achieves the reduction of
specification M (s). This leads to automatic poles-zerosthe original problem to a simpler one for which, in the second
cancellations when determining the detection filter. Howevestep, either the exact algorithm of [11] is used to solve the
the computational approach proposed in [10] involves highl§{;-norm minimization problem or afi{.,-model matching
sensitive computations like the determination of the Smithapproach can be applied (see [12]).
McMillan form of a rational matrix, and thus is not suited The main computation in the first stage is the determina-
as computational procedure for FDI filter design. tion of the quasiinner-outer of factorization
In this paper the approach of [11] is extended to solve o
the underlying model matching problem (3) in &ty- or G = GiNGe(N),
H..-optimal sense to obtain a least order stable and prop@hereG;()) is square and inner and,(A) has the form
solution R(A) by choosing a suitable filter specification Go1(N)
M(X). For this purpose, we develop methods to compute Go(A) = [ 0 ] (")
stable and proper approximate solutions of linear rational ith G,1()) full row rank. Recall thatG;(\) is inner if

equations by adjusting the free term via multiplications with L

stable and proper factors. The proposed approach relies I(t)ﬂhas Ofly stabIeT poles. and sat.|sf|é§()\.)Gi()\) — I
the manipulation of rational matrices by using descriptof. < ¢ @ (S)T:: G; (=) in a continuous-time setting and
system representations and is able to address the optin%l(z) = G/ (1/2) in a discrete-time setting. The full row
FDI design problem in the most general setting (i.e., arbitra nk part Goa1(A) s quasi outer, havmg_ No Z€ros 1n th?
rational matrices in the system model (1), no restrictions o pen-nght half Comp'?x plgne In a °°”“r.‘“°”3‘“”?e setting
poles, zeros or rank 0@()\))_ Some key computations in or ogtS|de the unit C|r_cle in a dlscretejtlm_e setting. Note
the proposed approach are the inner-outer factorization tin 'the standard inner-outer facto'nzan'on of a stlable
a rational matrix, the solution of linear rational equations (A). W|thou_t Zeros on the extendeo! imaginary axis in a
coprime and spectral factorizations, solution of Nehari’ _ontmuogs-tlme setting or on the unit circle in a discrete-
problem. The underlying numerical computations rely o ime setting (see for example [8]), the full row rank part

numerically reliable algorithms and are well-suited for robus 01(A) IS an outerTFM (i.e., stable and m'”'m“m'phase)-
software implementations. We partition the inner factor column-wise in accordance

with the row structure of the facta,(\)
[l. APPROXIMATE SOLUTION OF RATIONAL EQUATIONS Got(N)
To solve the FDI problem, we can solve the rational GA) = [Gin(N) | Gia(V)] { O } (8)
equation (3), exploiting the additional freedom of choosingt follows that
a diagonalM (\) such that the resulting?(\) is proper and RO =[G (VXN — CF(VF(ONM (A
stable. Since in general the solution is not unique, we would IRVI=MGo(MXA) = GENFA)M A
like to compute a solution of least McMillan degree. | Gon(N) G
For convenience, we consider the more genetaél _H { 0 X T2(N) FOMQ)

problem to solve a linear rational system of the form Gor(NX(N) — Fr (VM)
_ 0,1 A\ — 41
GNXA) = F(NM(A) (5) a —Fy(\M(N)
where G(\) an_d F(\) are givenl x m and!l x ¢ rational where Fy(\) = G, (M F(\) and Fy(\) = G2, (A F(N).
TFMs, respectively. Equation (5) corresponds to the rans- |, the next two sections we address the second stage of
posed equation (3) with/()) redefined. To solve (5), We 6 proposed approach and give in terms of TFMs high-level
need additionally to choose arx g invertible diagonal, stable algorithms to solve theH,- and H..-norm minimization

and properl/ () such that the resulting: x ¢ solutionX (\)  yropiems. In Section V, we discuss numerically reliable state

is proper, stable and has the least possible McMillan degreg, e aigorithms for the solution of the key computational
The system (5) has a solution provided the rank Cond't'oﬁroblems.

rankG () = rank[G(\) F'())] (6) [1l. COMPUTATION OF THE H3-SOLUTION

is fulfilled. When this condition is not fulfilled, we want to  The approach to solve th&;-norm minimization problem
compute a stable and prop&i\) which minimizes theH{y-  (5) extends the exact solution method proposed in [11]. If
or Hs.-norm of the residual X ()\) is anexactsolution of the equation

R(A) = GA)X(N) — F(AM(X) Goa(NX(N) = FL(AN)M(N) (9)



then R If v > 7opt, the two-blocks problem (11) is equivalent to
IRz = || F2(A)M(AN)]|2 the one-block problem (see [12, Theorem 1, page 106])

Note that the computed solutioX'()\) is exact for the H(Y()\) —F}(A)M(A)) W‘l()\)H <1 (14)
original linear system provided(\) = 0. Since G, 1(\) i} >

has full row rank, the corresponding compatibility condition"’md%H = [|IL3, (M)l < L (-l denot_es the Hankel norm
(6) for the equation (9) is fulfilled, and thus the system (9 ,f a stable TFM). In this case we readjygt= ~. Otherwise

has a solution which can be made proper and stable BYS7H = 1), we readjusty, = v. Then, fory = (v +7.)/2
appropriately selecting/()). The general solution of (9) we redo the factorization (12) and decomposition (13). This
can be expressed as process is repeated until, — v; < ¢ (a given tolerance).

~ If v > v > 7opt, the stable solution of (14) can be
X(A) = Xo(N) + Xn(NY(N), (10) expressed as

where X;,()\) is a particular solution of (9) an& (1)) is Y(A) = (Ls(A) + Ys(A)W(A),
a rational basis matrix for the right nullspace 6f (). where, forl > ~; > vz, Y,()\) is a stable solution of the
The parametrization (10) of aM{,-optimal solutions allows ~1-suboptimal Nehari problem
to determine suitablé”(\) leading to a solution of least
McMillan degree. The choice af/(\) must guarantee that 1Ys(A) = LuM oo =m0 (15)
X () := X(A\)M(N) is proper and stable and the residual TheH,.-solutionX ()) is the exact least McMillan degree
norm is finite. Therefore, we need to choodé(\) to  solution of the linear rational equation
additionally ensure thaR(\) := F»(A\)M () is stable and
strictly proper in the contifﬂu)ous-tim(e >cas(e,)or stable and only Goa(NX(N) =Y () (16)
proper in the discrete-time case. Since G, 1(\) is only a quasi-outer factor, it can still have
zeros on the extended imaginary axis in a continuous-time
IV.- COMPUTATION OF THEHoo-SOLUTION setting or on the unit circle in a discrete-time setting. In the
To compute thel{.-solution we have to solve the two- case when these zeros are not cancelled in the solution, the
blocks minimal distance problem resultingX (\) can be replaced by (\)M ()), whereM (\)
~ is chosen such thaX (A\)M () is proper and stable, and the
Y()‘): Fl(A)M()‘)] || norm condition (11) is gtill fulfilled when replacing (\) by
—E (A M) oo Y(/\)M(A). For example, to ensure properneﬂ?(k) can
where we denoted”(\) := G,1(\)X(A). In this phase be chosen diagonal with the diagonal terms of the form
we assume thab/(A) has been chosen to ensure that the M-( )= 1 or M—(z) _ 1
above infimum exists. This implies thdt; (A\)M(\) and ’ (Ts 4+ 1)k !
F>(A\)M()\) must be proper and have no poles on theor continuous- or discrete-time settings, respectively. Note
imaginary axis in a continuous-time setting or on the unithat these factors have urfit,.-norm.

circle in a discrete-time setting. Note thaj,; can be easily
bounded asy; < Yopt < 74, Where
‘ els based reliable numerical computations. In what follows
o we shortly discuss some of these techniques giving more
A standard approach to solve the above normyetails on the basic computational step common to Both
minimization problem is the well-knowny-iteration [12], gng H..-approaches, namely, the computation of the exact
which allows to compute suboptimal solutions which areqution of a linear rational equatiaB(\) X (\) = F(\).

Yopt = inf

g

V. NUMERICAL ISSUES

The high-level computations in terms of TFMs in the
proposed approaches can be performed via state-space mod-

~

Fr(AN)M(N)

= BN MON) ooy Y = Fy(\M(N)

arbitrarily close to the optimal one. For a given > 1) Computation of inner-outer factorizatiofor the com-
[E2(A)M (Ao (€9, v = (% + 7)/2), consider the putation of the quasi inner-outer factorization in continuous-
solution of the suboptimal problem time, the algorithm developed in [13] can be employed.
= This algorithm achieves basically a row compression of the
Y - RMW||| 9 y P .
~ <7 (11) underlyingG(s) and moves all unstable zeros into symmetric
—E (M) positions with respect to the imaginary axis. In the discrete-

First we compute the left spectral factorization (see [g]) UMe case, asimilar algorithm can be employed, with obvious
modifications to include the infinite zeros among the unstable

VI — M*(NF; (N F2(MM(A) = W*(AO)W(A)  (12)  ones. In this case, the unstable zeros are reflected with
respect to the unit circle. For the determination of the full

iscrete-time inner factor special formulas (see for example
b%]) are available. An implementation of both continuous-
R and discrete-time algorithms is available in the Descriptor
Ls(\) + Ly(\) = BE (M \)W (N (13) Systems Toolbox foMATLAB [14].

where by construction,W () is biproper, stable and
minimum-phase. Further, we compute the stable-unsta
additive decomposition



2) Computation of a particular solutioX(A): Let as-
sume that the compound TFMZ () F(A)] has a minimal
descriptor realization of the form

EXx(t) Az(t) + Bou(t) + Brr(t)
&(t) Cz(t) + Dgu(t) + Dpv(t)

satisfying
[G(N) F(\)] = C(\E —A)~'[Bg Br]+[Dg Dr] (18)

17)

Let partition [O I,,,]Z in accordance with the column
structure ofS¢ () as

[0 I,]Z = [D, Cy Cyeq]
and denote

m-[ 5]

Then a particular solution Xo()\)

(21)

) C= [Cr Creg]

of the equation

According to the system type) represents here either G(A\)X(A\) = F()) can be expressed in the form

the differential operator\z(¢t) = (t) in the case of a
continuous-time system or the advance operatoft)
z(t+ 1) in the case of a discrete-time system.

It is easy to see thak (\) = [O I,,,]Y()) is a solution
of G(\)X(X) = F(\) if and only if Y(\) satisfies

A—-)\E BG _ BF
To solve (19), we isolate a full rank part of the pencil
| A=XE Bg
Sa(A) = { c De }

by reducing it to a particular Kronecker-like form. L@tand
Z be orthogonal matrices to redusg: () to the Kronecker-
like form
° _ o Br Ar - )\ErAr,reg - )\Er,reg
SG(/\) - QSG(/\)Z - |: 0 0 Areg _ )\Ereg ]

where A4,., —
(A, — AE,, B,.) is controllable with E,. nonsingular. The

above reduction can be computed by employing numerical

stable algorithms as those proposed in [15], [16].
If Y(\) is a solution of the reduced equation

BF}

Se(VT(N) = Q [ (20)

Dp
thenY (\) = ZY(\) and thus

XN =[]0 IL,]2Y()
is a solution of the equatio&'(A\)X (A) = F(\). Partition

] (3]

—Dp By

in accordance with the row structure 8¢;()).

In general we can determirié(\) of the form
0
()
(N
where the partitioning of"(\) corresponds to the column
partitioning of S¢(A). We obtain

E ]

[Y2<A)] B! {BQ

d

Y(\) = ;

Yo
Ys

Y3()\)
where

A

= [A = AE. As ey — AEr ey
—AE = [ 0 Areg - AET@Q :|

AE,.q is a regular subpencil and the pair

Xo(\)=C(\E—-A)"'B

This descriptor realization is generally non-minimal, since
poles-zeros cancellations can take place in the €43¢ and
F(\) share some common zeros. For a non-sqa4re), the
poles of X)(\) also contains a set of freely assignable poles
(so called "spurious” poles) which originate from the column
singularity of G(\). For more details on the pole structure
of Xo(A) see [11].

3) Computation of the nullspace basi¥y(\): A right
nullspace basisXy(A) of G(A) can be computed from a
right nullspace basi¥ y()\) of Sg(\) as

XN(A) = [O Im]Z?N(/\)

From the Kronecker-like formSs()\), we can determine
1
(AE, — A.)"'B,

Y n(A) in the form
[ @)

\th C, and D, defined in (21), we obtain a descriptor
realization of Xy (\) as

Xn(A\) =C.(AE, — A,.)"'B, + D,.

Note thatXy()) is a proper TFM which has least McMil-
lan degree [17]. Moreover, the poles &fy(\) are freely
assignable by appropriately choosing the transformation ma-
trices@ and Z to reduce the system pendk;()).

4) Computation of least McMillan degree solutidf(\):
Xo(A) and X () can be set up to share the same state and
output matrices and have very particular input and feedtrough
matrices. To determine a least McMillan degree solution
X (X) in the form (10), a suitabl& (\) can be computed by
employing the technique proposed in [3] which extends the
approach of [18] to possibly non-proper particular solutions
Xo(A). The key computational ingredient is the minimal
cover algorithm for proper descriptor systems recently pro-
posed in [19].

5) Computation of filter specificatiod/(\): As a last
step, usually a diagonal filter specificatidd (\) is deter-
mined such thatX (\) := X (A\)M () is proper and stable.
The diagonal structure can be enforced by computing for
each column ofX(\) a stable and proper right coprime
factorization. Suitable algorithms for this purpose have been
proposed in [20]. Note that, we can determifé()\) in
a factored formM () = My(X\)Ms(X), where M;(\) is
chosen to compensate the finite zero-pole excess in the

Yn(A) =




solution X ()\), while M (A) must cancel unstable polesthe inner-outer factorization af(s) in the form (8), where

in each columns ofX'(\). To have finite residuals in the s+2 s+ 1

continuous-time caséy/¢(\) must be chosen to additionally - —

ensure thatR(\)M(s) is strictly proper. Note that this [G;1(s) | Gi2(s)] = g 5 E Y ‘;)/2 5 4; v 3/2

condition is not required to be fulfilled in the discrete-time -

case. s+4/5/2 | s++/5/2
6) Left spectral factorization:For a stable and proper Gorls) = V2 s+ V/5/2 s+ V5/2

F(X), state-space formulas for both continuous- and discrete- (s+1)2 (s+1)(s+2)
time settings are provided in [8] to compute a left spectral
factor W()\) satisfying and compute

s(s+2.137)(s — 1.637)

Fi(s) = Gi1(s)F(s) = _\/i(s +3)(s+1)(s —/5/2)

VI — F*(NF(\) = W)W (N)

The underlying algorithm relies on solving appropriate Ric- 132(8) = G, (s)F(s) = _@ S
cati equations. IfF'()\) is unstable but has no poles on the b2 2 (s+3)(s—/5/2)
Imaginary axis in continuous-time or on Fhe unit C'Tc'e.'” The Ha-solution: A particular solution X, (s) of the
the discrete-time, a preliminary left coprime factorization . ~ .
with inner denominator must be computed &%\) equationGi,, 1 (s) X (s) = F1(A) is
M~Y(A\)N()), where bothM (\) and N()\) are stable, and X ~ 0.5s(s+1)(s+2)(s+2.137)(s — 1.637) [ 1
M(X) is inner (i.e., M*(A\)M()\) = I). Then, W(\) can ols) = (s — /5/2)(s + /5/2) (s + 1.5)(s + 3) [ 1 ]
be computed as above usidg(\) instead ofG(\). Suitable . . )
algorithms to compute this factorization are proposed in [20fnd @ rational right nullspace basisy (s) of G,,1(s) is
Software implementations to compute spectral factorizations s+1
are available in the HTOOLS Toolbox fdMATLAB [21]. Xn(s) = V21 ST

7) Solution of Nehari problemTo solve the suboptimal N 2 _st2
Nehari problem, a state-space approach for a continuous- s+ 1.5
time setting has been developed in [22]. For the discret@he particular solutiorX,(s) has McMillan degree 5 and we
time setting, bilinear transformation can be employed bgan determind’(s) such thatX (\) = Xo(A) + Xy (MY (N)
converting the problem into a continuous-time one [22]has the least possible McMillan degree 4. An appropriate
Software implementations are available in the HTOOL$roperY (s) is
Toolbox for MATLAB [21].

V2 s(s+2.137)(s — 1.637)

Y(s)=——
4 _ ./ /
VI. NUMERICAL EXAMPLE (s 5/2)(s+v/5/2)(s +3)
for which the corresponding solution of order 4 is
. The example 'used in this section is only mtended to 0.55(s + 1)(s — 1.637)(s + 2.137)
illustrate the basic algorithms to solve linear rational equa-
tions in aleast-squaresense. All computations have been X (\) = 0(55_ Vv 542)(3 +1 \/6357/2)(82%7
performed using tools available in the Descriptor Toofbox _0-5s(s +2)(s — 1.637)(s + 2.137)
for MATLAB elaborated by the author [14]. Although state- (s =/5/2)(s +/5/2)(s +3)
space representation based computations have been usegyinchoosing
all steps, we converted all intermediary results to a nicer s—+/5/2
i M(s) = ——— 5
TFM form to allow a compact presentation. (+1)(s+2)

Consider the rational syste@i(s) X (s) = F/(s) M (s) with we get a proper and stable solution of order 3

5+2 1 s 0.5s(s +2.137)(s — 1.637)
, F(s) = [ ]

G(s) = (S+11>2 s+l st 1 X(s) = (s+/5/2)(s + 2)(s + 3)
3 = | 0.5s(s+2.137)(s — 1.637)
(s+/5/2)(s+1)(s+3)

where a proper and stable solutiaii{s) has to be determined |nterestingly, with the above choice 81 (s) we can directly

by suitably choo_singM(s). The_ matrix G(s) has rank 1 solve Gy 1 (s) X (5) = ﬁl(s)M(s) and get an order 2 proper
and the system is not compatible. Therefore we COMPULL 4 stable solution

solutions which minimize thé&<{,- and H..,-norms of the
residualR(s) = G(s)X (s) — F(s)M(s). First we determine

s+1 s+2

1.05s% — 1.628s + 0.3216
X(s) = (s+/5/2)(s +3)

_ 2 —
1see http://www.robotic.dir.de/"varga/num/desctool.html for the contents 0.050255” + 0.0778655 — 0.6433
of current version V1.04c (s++/5/2)(s+3)




The explanation of this fact is that the above choicé/tfs)
leads to poles-zeros cancellations when formitags) M (s),

computational algorithms are based on descriptor system rep-
resentations and rely on orthogonal matrix pencil reductions.

thus the resulting particular solutio¥, (s) has a lower order For all basic computations, reliable numerical software tools

too. TheH,-norm of the residuaR(s) = Fy(s)M(s) is in

are available foMATLAB in the Descriptor Systems Toolbox

both cases 0.0645.

[14] and HTOOLS Toolbox [21]. Prototype implementations

The H.-solution: With M (s) = I, the lower and upper of the proposed methods are available and will be part of a

bounds forv are v, 1 Fy(s)|lse = 0.1544 and -,
1E(3)]loo 1.4142. After 10 iterations, we obtainy =
0.1556 for which the spectral facto/(s) in (12) is

(1]
W(s) = 0.15558(s% + 0.575s + 4.743)
(s+3)(s + /5/2) g
The stable-unstable additive decomposition (13) gives [3]
Lu(s) = —2:095° — 33745 — 20,435 1 1357 4l
ST T (51 1)(s2 + 0.5755 + 4.743) [5]
0.4523
Lu(s) = ———
(s) i (6]
The solution of the Nehari problem (15) fof; = 71
1.01| Ly (—s) || = 0.1445 is
(8]
—22.5
Yols) = T3 Tes0 [9]

SinceY (s) = (Yi(s)+ Ls(s))W (s) is proper, whileG,, 1(s)

is strictly proper (having an infinite zero), the resulting[10]
solution of (16) withM (s) = I will be improper. To obtain
a proper solution, we chos¥ (s) = 1/(0.1s+ 1) for which
the least order solution of (16) is

5s% + 822.65% + 251052 + 1654s — 37.88

(s++/5/2)(s +10)(s + 3)(s + 158.9)
55t + 827.65% + 332852 + 3347s — 75.77

(s ++/5/2)(s + 10)(s + 3)(s + 158.9)

The resultingH.-norm of the residuaR(s) is 0.1510. A
second order approximation df (s) obtained by using the
singular perturbation approximation approach [23] leads td!®]

5.088s2 + 5.944s — 0.1311

(s +2.564)(s + 10.17)
5.064s2 + 11.36s — 0.2621

(s +2.564)(s + 10.17)
with a residual norm of 0.1511.

(1]

X(s) = (12]

[13]

[14]

[16]
X, (s) =

[17]

[18]
VIl. CONCLUSIONS

We proposed general approaches to sdtse or H.-
norm optimal FDI filter design problems. The new ap-[zo]
proaches reformulate the filter design problems as equivalgpi]
model matching problems for which algorithms are proposed
able to solve these problems in the most general setting.
In this way, the technical difficulties often encountered byz2)
the existing methods when trying to reduce the approxi-
mation problems to standar#{o- or H.,-norm synthesis 23]
problems are completely avoided. For example, the presence
of zeros or poles on the boundary of stability domains or
problems with non-full rank and even improper transfer-
function matrices can be easily handled. The underlying main

[19]

forthcoming Fault Detection Toolbox faVIATLAB.
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