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Abstract—We consider the problem of stabilizability of wherex; is the state at time, {d:} is a zero-mean i.i.d.
remote LTI systems where both the forward (from the sensor Gaussian process. Hete= %, b = b/(ef7s — 1) /¢ and
to the controller) and the feedback (from the controller to E[d?] = 26T —1/2¢.

the plant) channels are noisy, discrete, and memoryless. 1n . .
formation theory and the theory of Markov processes are used In the remote control setting, we refer to the channel which

to obtain necessary and sufficient conditions (both structtal ~ COnnects the sensor to the controller asftrevard channel,
and operational) for stabilizability, with the conditions being and the channel which connects the controller to the plant
on error exponents, delay and source-channel codes. These gs thereverse channel (see Fig. 1).

results generalize some of the existing results in the litature The timeline of the events is as follows: The state is
which assume either the forward or the reverse channel to ’

be noise-free. We observe that unlike continuous alphabet sampled at discrete time instatd’, & > 0. It_ takes
channels, discrete channels entail a substantial complayiin ~ «(Ny)N; seconds to use the forward chanmé} times?,
encoding the unbounded state and control spaces for control and3(N,.)N, seconds to use the reverse chanNgltimes.

of noisy plants. We introduce a state-space encoding scheme  The coding rate for the forward channel is definedas=

utlll_Zlng the dynam_lc evolutlon._ We also present vanablele_ngth log(|M;|)/N;, where M is the set of sensor symbols, and

coding through variable-sampling to transmit countably infinite is th b fch | ikewi for th

symbols over a finite channel. Ny is the num er of channel uses. Likewise, for the reverse
channel, the coding rate B, = log(|M,|)/N,. Our goal in

[. INTRODUCTION this paper is to obtain:
A. Problem Formulation 1) Outer and inner bounds for the set of forward and
We consider in this paper a remote control problem with ~ T€verse rates which lead to a finite state variance in
communication constraints, as depicted in Fig. 1. The gyste the limit, that is bounds for
{Rf, R, : lim E[z7] < oo}
Sensor e %—‘ T—o0
Z ; ’ NY p X 2) Encoding schemes for both state and control symbols,
P> WP P_ with infinite size codebooks in both and dynamic
Source-Channel Forward Decoder evolution only in the former.
Plant Coder - - . .
o /.C/hénﬁél Controller We focus here on stabilizability, since this is a necessary
, \ " .
P Te\ b c T m cp_ndltlon_for the more comprehensive problem of controlla-
.~ bility for linear systems.
Decoder Reverse Encoder . ' .
Channel B. Connections with the Literature

Works most relevant to this one in the literature are [2],
[3] [4], [5], [6], [7], and [8]. References [2] and [3] are
among the first to consider noisy channels. Reference [8] als
introduces various problems which have had a significant
impact on the emerging field of remote control. Reference [4]
dr; = (Exy + b'u})dt + dBy, (1) adopts a Lyapunov-based approach to stabilize a system over
noiseless channels and shows that the coarsest timeanvari
stabilizing quantizer is logarithmic and that the desigs ha

same base for construction regardless of the sampling

Fig. 1: Control over discrete noisy channels.

to be controled is a sampled version of an IcAntinuous-
time plant with the scalar dynamics

whereB; is the standard Brownian motion proces§is the
(applied) control which is assumed to be piecewise const

(zeroth qrder hold) over intervals of qugﬂl, the initial  jnterval. We will show that this property regarding samglin
state zo Is a second-order ra”‘?'om varlable;_afld> . carries over to stochastic systems as well. Reference [9]
which means that the system is unstable without control,< shown that capacity does not have much relevance in
After sampling, with periodl’;, we have the discrete-time a control context, and has introducedytime capacity as a

system necessary and sufficient measure using noiseless feedback;
Tyl = azy + bu, + dy (2) furthermore, any-time decoding uses only finite delay with
probability one. Unlike [9], the encoder and decoder in this
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work are not only causal but also aéro-delay type, i.e., The source-coder is the quantizer, and the channel encoder
the encoding and decoding are done symbol by symbalenerates the bit stream for each of the corresponding quan-
Furthermore we do not allow for any feedback in commutization symbols, thus generating the joint-source chlnne
nication and take the reverse channel also noisy. Anothencoder.
related reference, [6], studies stability over noisy diser We say the controller has memory of order if the
channels. There, the plant is noise-free, the reverse ehanimformation available to it at time is
is noiseless, and for such a system it is argued that capacity
is a sufficient measure. In our case, however, the plant and = ey Y e ma(m, ) - e
the reverse channels are also noisy. We will observe that for casem = 0, we will have a memoryless controller; i.e.,
noiseless plants, if the number of codelengths is penalizeff = y,, which we will study in detail. In this case we
then capacity is not a sufficient measure; except for nagselewill lump the forward source-channel encoder, the forward
discrete channels. Furthermore we provide structurallisesuchannel and the decoder mappings into a single mapping
on coding and decoding schemes for stabilizability. p(z'|z), and likewise the reverse source-channel encoder,
Most of the studies in the literature have considered at leagverse channel and decoder mappings pta’|u).
one noiseless channel connecting the controller and timt pla A quantizer( is constructed by corresponding bifi;}
and have not touched upon the effects when both channelsd their reconstruction levelg; such thatVi, Q(z) =
are unreliable. Regarding noisy feedback channels, thege <=> = € B;. We haveVi,¢; € B;. For scalar quanti-
have been just a few studies: Reference [10] has address&@dion,z € R andB; = (J;, §;11], where{J;} are termed as
the Gaussian channel case, with no encoding in the revertsn edges” and w.l.o.g. we assume the monotonicity on bin
channel in the relaxation of the noiseless feedback; nefere edges:vi,d; < d;4+1. In this paper we consider “symmetric
[11] studies optimal control policies with packet lossethia quantizers”, which are defined as: #f a quantization bin
feedback channel as well as the forward one. In a paralléd;, d;+1], where0 < §; < d;41, thenB_; = [—d;41,—0;) IS
work, [12], we study control over Gaussian channels foalso a quantization bin.
scalar systems and provide the optimal linear coder and We define the encodable state skt € R as the set of
controllers. In [13], communication with a noisy feedbackelements which are represented by some codewsyd—=
channel has been considered in the context of estimation.lJ, B;. Such a definition applies to the encodable control set,
To recapitulate, in this paper we consider systems whef®, as well. Suppose the state is within the encodable set and
both channels are noisy and discrete. The presence of a noigyn theith bin of the quantizer. The source coding output
channel with no explicit feedback leads toa@n-classical in- ~ at the plant sensor will represent this stategasind send
formation structure [2], since the agents (controller,aelers the ith index over the channel. After a joint mapping of the
and decoders) do not have nested information. Furthermaggannel and the channel decoder, the controller will receiv
the dual effect of control is present. Due to these difficul- the index: as index;j with probability p(j|i). The controller
ties, we will use indirect methods, information theory, andvill apply its control over indexj, computing@’; -thus the
Markov stability theory, to arrive at necessary and sufficie controller decoder, controller, and encoder can be regaade

conditions. a single mapping- and send it over the reverse channel, which
would interpret this value as); with probability p’(1]5),
C. Notation and the System Model by a mapping through the reverse channel. Given that the

state is in theith bin, the plant will receive the contra);

In our setup, both the sensor and the controller act agith probab|||tyz P’ (17)p(4]7). Thus, the applied control
both transmitters and receivers because of the closed-loafil be v, = Q) with probability > . p'(1]5)p(jli), and the
structure. We model the forward source-channel encodgrobability of the state to be in thith bin is p(i) = p(z €
as a mappingps(z¢|z¢),z: € R, zz € Z, between the B;).
source output and channel input. The forward channel is aIn the study of stability of a Markovian system, an appro-
memoryless stochastic mapping between the channel ingriate approach is to use drift conditions [14] (in partaul
and outputp.(y:|2:),y: € Y, and the decoder is a mappingsee Chapters 8 and 14); we will use these conditions to first
between the channel output, the information available @t ticharacterize and then construct state encoders. We will nee
control, I;_;, and the output, i.epq(xi|l;—1,y:), 7 € X',  the following two definitions [14] regarding Markov chains
andl; = {I;_1,ys, u—1}. The control,u, € U, is generated in the development to follow.
using I;. The reverse channel also has a source-channelDefinition 1.2: A Markov Chain,®, in a state space,
encoderp/,(z{|u;), z; € Z’, channel mapping..(y;|z;),y; € is ¥—irreducible if for some measur&, for any B € X
V', and a channel decodef,(uj|y;),u; € U’ (see Fig. 1), with ¥(B) > 0, Vo € X, there exists some integer > 0,
where thep(-|-)'s are all conditional probability densities or possibly depending o3 and =, such thatP"(z, B) > 0,
mass functions. where P"(x, B) is the transition probability im stages.

Definition 1.1: A Discrete Memoryless Channel (DMC) Definition l 3 A probability measurer is invariant on
is characterized by an input alphab®t an output alphabet (X, Bx) if «( fX w(dx), VD € By.

Y, and a mapping,,.(y|z), from X’ to ), which satisfies: We close thIS section W|th a brief outline of the orga-
Pynjen (WP 127) =TTz Pyafa, (yilzi), Vo™ € X7y € Y. nization of the paper. We study necessary conditions on



the rates and the structures of the codes in section Il, and < 7 almost surely. Letf(z) = e~27*. Using Dynkin’s
then sufficiency results and code constructions in section | formula [16], we have
We discuss the variable length coding for side channels in
section IV, and conclude with comments on extensions to By [f(vr)] = f(wo) + B [/
multi-dimensional systems in section V. 0

where A is the generator function, given by f(z) =

’
Tk

CAf(vs)ds),

Il. NECESSITYCONDITIONS v(0f/0z) + 1/2(9%f/022). Let pr be the probability of
.y k+1
A. Conditions on Capacities exiting atR. Thus, we havere 27+ (1—pr)e™7? TR
-2 i i .
We note that the problem of minimizingg[+7,,] is © ¥, Sincepr is bounded, and > 0, we obtain:
identical to the minimization of lim pr = e 2770 e~ 2R < 1.
k—o0
Ela®(b/au; — (—21))* + dy], Thusp(r’ < 0) < 1 andp(r < o0) < 1. Hence, the chain

Lig transient. o

which can be regarded as a state estimation cost. Th :
d The counterpart of this result for the encodable state set

we can approach the control problem as a problem of the followi
information transmission over a degraded relay channel, afp (€ following. . . .
Theorem 2.3: For a linear system witha| > 1, with

the problem can be regarded as a state estimation problep . ) . .
over such a channel. drlgcrete channel transitions forming an irreducible Marko

Theorem 2.1: For the existence of an invariant densitychaln, if the encodable state set is bounded, the Markowchai

G ; : is transient.
with finite variance, channels should sati . .
fy The above results show that for the noisy discrete channel
min(Cy, C,) > logy(|al), case one needs to encode the entire state space. Unlike a

) continuous alphabet channel, this restriction entailgifig
whereCy and C;. are respectively the forward and reversgant complexity on encoding for control over a discrete yois
channel capacities. channel, for there needs to be a matching between the entire

Proof. An invariant density with a finite variance implies g5t space which requires a countably infinite number of
a finite invariant entropy (which is bounded by the entropy.dewords and a finite-symbol channel. We will observe that
of the Gaussian density with the same variance). SinGging a dynamic structure, this problem can be overcome in
ri41 = a(xy — b/auy) + di, and conditioning does not gome cases.

increase entropy, and, is an independent noise process, we now study the conditions for the existence of am

we have invariant density with a finite second moment for the state
H(zep1) > Hlzea|d)) = Ha(z, — bjaw)) + dy|u)) for systems connected over DMCs.
=  H(axy + di|uy) > H(azy + diluj, dy) [1l. STABILIZING RATE REGIONS

= H(az|u,) = log,(la|) + H(z:u,), (3) A Stability Through Drift Conditions

We now consider the original system (2), and study
the stochastic evolution of the state. Consider symmetric
guantizers studied before. Suppose a time invariant degodi

which implies H(x;11) — H(z¢|u;) > logy(Jal). Since
I(xy;u) = H(xy) — H(xe|up), we have

I(zy;u)) > H(xy) + logy(|al) — H(zeyr). policy is used by the controller.
_ _ Theorem 3.1: Let S C X be a closed and bounded
But lim¢ .o (H(z¢41) — H(z¢)) = 0, which leads t0 interval around the originl < oo, and lets; > 0, Vi

limy o0 I (24 ut) > logy(lal). Now, from the data process- (positive portion of the symmetric quantizer). Finallyt le
ing inequality [15] and the definition of capacity we have| . be the indicator function for: being in S. Then, for

min(Cy, Cy) > logy(lal). © adiscrete channel, if the following drift condition holdsr f
We will observe in the next section that the capacityome sufficiently smalt > 0, and for all bins:

constraints are far from being sufficient as long as the delay
in transmission due to longer codelengths are penalized. —d; + max <|[Zl >, ol (U15)adi + Q)]

B. Structural Conditions 15, p(li)p' (1) [ad +bQ’]|) < —e+ L1
. 7 ao; —€ T
An important observation in the development of this paper 122 PUTIP L i : e

is now the following. then there exists an invariant probability distributiorur+

Theorem 2.2: For a linear system witha| > 1, with  thermore, if the following condition holds for all bins:
channel transitions forming an irreducible Markov chafn, i

the encodable control set is bounded, the chain is transient max (Zl >, p( ) (U5)[ads + bQj)?,
Proof: Let |b'uj| < M,V¥t > 0. Define a processjv; =

Yvy + dBy, with vg = x¢ € T}, = (R, 2kR), wherezy > } N (114 a1+ b /2> 52
R > M/(§ —~), and§ > ~v > 0. Definer := inf{t : x; < 202 PP () ader + 00 '

R} :=inf{t: v, < R}, 7}, ;= inf{t : v, ¢ T} . We have < —eb?, + Lleg, 4)



thenlim, ... E[27] exists and is finite. The limit distribution then, lims, ... E[z7,] = 0. Further, let the minimum dis-
is independent of the initial distribution. tance between two codes iti’ be positive. Then, if any of
Proof. See [1]. o the following holds
For the case when the channels are noiseless, this leads to f
a logarithmic quantizer (witk = 0, L = 0), which was, in (260 = B (Ry )Ny + (266N;) > 0,
a control context, first introduced in [4]. (266 — Eg,(Ry)) Ny + (26aNy) > 0, )
Proposition 3.1: Let the forward and the reverse channels K = eNsfts — eNrfir  o8(aNs+8N:)
be noiseless. Consider a symmetric quantizer. For a scalar
system to satisfy a drift towards the origin, for the nonihen.limr, .. Ez% ] = oc.
negative quantizer values, quantizer bin edges have tfyati Proof: See [1]. ¢
Now we make the following observations:
Oip1 < (1+2/la])d; ®) 1) If there is no channel noise, the condition is the well-
B. Trade-off Between Reliability and Delay studied quantization conditior > |a|.

Although longer block codes improve the channel reliabil- 2) Theorem 3.2 shows that the error exponents being
ity, long delays and larger sampling periods are undesirabl ~ POSitive (which is the case when rate is less than the
in control. The explicit dependence of error probability on capacity, R < C) does not directly lead to stability,
the length is characterized by tleeror exponents [15]. The and there needs to be a positive lower bound on the
probability of error between two different codewords (i.e. exponent. Thus the accurate measure is the reliability
p(m|m’),m # m’;m, m’ € X') can be upper bounded using of the channel, not necessarily the capacity. This had

the largest value of the minimum Bhattacharyya distance ina _ P€en observed in [5].

codebook ([15], Chapter 12). For any two codewordsn’, 3) Capacity is a sufficient measure if: (i) the error ex-
ponent is infinite, as in a digital noiseless channel, so
d(m,m’) > N[EL(R) — o(N)/N], m#m/, long asR < C; (ii) there is no cost associated with

the number of channel uses per sampling period, i.e.,
aNy and N, are kept constant with growiny ¢, IV,..
4) The set of stabilizing rates could be empty. For in-

where R is the coding rate andim,_.. o(n)/n = 0,
and E(.) is the Gilbert lower bound on the error expo-
nent [17]. Thus, the probability of error between any two _ ) o
(different) codewordsy(m|m’)) will be upper bounded by stance, in case there is no 1n0|se in the reverse channel,
e~ NEL(R)+o(N) | jkewise the average probability of error we needlogy(lal) < NEf,~(2logy(lal)).
e :=1/M; Y, peji(eli) can be lower bounded; herg(e|i) _In vi_ew of th_e above, the achievable rates satisfy the follow
denotes the probability of error given that tith message ing inequalities:
is transmitted. By the sphere-packing bound ([18], Chp. 5),1 fro1
Pe > eN(Esp(R)—o(N)/N) \We will use the Sphere packing ng(aNf +6N7‘) < Rf < (EL) ([250[] + [2§/6Nr]/Nf)
exponentE,,(R) to obtain negative results. 1
Let us fix the forward and reverse channel ratBs, = Fg(od\ff +BN,) < R, < (EE)_I([%Q]NJP/NT +2¢0)
logy(Mys)/Ny and R, = logy(M,)/N,. Thus the error r
exponent will not change asV; and N, increase. We  As an illustration of the rate regions, we use binary
penalize the codelengths in the forward and reverse channeymmetric channels with cross-over probabiliti@s1, for
by a possibly linear term in the sampling period; it then sakewhich the Gilbert exponent isE;(R) = H '(In2 —
longer to send more bits; reliability competes with delay. R)In(2+/p(1 — p)), whereH is the binary entropy function.
First, the case where the system (2) is noiseless is consle plot the achievable rate region in Fig. 2, where we take

ered. Later, the noisy case will be considered. a=06=0.1.
C. Asymptotic Stability D. Asymptotic Sability with Delay Restricted Codes

The following theorem indicates that if the controller v8ait We now consider the original system (2) driven by i.i.d.
long enough, stability can be achieved. noise, where the sampling period is finite, and further the

Theorem 3.2: Suppose a scalar continuous-time systeramount of data to be sent over a sampling period is finite.
&, = &xy + b'uy, with a bounded initial state,, is remotely In this case the asymptotic analysis becomes inapplicable,
controlled. Let the sampling period be a function of blockand we need a scheme with finite length codes sent per time
lengths: T, = aNy + BN,; «, 5 be possibly depending on stage. We know from Proposition 2.2 that the encodable set
the codelengths, and the number of symbols in the state ahds to be unbounded, and we need to represent this with a
control be K = |X’| = |U| = |U’|. Let the ratesR; = finite (in an expectation or a deterministic sense) number of
log,(K)/Ny and R, = log,(K)/N, be kept constant as codewords. The controller has access to the plant dynamics;
N¢, N, grow. If the system and channel parameters satisfyherefore, there is some side information available at the

controller about the next value of the state, but this side

(260 — Ei(Rf>)Nf' + (268Ny) <0, information is not available at the sensor as in the Slepian-

(268 — EL(Rf)) Ny + (26aNy) <0, (6)  Wolf coding context. We introduce a new coding scheme
K = eNiBs = NrBor  o8(aNs+8N) for dynamic systems using this interpretation. The scheme
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controller if J # I. Likewise for the feedback channel we
Fig. 2: Achievable rates over Binary Symmetric Channelshavepm’(L|J) as the side channel mapping.
The capacitiesCy = C, = 0.59 are ineffective in the  Theorem 3.3: Suppose the scalar continuous-time system
achievable rate analysis. dzxy = (Exy+b'u})dt+dBy, is remotely controlled. LeT be

a sampling period which is function of block lengthg; =

e r e aNy+ SN, «, 5 be possibly depending on the codelengths,

oL ‘ ‘ ‘ and the number of symbols in the state and controkbe:

T Cotein -t Codein |X’| = |U| = |U’'|. Suppose the forward and reverse channel
Fig. 3: lllustration of the binning approach to the jointcodes are ofV; and N, bits long, and let the rates by =
source channel code; the symbols in a given CodeBin ale22(K)/Ny and R, = logy(K)/N,. Define T'(y, p™, I),
represented by the same channel code -letters A, B, C, U(7,I), andZ respectively as
-; the mode symbol -1,2,3 . -is carried by the side channel. T — Z me’(L‘J)pm(J|1)4,y2(max(0,NfRf(\L|7I))+1)

ABCD E F G A B c D E

L.LAI J

U= 72 Z anLI(L|J)pm(J|I)’Y2 max(0,NfRs(|L|—I+1))
is based on binning [19], where we partition the state space 7 7

into cosets, and transmit the coset of the symbol. We also
assume that there is a possibly noisy side channel Carryir@:: K
the indices of the cosets. In [20] uniform binning was useg for some~ > 1, the forward, reverse and side channels
in a decentralized linear system context. Here the syste@yisfy the following

is centralized but the channel is noisy. Instead of uniform
binning, we apply here logarithmic binning to satisfy thétdr
requirements. We quantify below the requirements needed by
this scheme.

Suppose we havdl = 2Vs%s symbols that we will
transmit over each sampling interval. We will partition the
entire state space into bins and grolipadjacent elements -
into one larger bin, indexed by, and represent them by '\/[(1 —€) —4Z22N 7 U () = T(v,p™));

a single channel codebook. We refer to this ensemble gfen drift conditions are satisfied, and there exists a gpdin
bins as aCodeBin. Hence, a total 02"/ codewords are scheme leading to a finite second moment. The source coder
used to represent the entire state space (see Figure 3). Thgs, symmetric logarithmic quantizer with expansion ratjo
CodeBir{I) := {z : din;r, < = < d(r41)NsR, )} THIS e 16i11] < |6].

applies to the controller also, with the bin edgésbeing Proof: See [1] o
scaled by—a/b.

We denote the bin indices by ;, which means the edge IV. VARIABLE LENGTH ENCODING FORSIDE CHANNELS
belongs to CodeBid and is represented by thi¢h channel In case we have noiseless side channels, there is a restric-
codeword. We say the source code is in mddd the state tion on the number of channel uses for the side channels.
is in CodeBinI (see Figure 4). The reconstruction value ofif the restriction is only on the average number of channel
each bin is assumed to be the midpoint, such that=  uses, Huffman coding can be used to obtain a finite expected
(1/2)(0; + d;+1). We definep™(J|I) as the probability of codelength, since the entropy of the invariant processite fin
error of CodeBin (mode of the quantizer) transmission fronowever, in practice, there is a bound on the actual number
mode I to mode J through the side channel. This meansof channel uses and not only on its average. Markovian
the mode is erroneously transmitted from the plant to thstability theory can be used to show that even with such

e~ NrEL(R;)=N,Ey(R;) | ~N;E[(Rf) | o~N-E}(R:)

limsupU(y,I) =: U(y) < 00

I—o0

limsup T'(y, p™, I) =: T(7,p™) < 1

I—o0

v < 1+ 2(e 8N AN




a restriction, stability can be achieved. In case an inmaria Remark: The essential difficulty in code construction is to
density exists, the occurrence of high magnitude signdls wiransmit sufficient information in a finite time over a finite

be rare. We build on this in the following.

symbol channel. In a continuous alphabet channel, this is

not an issue, as is studied in [12], since for instance in

A. Variable Length Encoding for Sde Channels
The controller and the sensor can sedd channel infor-

the Gaussian channel case, arbitrary values can be coded
in one channel use, and one can use high magnitude signals

mation over variable periods by using variable length codeprovided that the expected power remains finite. o

(such as uniquely decodable prefix codes). To achieve this,
Codebins are generated according to the number of samplin
periods required to send the side channel information, tthls
the effective sampling period will vary. However, in thissea
the drift analysis we employed earlier becomes inappleab
and one ought to use state-dependent drift conditions f21]
study stability. If the effective sampling period i, k €
Z*, then the system will be open loop duriad, seconds.
These considerations lead to the following counterpart of

an

Theorem 3.3 in the case of variable-length encoding. [1]
Theorem 4.1: Let U(y) := ?Wsfs+1) and
Z(k) = e—k}NfE{(Rf/k)—k)N,,.Ez(R-,v/k:)QNfRf [2]
Lo KNsEL(Ry/K) 4 o~kNoEL(Re/k), @l
If for some~ > 1, Jky > 0 such thatVk > ko, Va € {x :
|z| > *NiEr§, ), the following holds [4]
T e et :
NoR e26kTs _
. [(1—6)—4Z(k)2 f fU(’Y)—W,
[7]

then drift conditions hold and there exists a coding scheme
leading to a finite second moment. The source coder is a
symmetric logarithmic quantizer with expansion ratioi.e., (8]
|0;+1] < 7v|d;]. There exists a solution for small enough
(9]

B. Relaxation of the Forward Sde Channel

The control has access to the plant dynamics and there [i0]
already some side information available to it. This informa
tion might be useful in relaxing the conditions on the foravar (17
side channel.

Proposition 4.1: Suppose the forward channel error has
a bound ofA¢, the system noise has a bound/®f, and the
reverse channel is bounded. To achiéivesup, . |7:|? <
o0, there is no need for a forward side channel.
Proof: The total uncertainty will be bounded by =:
la|(Af + Ar) + A,. Clearly for large enoughr, using a
logarithmic quantizer, there existskg such thatvk > ko,
RN 5 > 2A. Using binning [20], there will be no
error in distinguishing between two codewords with the[16]
same coset. In this case if the two nearest bins sharin%n
the same coset are spread out with a distance greater thag,
la|(Af+A,)+ Ay, then with only the coset information, the
controller can find out the exact value of the bin, see [20]. [

Unlike the transmissions from the controller, in general
the plant cannot predict the control signal it will receive,[20]
since it does not have access to the decision policy at the
controller. Therefore such a relaxation does not apply ¢o thy1;
reverse channel.

[12]

(23]

[14]

[15]

19]

V. HIGHER DIMENSIONAL SYSTEMS

e have not discussed here the multi-dimensional case,
irst because of page limitations, and second because the
F\nalysis in this case would be quite tedious. If the system

be transformed to a first-order Markovian system, since

he drift conditions apply to any finite dimensional space,
the coding schemes can be readily applied.
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