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Abstract— The design problem of fault detection and isolation
filters is formulated as a model matching problem and solved
using anH2- or H∞-norm optimization approach. A systematic
procedure is proposed to choose appropriate filter specifications
which guarantee the existence of proper and stable solutions
of the model matching problem. This selection is integral
part of numerically reliable computational methods to design
of H2- or H∞-optimal fault detection filters. The proposed
design approach is completely general, being applicable to both
continuous- and discrete-time systems, and can easily handle
even unstable and/or improper systems.

I. I NTRODUCTION

Consider the linear time-invariant system described by the
input-output relations

y(λ) = Gu(λ)u(λ) + Gf (λ)f(λ) + Gd(λ)d(λ), (1)

where y(λ), u(λ), f(λ), and d(λ) are Laplace- or Z-
transformed vectors of thep-dimensional system output
vector y(t), mu-dimensional plant input vectoru(t), mf -
dimensional fault signal vectorf(t), and md-dimensional
disturbance vectord(t), respectively, and whereGu(λ),
Gf (λ) andGd(λ) are thetransfer-function matrices(TFMs)
from the plant control inputs to outputs, fault signals to
outputs, and disturbances to outputs, respectively. According
to the system type,λ = s in the case of a continuous-time
system orλ = z in the case of a discrete-time system.

The fault detection and isolation(FDI) problem can be
formulated as follows: determine a physically realizable (i.e.,
proper and stable) linear residual generator filter (or fault
detector) of least dynamical order having the general form

r(λ) = R(λ)
[

y(λ)
u(λ)

]
(2)

such that:(i) ri(t) = 0 whenfi(t) = 0; and (ii) ri(t) 6= 0
when fi(t) 6= 0, for i = 1, . . . , mf . The simpler fault
detection(FD) problem requires besides(i) above the sim-
pler condition (ii′) r(t) 6= 0 when any fi(t) 6= 0, for
i = 1, . . . ,mf .

One possibility to determine a least orderR(λ) which
solves the FDI problem is to solve the following model
matching problem [1], [2]: choose a suitableM(λ) (i.e.,
stable, proper, diagonal and invertible) and find a least
McMillan degree solutionR(λ) of the linear equation with
rational matrices

R(λ)
[

Gf (λ) Gd(λ) Gu(λ)
O O Imu

]
= M(λ)

[
Imf

O O
]

(3)
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which is stable and proper. This equation arises by imposing
for the filter (2) the specification thatr(λ) = M(λ)f(λ) for
all d(λ) and u(λ), thus achieving anexact decoupling of
faults from the disturbance and system inputs. The solution
of a FD problem corresponds to filter specificationM(λ)
which is stable, proper and full row rank (e.g., a single row
matrix).

If for a properly chosenM(λ) the compatibility condition

rank

[
Gf (λ) Gd(λ)
M(λ) O

]
= rank

[
Gf (λ) Gd(λ)

]

is fulfilled (for example, if[ Gf (λ) Gd(λ) ] is left invertible),
then the rational matrix equation (3) can be solved using,
for example, the recently developed numerically reliable ap-
proach proposed in [3] based on orthogonal pencil reduction
methods.

Unfortunately, in many practical applications the above
rank condition is not fulfilled and therefore the equation (3)
can not be exactly solved. Instead, we can determineR(λ)
by solving theH2- or H∞-norm minimization problem

‖R(λ)G̃(λ)−M(λ)F̃ (λ)‖ = min (4)

with

G̃(λ) =
[

Gf (λ) Gd(λ)Wd(λ) Gu(λ)Wu(λ)
O O Wu(λ)

]

F̃ (λ) =
[

Imf
O O

]

whereWd(λ) andWu(λ) are optional frequency weightings.
For example, by choosingWd(λ) = γdImd

and Wu(λ) =
γuImu , with γd À 1 and γu À 1, we can achieve an in-
creased attenuation of the effects of disturbances and control
inputs in the residual signals. Alternatively, by appropriately
chosen weights, the attenuation can be achieved only in a
certain frequency region of interest.

TheH2- andH∞-optimal solution of the FDI problem has
been considered by many authors (see [4], [2] and references
cited therein). In what follows we discuss shortly the two
main approaches used to solve these problems.

The filtering based approaches, pioneered in [5], (see also
[6] for recent developments) convert the problem into a
standardH2- or H∞-filter synthesis problem to be solved
using standard Riccati equation based techniques [7], [8].
The applicability of this approach is conditioned by several
technical assumptions, as for example, full row rank ofG̃(λ)
and lack of zeros on the extended imaginary axis in the
continuous-time or on the unit-circle in the discrete-time.
Although these conditions are not necessary for the existence
of a solution, the approach still fails when they are not



fulfilled. Since the filtering-based approach provides no clear
guidance how to choose appropriate filter specification for
successful design, the whole filter design reduces to anad-
hoc trial-and-error procedure [9].

The second approach, proposed in [10], is basically
a continuous-timeH2-optimal design. It compensates the
presence of zeros of̃G(s) on the imaginary axis or at
infinity by including the same zeros contents in the filter
specification M(s). This leads to automatic poles-zeros
cancellations when determining the detection filter. However,
the computational approach proposed in [10] involves highly
sensitive computations like the determination of the Smith-
McMillan form of a rational matrix, and thus is not suited
as computational procedure for FDI filter design.

In this paper the approach of [11] is extended to solve
the underlying model matching problem (3) in anH2- or
H∞-optimal sense to obtain a least order stable and proper
solution R(λ) by choosing a suitable filter specification
M(λ). For this purpose, we develop methods to compute
stable and proper approximate solutions of linear rational
equations by adjusting the free term via multiplications with
stable and proper factors. The proposed approach relies on
the manipulation of rational matrices by using descriptor
system representations and is able to address the optimal
FDI design problem in the most general setting (i.e., arbitrary
rational matrices in the system model (1), no restrictions on
poles, zeros or rank of̃G(λ)). Some key computations in
the proposed approach are the inner-outer factorization of
a rational matrix, the solution of linear rational equations,
coprime and spectral factorizations, solution of Nehari’s
problem. The underlying numerical computations rely on
numerically reliable algorithms and are well-suited for robust
software implementations.

II. A PPROXIMATE SOLUTION OF RATIONAL EQUATIONS

To solve the FDI problem, we can solve the rational
equation (3), exploiting the additional freedom of choosing
a diagonalM(λ) such that the resultingR(λ) is proper and
stable. Since in general the solution is not unique, we would
like to compute a solution of least McMillan degree.

For convenience, we consider the more generaldual
problem to solve a linear rational system of the form

G(λ)X(λ) = F (λ)M(λ) (5)

whereG(λ) and F (λ) are givenl × m and l × q rational
TFMs, respectively. Equation (5) corresponds to the trans-
posed equation (3) withM(λ) redefined. To solve (5), we
need additionally to choose anq×q invertible diagonal, stable
and properM(λ) such that the resultingm×q solutionX(λ)
is proper, stable and has the least possible McMillan degree.

The system (5) has a solution provided the rank condition

rankG(λ) = rank[G(λ) F (λ) ] (6)

is fulfilled. When this condition is not fulfilled, we want to
compute a stable and properX(λ) which minimizes theH2-
or H∞-norm of the residual

R(λ) := G(λ)X(λ)− F (λ)M(λ)

Note that in this setting, there are no restrictions of any
kind on G(λ) andF (λ) (they are arbitrary and can be even
polynomial matrices), but we assume that anM(λ) can be
chosen such that a proper and stable solutionX(λ) exists
and the corresponding norm‖R(λ)‖ is finite.

The approach we propose has two main computational
stages. The first stage is common to both theH2- or H∞-
norm minimization and basically achieves the reduction of
the original problem to a simpler one for which, in the second
step, either the exact algorithm of [11] is used to solve the
H2-norm minimization problem or anH∞-model matching
approach can be applied (see [12]).

The main computation in the first stage is the determina-
tion of thequasi inner-outer of factorization

G(λ) = Gi(λ)Go(λ),

whereGi(λ) is square and inner andGo(λ) has the form

Go(λ) =
[

Go,1(λ)
O

]
(7)

with Go,1(λ) full row rank. Recall thatGi(λ) is inner if
it has only stable poles and satisfiesG∗i (λ)Gi(λ) = Il,
whereG∗i (s) := GT

i (−s) in a continuous-time setting and
G∗i (z) := GT

i (1/z) in a discrete-time setting. The full row
rank part Go,1(λ) is quasi outer, having no zeros in the
open-right half complex plane in a continuous-time setting
or outside the unit circle in a discrete-time setting. Note
that in the standard inner-outer factorization of a stable
G(λ) without zeros on the extended imaginary axis in a
continuous-time setting or on the unit circle in a discrete-
time setting (see for example [8]), the full row rank part
Go,1(λ) is anouter TFM (i.e., stable and minimum-phase).

We partition the inner factor column-wise in accordance
with the row structure of the factorGo(λ)

G(λ) = [ Gi,1(λ) | Gi,2(λ) ]
[

Go,1(λ)
O

]
(8)

It follows that
‖R(λ)‖=‖Go(λ)X(λ)−G∗i (λ)F (λ)M(λ)‖

=
∥∥∥∥
[
Go,1(λ)

O

]
X(λ)−

[
G∗i,1(λ)
G∗i,2(λ)

]
F (λ)M(λ)

∥∥∥∥

=

∥∥∥∥∥

[
Go,1(λ)X(λ)− F̂1(λ)M(λ)

−F̂2(λ)M(λ)

]∥∥∥∥∥
whereF̂1(λ) = G∗i,1(λ)F (λ) and F̂2(λ) = G∗i,2(λ)F (λ).

In the next two sections we address the second stage of
the proposed approach and give in terms of TFMs high-level
algorithms to solve theH2- and H∞-norm minimization
problems. In Section V, we discuss numerically reliable state
space algorithms for the solution of the key computational
problems.

III. C OMPUTATION OF THEH2-SOLUTION

The approach to solve theH2-norm minimization problem
(5) extends the exact solution method proposed in [11]. If
X(λ) is anexactsolution of the equation

Go,1(λ)X(λ) = F̂1(λ)M(λ) (9)



then
‖R(λ)‖2 = ‖F̂2(λ)M(λ)‖2

Note that the computed solutionX(λ) is exact for the
original linear system provided̂F2(λ) = 0. SinceGo,1(λ)
has full row rank, the corresponding compatibility condition
(6) for the equation (9) is fulfilled, and thus the system (9)
has a solution which can be made proper and stable by
appropriately selectingM(λ). The general solution of (9)
can be expressed as

X̂(λ) = X0(λ) + XN (λ)Y (λ), (10)

whereX0(λ) is a particular solution of (9) andXN (λ) is
a rational basis matrix for the right nullspace ofGo,1(λ).
The parametrization (10) of allH2-optimal solutions allows
to determine suitableY (λ) leading to a solution of least
McMillan degree. The choice ofM(λ) must guarantee that
X(λ) := X̂(λ)M(λ) is proper and stable and the residual
norm is finite. Therefore, we need to chooseM(λ) to
additionally ensure that̂R(λ) := F̂2(λ)M(λ) is stable and
strictly proper in the continuous-time case, or stable and only
proper in the discrete-time case.

IV. COMPUTATION OF THEH∞-SOLUTION

To compute theH∞-solution we have to solve the two-
blocks minimal distance problem

γopt = inf

∥∥∥∥∥

[
Y (λ)− F̂1(λ)M(λ)
−F̂2(λ)M(λ)

]∥∥∥∥∥
∞

where we denotedY (λ) := Go,1(λ)X(λ). In this phase
we assume thatM(λ) has been chosen to ensure that the
above infimum exists. This implies that̂F1(λ)M(λ) and
F̂2(λ)M(λ) must be proper and have no poles on the
imaginary axis in a continuous-time setting or on the unit
circle in a discrete-time setting. Note thatγopt can be easily
bounded asγl ≤ γopt ≤ γu, where

γl = ‖F̂2(λ)M(λ)‖∞, γu =

∥∥∥∥∥

[
F̂1(λ)M(λ)
F̂2(λ)M(λ)

]∥∥∥∥∥
∞

.

A standard approach to solve the above norm-
minimization problem is the well-knownγ-iteration [12],
which allows to compute suboptimal solutions which are
arbitrarily close to the optimal one. For a givenγ >
‖F̂2(λ)M(λ)‖∞ (e.g., γ = (γl + γu)/2), consider the
solution of the suboptimal problem

∥∥∥∥∥

[
Y (λ)− F̂1(λ)M(λ)
−F̂2(λ)M(λ)

]∥∥∥∥∥
∞
≤ γ (11)

First we compute the left spectral factorization (see [8])

γ2I −M∗(λ)F̂ ∗2 (λ)F̂2(λ)M(λ) = W ∗(λ)W (λ) (12)

where by construction,W (λ) is biproper, stable and
minimum-phase. Further, we compute the stable-unstable
additive decomposition

Ls(λ) + Lu(λ) = F̂1(λ)M(λ)W−1(λ) (13)

If γ > γopt, the two-blocks problem (11) is equivalent to
the one-block problem (see [12, Theorem 1, page 106])∥∥∥

(
Y (λ)− F̂1(λ)M(λ)

)
W−1(λ)

∥∥∥
∞
≤ 1 (14)

andγH := ‖L∗u(λ)‖H < 1 (‖ · ‖H denotes the Hankel norm
of a stable TFM). In this case we readjustγu = γ. Otherwise
(i.e.,γH ≥ 1), we readjustγl = γ. Then, forγ = (γl+γu)/2
we redo the factorization (12) and decomposition (13). This
process is repeated untilγu − γl ≤ ε (a given tolerance).

If γu ≥ γ > γopt, the stable solution of (14) can be
expressed as

Y (λ) = (Ls(λ) + Ys(λ))W (λ),

where, for1 ≥ γ1 ≥ γH , Ys(λ) is a stable solution of the
γ1-suboptimal Nehari problem

‖Ys(λ)− Lu(λ)‖∞ ≤ γ1 (15)

TheH∞-solutionX(λ) is the exact least McMillan degree
solution of the linear rational equation

Go,1(λ)X(λ) = Y (λ) (16)

SinceGo,1(λ) is only a quasi-outer factor, it can still have
zeros on the extended imaginary axis in a continuous-time
setting or on the unit circle in a discrete-time setting. In the
case when these zeros are not cancelled in the solution, the
resultingX(λ) can be replaced byX(λ)M̃(λ), whereM̃(λ)
is chosen such thatX(λ)M̃(λ is proper and stable, and the
norm condition (11) is still fulfilled when replacingY (λ) by
Y (λ)M̃(λ). For example, to ensure properness,̃M(λ) can
be chosen diagonal with the diagonal terms of the form

M̃i(s) =
1

(τs + 1)ki
or M̃i(z) =

1
zki

for continuous- or discrete-time settings, respectively. Note
that these factors have unitH∞-norm.

V. NUMERICAL ISSUES

The high-level computations in terms of TFMs in the
proposed approaches can be performed via state-space mod-
els based reliable numerical computations. In what follows
we shortly discuss some of these techniques giving more
details on the basic computational step common to bothH2

andH∞-approaches, namely, the computation of the exact
solution of a linear rational equationG(λ)X(λ) = F (λ).

1) Computation of inner-outer factorization:For the com-
putation of the quasi inner-outer factorization in continuous-
time, the algorithm developed in [13] can be employed.
This algorithm achieves basically a row compression of the
underlyingG(s) and moves all unstable zeros into symmetric
positions with respect to the imaginary axis. In the discrete-
time case, a similar algorithm can be employed, with obvious
modifications to include the infinite zeros among the unstable
ones. In this case, the unstable zeros are reflected with
respect to the unit circle. For the determination of the full
discrete-time inner factor special formulas (see for example
[8]) are available. An implementation of both continuous-
and discrete-time algorithms is available in the Descriptor
Systems Toolbox forMATLAB [14].



2) Computation of a particular solutionX0(λ): Let as-
sume that the compound TFM[G(λ) F (λ) ] has a minimal
descriptor realization of the form

Eλx(t) = Ax(t) + BGu(t) + BF ν(t)
ξ(t) = Cx(t) + DGu(t) + DF ν(t) (17)

satisfying

[ G(λ) F (λ) ] = C(λE−A)−1[BG BF ]+ [ DG DF ] (18)

According to the system type,λ represents here either
the differential operatorλx(t) = ẋ(t) in the case of a
continuous-time system or the advance operatorλx(t) =
x(t + 1) in the case of a discrete-time system.

It is easy to see thatX(λ) = [ O Im ]Y (λ) is a solution
of G(λ)X(λ) = F (λ) if and only if Y (λ) satisfies

[
A− λE BG

C DG

]
Y (λ) =

[
BF

DF

]
(19)

To solve (19), we isolate a full rank part of the pencil

SG(λ) :=
[

A− λE BG

C DG

]

by reducing it to a particular Kronecker-like form. LetQ and
Z be orthogonal matrices to reduceSG(λ) to the Kronecker-
like form

SG(λ) = QSG(λ)Z =
[
BrAr − λErAr,reg − λEr,reg

0 0 Areg − λEreg

]
,

where Areg − λEreg is a regular subpencil and the pair
(Ar − λEr, Br) is controllable withEr nonsingular. The
above reduction can be computed by employing numerically
stable algorithms as those proposed in [15], [16].

If Y (λ) is a solution of the reduced equation

SG(λ)Y (λ) = Q

[
BF

DF

]
(20)

thenY (λ) = ZY (λ) and thus

X(λ) =
[

O Im

]
ZY (λ)

is a solution of the equationG(λ)X(λ) = F (λ). Partition

Q

[ −BF

−DF

]
=

[
B1

B2

]

in accordance with the row structure ofSG(λ).
In general we can determineY (λ) of the form

Y (λ) =




O
Y 2(λ)
Y 3(λ)


 ,

where the partitioning ofY (λ) corresponds to the column
partitioning ofSG(λ). We obtain

[
Y 2(λ)
Y 3(λ)

]
= (A− λE)−1

[
B1

B2

]

where

A− λE =
[
Ar − λErAr,reg − λEr,reg

0 Areg − λEreg

]

Let partition [O Im ]Z in accordance with the column
structure ofSG(λ) as

[O Im ]Z = [Dr Cr Creg ] (21)

and denote

B =
[

B1

B2

]
, C = [Cr Creg ]

Then a particular solutionX0(λ) of the equation
G(λ)X(λ) = F (λ) can be expressed in the form

X0(λ) = C(λE −A)−1B

This descriptor realization is generally non-minimal, since
poles-zeros cancellations can take place in the caseG(λ) and
F (λ) share some common zeros. For a non-squareG(λ), the
poles ofX0(λ) also contains a set of freely assignable poles
(so called ”spurious” poles) which originate from the column
singularity of G(λ). For more details on the pole structure
of X0(λ) see [11].

3) Computation of the nullspace basisXN (λ): A right
nullspace basisXN (λ) of G(λ) can be computed from a
right nullspace basisY N (λ) of SG(λ) as

XN (λ) = [ O Im ]ZY N (λ)

From the Kronecker-like formSG(λ), we can determine
Y N (λ) in the form

Y N (λ) =




I
(λEr −Ar)−1Br

O


 .

With Cr and Dr defined in (21), we obtain a descriptor
realization ofXN (λ) as

XN (λ) = Cr(λEr −Ar)−1Br + Dr.

Note thatXN (λ) is a proper TFM which has least McMil-
lan degree [17]. Moreover, the poles ofXN (λ) are freely
assignable by appropriately choosing the transformation ma-
tricesQ andZ to reduce the system pencilSG(λ).

4) Computation of least McMillan degree solution̂X(λ):
X0(λ) andXN (λ) can be set up to share the same state and
output matrices and have very particular input and feedtrough
matrices. To determine a least McMillan degree solution
X̂(λ) in the form (10), a suitableY (λ) can be computed by
employing the technique proposed in [3] which extends the
approach of [18] to possibly non-proper particular solutions
X0(λ). The key computational ingredient is the minimal
cover algorithm for proper descriptor systems recently pro-
posed in [19].

5) Computation of filter specificationM(λ): As a last
step, usually a diagonal filter specificationM(λ) is deter-
mined such thatX(λ) := X̂(λ)M(λ) is proper and stable.
The diagonal structure can be enforced by computing for
each column ofX̂(λ) a stable and proper right coprime
factorization. Suitable algorithms for this purpose have been
proposed in [20]. Note that, we can determineM(λ) in
a factored formM(λ) = Mf (λ)Ms(λ), where Mf (λ) is
chosen to compensate the finite zero-pole excess in the



solution X̂(λ), while Ms(λ) must cancel unstable poles
in each columns ofX̂(λ). To have finite residuals in the
continuous-time case,Mf (λ) must be chosen to additionally
ensure thatR(λ)M(s) is strictly proper. Note that this
condition is not required to be fulfilled in the discrete-time
case.

6) Left spectral factorization:For a stable and proper
F (λ), state-space formulas for both continuous- and discrete-
time settings are provided in [8] to compute a left spectral
factor W (λ) satisfying

γ2I − F ∗(λ)F (λ) = W ∗(λ)W (λ)

The underlying algorithm relies on solving appropriate Ric-
cati equations. IfF (λ) is unstable but has no poles on the
imaginary axis in continuous-time or on the unit circle in
the discrete-time, a preliminary left coprime factorization
with inner denominator must be computed asF (λ) =
M−1(λ)N(λ), where bothM(λ) andN(λ) are stable, and
M(λ) is inner (i.e.,M∗(λ)M(λ) = I). Then, W (λ) can
be computed as above usingN(λ) instead ofG(λ). Suitable
algorithms to compute this factorization are proposed in [20].
Software implementations to compute spectral factorizations
are available in the HTOOLS Toolbox forMATLAB [21].

7) Solution of Nehari problem:To solve the suboptimal
Nehari problem, a state-space approach for a continuous-
time setting has been developed in [22]. For the discrete-
time setting, bilinear transformation can be employed by
converting the problem into a continuous-time one [22].
Software implementations are available in the HTOOLS
Toolbox for MATLAB [21].

VI. N UMERICAL EXAMPLE

The example used in this section is only intended to
illustrate the basic algorithms to solve linear rational equa-
tions in a least-squaressense. All computations have been
performed using tools available in the Descriptor Toolbox1

for MATLAB elaborated by the author [14]. Although state-
space representation based computations have been used in
all steps, we converted all intermediary results to a nicer
TFM form to allow a compact presentation.

Consider the rational systemG(s)X(s) = F (s)M(s) with

G(s) =




s + 2
(s + 1)2

1
s + 1

1
s + 1

1
s + 2


 , F (s) =




s

s + 1
s

s + 3




where a proper and stable solutionX(s) has to be determined
by suitably choosingM(s). The matrix G(s) has rank 1
and the system is not compatible. Therefore we compute
solutions which minimize theH2- and H∞-norms of the
residualR(s) = G(s)X(s)−F (s)M(s). First we determine

1See http://www.robotic.dlr.de/˜varga/num/desctool.html for the contents
of current version V1.04c

the inner-outer factorization ofG(s) in the form (8), where

[ Gi,1(s) | Gi,2(s) ] =
√

2
2



− s + 2

s +
√

5/2
−s + 1

s +
√

5/2

− s + 1
s +

√
5/2

s− 2
s +

√
5/2




Go,1(s) =
√

2
[
−s +

√
5/2

(s + 1)2
− s +

√
5/2

(s + 1)(s + 2)

]

and compute

F̂1(s) = G∗i,1(s)F (s) = −
√

2
s(s + 2.137)(s− 1.637)

(s + 3)(s + 1)(s−
√

5/2)

F̂2(s) = G∗i,2(s)F (s) = −
√

2
2

s

(s + 3)(s−
√

5/2)

The H2-solution: A particular solution X0(s) of the
equationGo,1(s)X(s) = F̂1(λ) is

X0(s) =
0.5s(s + 1)(s + 2)(s + 2.137)(s− 1.637)
(s−

√
5/2)(s +

√
5/2)(s + 1.5)(s + 3)

[
1
1

]

and a rational right nullspace basisXN (s) of Go,1(s) is

XN (s) =
√

2
2




s + 1
s + 1.5
− s + 2

s + 1.5




The particular solutionX0(s) has McMillan degree 5 and we
can determineY (s) such thatX̂(λ) = X0(λ)+XN (λ)Y (λ)
has the least possible McMillan degree 4. An appropriate
properY (s) is

Y (s) = −
√

2
4

s(s + 2.137)(s− 1.637)
(s−

√
5/2)(s +

√
5/2)(s + 3)

for which the corresponding solution of order 4 is

X̂(λ) =




0.5s(s + 1)(s− 1.637)(s + 2.137)
(s−

√
5/2)(s +

√
5/2)(s + 3)

−0.5s(s + 2)(s− 1.637)(s + 2.137)
(s−

√
5/2)(s +

√
5/2)(s + 3)




By choosing

M(s) =
s−

√
5/2

(s + 1)(s + 2)

we get a proper and stable solution of order 3

X(s) =




0.5s(s + 2.137)(s− 1.637)
(s +

√
5/2)(s + 2)(s + 3)

0.5s(s + 2.137)(s− 1.637)
(s +

√
5/2)(s + 1)(s + 3)




Interestingly, with the above choice ofM(s) we can directly
solveGo,1(s)X(s) = F̂1(s)M(s) and get an order 2 proper
and stable solution

X(s) =




1.05s2 − 1.628s + 0.3216
(s +

√
5/2)(s + 3)

−0.05025s2 + 0.077865s− 0.6433
(s +

√
5/2)(s + 3)






The explanation of this fact is that the above choice ofM(s)
leads to poles-zeros cancellations when formingF̂1(s)M(s),
thus the resulting particular solutionX0(s) has a lower order
too. TheH2-norm of the residualR(s) = F̂2(s)M(s) is in
both cases 0.0645.

TheH∞-solution: With M(s) = I, the lower and upper
bounds forγ are γl = ‖F̂2(s)‖∞ = 0.1544 and γu =
‖F (s)‖∞ = 1.4142. After 10 iterations, we obtainγ =
0.1556 for which the spectral factorW (s) in (12) is

W (s) =
0.15558(s2 + 0.575s + 4.743)

(s + 3)(s +
√

5/2)

The stable-unstable additive decomposition (13) gives

Ls(s) =
−9.09s3 − 33.74s2 − 29.43s + 1.357

(s + 1)(s2 + 0.575s + 4.743)

Lu(s) =
0.4523

s−
√

5/2

The solution of the Nehari problem (15) forγ1 =
1.01‖Lu(−s)‖H = 0.1445 is

Ys(s) =
−22.5

s + 158.9

SinceY (s) = (Ys(s)+Ls(s))W (s) is proper, whileGo,1(s)
is strictly proper (having an infinite zero), the resulting
solution of (16) withM̃(s) = I will be improper. To obtain
a proper solution, we chosẽM(s) = 1/(0.1s+1) for which
the least order solution of (16) is

X(s) =




5s4 + 822.6s3 + 2510s2 + 1654s− 37.88
(s +

√
5/2)(s + 10)(s + 3)(s + 158.9)

5s4 + 827.6s3 + 3328s2 + 3347s− 75.77
(s +

√
5/2)(s + 10)(s + 3)(s + 158.9)




The resultingH∞-norm of the residualR(s) is 0.1510. A
second order approximation ofX(s) obtained by using the
singular perturbation approximation approach [23] leads to

Xr(s) =




5.088s2 + 5.944s− 0.1311
(s + 2.564)(s + 10.17)

5.064s2 + 11.36s− 0.2621
(s + 2.564)(s + 10.17)




with a residual norm of 0.1511.

VII. C ONCLUSIONS

We proposed general approaches to solveH2- or H∞-
norm optimal FDI filter design problems. The new ap-
proaches reformulate the filter design problems as equivalent
model matching problems for which algorithms are proposed
able to solve these problems in the most general setting.
In this way, the technical difficulties often encountered by
the existing methods when trying to reduce the approxi-
mation problems to standardH2- or H∞-norm synthesis
problems are completely avoided. For example, the presence
of zeros or poles on the boundary of stability domains or
problems with non-full rank and even improper transfer-
function matrices can be easily handled. The underlying main

computational algorithms are based on descriptor system rep-
resentations and rely on orthogonal matrix pencil reductions.
For all basic computations, reliable numerical software tools
are available forMATLAB in the Descriptor Systems Toolbox
[14] and HTOOLS Toolbox [21]. Prototype implementations
of the proposed methods are available and will be part of a
forthcoming Fault Detection Toolbox forMATLAB .
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