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Abstract— We consider the problem of stabilizability of
remote LTI systems where both the forward (from the sensor
to the controller) and the feedback (from the controller to
the plant) channels are noisy, discrete, and memoryless. In-
formation theory and the theory of Markov processes are used
to obtain necessary and sufficient conditions (both structural
and operational) for stabilizability, with the conditions being
on error exponents, delay and source-channel codes. These
results generalize some of the existing results in the literature
which assume either the forward or the reverse channel to
be noise-free. We observe that unlike continuous alphabet
channels, discrete channels entail a substantial complexity in
encoding the unbounded state and control spaces for control
of noisy plants. We introduce a state-space encoding scheme
utilizing the dynamic evolution. We also present variable-length
coding through variable-sampling to transmit countably infinite
symbols over a finite channel.

I. I NTRODUCTION

A. Problem Formulation

We consider in this paper a remote control problem with
communication constraints, as depicted in Fig. 1. The system

 p_s

p’_sp’_d

     

Forward
   Channel

X

Source−Channel
     Coder

Z Y X’

UU’

Decoder

Reverse 
     Channel

Decoder Encoder
Y’ Z’

p_c p_d

p’_c

 Plant

Sensor

 Controller

Fig. 1: Control over discrete noisy channels.

to be controled is a sampled version of an LTIcontinuous-
time plant with the scalar dynamics

dxt = (ξxt + b′u′
t)dt + dBt, (1)

whereBt is the standard Brownian motion process,u′
t is the

(applied) control which is assumed to be piecewise constant
(zeroth order hold) over intervals of lengthTs, the initial
state x0 is a second-order random variable; andξ > 0,
which means that the system is unstable without control.
After sampling, with periodTs, we have the discrete-time
system

xt+1 = axt + bu′
t + dt (2)
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where xt is the state at timet, {dt} is a zero-mean i.i.d.
Gaussian process. Herea = eξTs , b = b′(eξTs − 1)/ξ and
E[d2

t ] = e2ξTs − 1/2ξ.
In the remote control setting, we refer to the channel which

connects the sensor to the controller as theforward channel,
and the channel which connects the controller to the plant
as thereverse channel (see Fig. 1).

The timeline of the events is as follows: The state is
sampled at discrete time instantskTs, k ≥ 0. It takes
α(Nf )Nf seconds to use the forward channelNf times2,
andβ(Nr)Nr seconds to use the reverse channelNr times.

The coding rate for the forward channel is defined asRf =
log(|Mf |)/Nf , whereMf is the set of sensor symbols, and
Nf is the number of channel uses. Likewise, for the reverse
channel, the coding rate isRr = log(|Mr|)/Nr. Our goal in
this paper is to obtain:

1) Outer and inner bounds for the set of forward and
reverse rates which lead to a finite state variance in
the limit, that is bounds for

{Rf , Rr : lim
T→∞

E[x2
T ] < ∞}.

2) Encoding schemes for both state and control symbols,
with infinite size codebooks in both and dynamic
evolution only in the former.

We focus here on stabilizability, since this is a necessary
condition for the more comprehensive problem of controlla-
bility for linear systems.

B. Connections with the Literature

Works most relevant to this one in the literature are [2],
[3] [4], [5], [6], [7], and [8]. References [2] and [3] are
among the first to consider noisy channels. Reference [3] also
introduces various problems which have had a significant
impact on the emerging field of remote control. Reference [4]
adopts a Lyapunov-based approach to stabilize a system over
noiseless channels and shows that the coarsest time-invariant
stabilizing quantizer is logarithmic and that the design has
the same base for construction regardless of the sampling
interval. We will show that this property regarding sampling
carries over to stochastic systems as well. Reference [9]
has shown that capacity does not have much relevance in
a control context, and has introducedanytime capacity as a
necessary and sufficient measure using noiseless feedback;
furthermore, any-time decoding uses only finite delay with
probability one. Unlike [9], the encoder and decoder in this

2It might be possible to causally encode more recent information consid-
ering the delay in transmission; here we assume block codingand encode
the state at timekTs, k ≥ 0.



work are not only causal but also ofzero-delay type, i.e.,
the encoding and decoding are done symbol by symbol.
Furthermore we do not allow for any feedback in commu-
nication and take the reverse channel also noisy. Another
related reference, [6], studies stability over noisy discrete
channels. There, the plant is noise-free, the reverse channel
is noiseless, and for such a system it is argued that capacity
is a sufficient measure. In our case, however, the plant and
the reverse channels are also noisy. We will observe that for
noiseless plants, if the number of codelengths is penalized,
then capacity is not a sufficient measure; except for noiseless
discrete channels. Furthermore we provide structural results
on coding and decoding schemes for stabilizability.

Most of the studies in the literature have considered at least
one noiseless channel connecting the controller and the plant
and have not touched upon the effects when both channels
are unreliable. Regarding noisy feedback channels, there
have been just a few studies: Reference [10] has addressed
the Gaussian channel case, with no encoding in the reverse
channel in the relaxation of the noiseless feedback; reference
[11] studies optimal control policies with packet losses inthe
feedback channel as well as the forward one. In a parallel
work, [12], we study control over Gaussian channels for
scalar systems and provide the optimal linear coder and
controllers. In [13], communication with a noisy feedback
channel has been considered in the context of estimation.

To recapitulate, in this paper we consider systems where
both channels are noisy and discrete. The presence of a noisy
channel with no explicit feedback leads to anon-classical in-
formation structure [2], since the agents (controller, encoders
and decoders) do not have nested information. Furthermore
the dual effect of control is present. Due to these difficul-
ties, we will use indirect methods, information theory, and
Markov stability theory, to arrive at necessary and sufficient
conditions.

C. Notation and the System Model

In our setup, both the sensor and the controller act as
both transmitters and receivers because of the closed-loop
structure. We model the forward source-channel encoder
as a mappingps(zt|xt), xt ∈ R, zt ∈ Z, between the
source output and channel input. The forward channel is a
memoryless stochastic mapping between the channel input
and output,pc(yt|zt), yt ∈ Y , and the decoder is a mapping
between the channel output, the information available at the
control, It−1, and the output, i.e.,pd(x

′
t|It−1, yt), x

′
t ∈ X ′,

andIt = {It−1, yt, ut−1}. The control,ut ∈ U , is generated
using It. The reverse channel also has a source-channel
encoder,p′s(z

′
t|ut), z

′
t ∈ Z ′, channel mappingp′c(y

′
t|z

′
t), y

′
t ∈

Y ′, and a channel decoderp′d(u
′
t|y

′
t), u

′
t ∈ U ′ (see Fig. 1),

where thep(·|·)’s are all conditional probability densities or
mass functions.

Definition 1.1: A Discrete Memoryless Channel (DMC)
is characterized by an input alphabetX , an output alphabet
Y , and a mappingpy|x(y|x), from X to Y , which satisfies:
pyn|xn(yn

1 |x
n
1 ) =

∏n
i=1 pyi|xi

(yi|xi), ∀xn ∈ Xn, yn ∈ Yn.

The source-coder is the quantizer, and the channel encoder
generates the bit stream for each of the corresponding quan-
tization symbols, thus generating the joint-source channel
encoder.

We say the controller has memory of orderm if the
information available to it at timet is

Im
t = {yt−m, . . . , yt; ut−max(m,1), . . . , ut−1}.

In casem = 0, we will have a memoryless controller; i.e.,
I0
t = yt, which we will study in detail. In this case we

will lump the forward source-channel encoder, the forward
channel and the decoder mappings into a single mapping
p(x′|x), and likewise the reverse source-channel encoder,
reverse channel and decoder mappings intop′(u′|u).

A quantizerQ is constructed by corresponding bins{Bi}
and their reconstruction levelsqi such that∀i, Q(x) =
qi <=> x ∈ Bi. We have∀i, qi ∈ Bi. For scalar quanti-
zation,x ∈ R andBi = (δi, δi+1], where{δi} are termed as
“bin edges” and w.l.o.g. we assume the monotonicity on bin
edges:∀i, δi < δi+1. In this paper we consider “symmetric
quantizers”, which are defined as: If∃ a quantization bin
(δi, δi+1], where0 < δi < δi+1, thenB−i = [−δi+1,−δi) is
also a quantization bin.

We define the encodable state setSx ∈ R as the set of
elements which are represented by some codeword,Sx :=
⋃

i Bi. Such a definition applies to the encodable control set,
Sc, as well. Suppose the state is within the encodable set and
is in the ith bin of the quantizer. The source coding output
at the plant sensor will represent this state asqi and send
the ith index over the channel. After a joint mapping of the
channel and the channel decoder, the controller will receive
the indexi as indexj with probabilityp(j|i). The controller
will apply its control over indexj, computingQ′

j -thus the
controller decoder, controller, and encoder can be regarded as
a single mapping- and send it over the reverse channel, which
would interpret this value asQ′

l with probability p′(l|j),
by a mapping through the reverse channel. Given that the
state is in theith bin, the plant will receive the controlQ′

l

with probability
∑

j p′(l|j)p(j|i). Thus, the applied control
will be u′

t = Q′
l with probability

∑

j p′(l|j)p(j|i), and the
probability of the state to be in theith bin is p(i) = p(x ∈
Bi).

In the study of stability of a Markovian system, an appro-
priate approach is to use drift conditions [14] (in particular
see Chapters 8 and 14); we will use these conditions to first
characterize and then construct state encoders. We will need
the following two definitions [14] regarding Markov chains
in the development to follow.

Definition 1.2: A Markov Chain,Φ, in a state spaceX,
is Ψ−irreducible if for some measureΨ, for any B ∈ X
with Ψ(B) > 0, ∀x ∈ X, there exists some integern > 0,
possibly depending onB and x, such thatPn(x, B) > 0,
wherePn(x, B) is the transition probability inn stages.

Definition 1.3: A probability measureπ is invariant on
(X,BX) if π(D) =

∫

X
P (x, D)π(dx), ∀D ∈ BX .

We close this section with a brief outline of the orga-
nization of the paper. We study necessary conditions on



the rates and the structures of the codes in section II, and
then sufficiency results and code constructions in section III.
We discuss the variable length coding for side channels in
section IV, and conclude with comments on extensions to
multi-dimensional systems in section V.

II. N ECESSITYCONDITIONS

A. Conditions on Capacities

We note that the problem of minimizingE[x2
t+1] is

identical to the minimization of

E[a2(b/au′
t − (−xt))

2 + d2
t ],

which can be regarded as a state estimation cost. Thus,
we can approach the control problem as a problem of
information transmission over a degraded relay channel, and
the problem can be regarded as a state estimation problem
over such a channel.

Theorem 2.1: For the existence of an invariant density
with finite variance, channels should satify

min(Cf , Cr) > log2(|a|),

whereCf and Cr are respectively the forward and reverse
channel capacities.

Proof: An invariant density with a finite variance implies
a finite invariant entropy (which is bounded by the entropy
of the Gaussian density with the same variance). Since
xt+1 = a(xt − b/au′

t) + dt, and conditioning does not
increase entropy, andDt is an independent noise process,
we have

H(xt+1) ≥ H(xt+1|u
′
t) = H(a(xt − b/au′

t) + dt|u
′
t)

= H(axt + dt|u
′
t) > H(axt + dt|u

′
t, dt)

= H(axt|u
′
t) = log2(|a|) + H(xt|u

′
t), (3)

which implies H(xt+1) − H(xt|u
′
t) > log2(|a|). Since

I(xt; u
′
t) = H(xt) − H(xt|u

′
t), we have

I(xt; u
′
t) > H(xt) + log2(|a|) − H(xt+1).

But limt→∞(H(xt+1) − H(xt)) = 0, which leads to
limt→∞ I(xt; u

′
t) > log2(|a|). Now, from the data process-

ing inequality [15] and the definition of capacity we have
min(Cf , Cr) > log2(|a|). ⋄

We will observe in the next section that the capacity
constraints are far from being sufficient as long as the delays
in transmission due to longer codelengths are penalized.

B. Structural Conditions

An important observation in the development of this paper
is now the following.

Theorem 2.2: For a linear system with|a| > 1, with
channel transitions forming an irreducible Markov chain, if
the encodable control set is bounded, the chain is transient.
Proof: Let |b′u′

t| < M, ∀t ≥ 0. Define a process,dvt =
γvt + dBt, with v0 = x0 ∈ Tk := (R, 2kR), wherex0 >
R > M/(ξ − γ), andξ > γ > 0. Defineτ := inf{t : xt ≤
R},τ ′ := inf{t : vt ≤ R}, τ ′

k := inf{t : vt /∈ Tk} . We have

τ ′ ≤ τ almost surely. Letf(x) = e−2γx. Using Dynkin’s
formula [16], we have

Ex0
[f(vτ ′

k
)] = f(x0) + Ex0

[

∫ τ ′

k

0

Af(vs)ds],

where A is the generator function, given byAf(x) =
γ(∂f/∂x) + 1/2(∂2f/∂x2). Let pR be the probability of
exiting atR. Thus, we havepRe−2γR +(1−pR)e−γ2k+1R =
e−2γx0 . SincepR is bounded, andγ > 0, we obtain:

lim
k→∞

pR = e−2γx0/e−2γR < 1.

Thusp(τ ′ < ∞) < 1 andp(τ < ∞) < 1. Hence, the chain
is transient. ⋄

The counterpart of this result for the encodable state set
is the following.

Theorem 2.3: For a linear system with|a| > 1, with
discrete channel transitions forming an irreducible Markov
chain, if the encodable state set is bounded, the Markov chain
is transient.

The above results show that for the noisy discrete channel
case one needs to encode the entire state space. Unlike a
continuous alphabet channel, this restriction entails signifi-
cant complexity on encoding for control over a discrete noisy
channel, for there needs to be a matching between the entire
state space which requires a countably infinite number of
codewords and a finite-symbol channel. We will observe that
using a dynamic structure, this problem can be overcome in
some cases.

We now study the conditions for the existence of am
invariant density with a finite second moment for the state
for systems connected over DMCs.

III. STABILIZING RATE REGIONS

A. Stability Through Drift Conditions

We now consider the original system (2), and study
the stochastic evolution of the state. Consider symmetric
quantizers studied before. Suppose a time invariant decoding
policy is used by the controller.

Theorem 3.1: Let S ⊂ X be a closed and bounded
interval around the origin,L < ∞, and let δi > 0, ∀i
(positive portion of the symmetric quantizer). Finally, let
1x∈S be the indicator function forx being in S. Then, for
a discrete channel, if the following drift condition holds for
some sufficiently smallǫ > 0, and for all bins:

−δi + max

(

|[
∑

l

∑

j p(j|i)p′(l|j)[aδi + bQ′
l]]|,

|
∑

l

∑

j p(j|i)p′(l|j)[aδi+1 + bQ′
l]|

)

< −ǫ + L1x∈S

then there exists an invariant probability distribution. Fur-
thermore, if the following condition holds for all bins:

max

(

∑

l

∑

j p(j|i)p′(l|j)[aδi + bQ′
l]

2,

∑

l

∑

j p(j|i)p′(l|j)[aδi+1 + bQ′
l]

2

)

− δ2
i

< −ǫδ2
i+1 + L1∈S , (4)



thenlimt→∞ E[x2
t ] exists and is finite. The limit distribution

is independent of the initial distribution.
Proof. See [1]. ⋄
For the case when the channels are noiseless, this leads to

a logarithmic quantizer (withǫ = 0, L = 0), which was, in
a control context, first introduced in [4].

Proposition 3.1: Let the forward and the reverse channels
be noiseless. Consider a symmetric quantizer. For a scalar
system to satisfy a drift towards the origin, for the non-
negative quantizer values, quantizer bin edges have to satisfy

δi+1 ≤ (1 + 2/|a|)δi (5)

B. Trade-off Between Reliability and Delay

Although longer block codes improve the channel reliabil-
ity, long delays and larger sampling periods are undesirable
in control. The explicit dependence of error probability on
the length is characterized by theerror exponents [15]. The
probability of error between two different codewords (i.e.,
p(m|m′), m 6= m′; m, m′ ∈ X ′) can be upper bounded using
the largest value of the minimum Bhattacharyya distance in a
codebook ([15], Chapter 12). For any two codewordsm, m′,

d(m, m′) ≥ N [EL(R) − o(N)/N ], m 6= m′,

where R is the coding rate andlimn→∞ o(n)/n = 0,
and EL(.) is the Gilbert lower bound on the error expo-
nent [17]. Thus, the probability of error between any two
(different) codewords (p(m|m′)) will be upper bounded by
e−NEL(R)+o(N). Likewise the average probability of error
pe := 1/Mf

∑

i pe|i(e|i) can be lower bounded; here,p(e|i)
denotes the probability of error given that theith message
is transmitted. By the sphere-packing bound ([18], Chp. 5),
pe ≥ eN(Esp(R)−o(N)/N). We will use the sphere packing
exponentEsp(R) to obtain negative results.

Let us fix the forward and reverse channel rates,Rf =
log2(Mf )/Nf and Rr = log2(Mr)/Nr. Thus the error
exponent will not change asNf and Nr increase. We
penalize the codelengths in the forward and reverse channels
by a possibly linear term in the sampling period; it then takes
longer to send more bits; reliability competes with delay.

First, the case where the system (2) is noiseless is consid-
ered. Later, the noisy case will be considered.

C. Asymptotic Stability

The following theorem indicates that if the controller waits
long enough, stability can be achieved.

Theorem 3.2: Suppose a scalar continuous-time system
ẋt = ξxt + b′u′

t, with a bounded initial statex0, is remotely
controlled. Let the sampling period be a function of block
lengths:Ts = αNf + βNr; α, β be possibly depending on
the codelengths, and the number of symbols in the state and
control beK = |X ′| = |U| = |U ′|. Let the ratesRf =
log2(K)/Nf and Rr = log2(K)/Nr be kept constant as
Nf , Nr grow. If the system and channel parameters satisfy

(2ξα − Ef
L(Rf ))Nf + (2ξβNr) < 0,

(2ξβ − Er
L(Rf ))Nr + (2ξαNf ) < 0, (6)

K = eNf Rf = eNrRr > eξ(αNf +βNr),

then, limTs→∞ E[x2
Ts

] = 0. Further, let the minimum dis-
tance between two codes inX ′ be positive. Then, if any of
the following holds

(2ξα − Ef
sp(Rf ))Nf + (2ξβNr) > 0,

(2ξβ − Er
sp(Rf ))Nr + (2ξαNf ) > 0, (7)

K = eNf Rf = eNrRr < eξ(αNf +βNr),

then, limTs→∞ E[x2
Ts

] = ∞.
Proof: See [1]. ⋄

Now we make the following observations:

1) If there is no channel noise, the condition is the well-
studied quantization condition:K ≥ |a|.

2) Theorem 3.2 shows that the error exponents being
positive (which is the case when rate is less than the
capacity,R < C) does not directly lead to stability,
and there needs to be a positive lower bound on the
exponent. Thus the accurate measure is the reliability
of the channel, not necessarily the capacity. This had
been observed in [5].

3) Capacity is a sufficient measure if: (i) the error ex-
ponent is infinite, as in a digital noiseless channel, so
long asR < C; (ii) there is no cost associated with
the number of channel uses per sampling period, i.e.,
αNf andβNr are kept constant with growingNf , Nr.

4) The set of stabilizing rates could be empty. For in-
stance, in case there is no noise in the reverse channel,
we needlog2(|a|) < NEf

sp
−1(2 log2(|a|)).

In view of the above, the achievable rates satisfy the follow-
ing inequalities:

1

Nf
ξ(αNf + βNr) < Rf < (Ef

L)−1([2ξα] + [2ξβNr]/Nf )

1

Nr
ξ(αNf + βNr) < Rr < (Er

L)−1([2ξα]Nf/Nr + 2ξβ)

As an illustration of the rate regions, we use binary
symmetric channels with cross-over probabilities0.01, for
which the Gilbert exponent isEL(R) = H−1(ln 2 −
R) ln(2

√

p(1 − p)), whereH is the binary entropy function.
We plot the achievable rate region in Fig. 2, where we take
α = β = 0.1.

D. Asymptotic Stability with Delay Restricted Codes

We now consider the original system (2) driven by i.i.d.
noise, where the sampling period is finite, and further the
amount of data to be sent over a sampling period is finite.
In this case the asymptotic analysis becomes inapplicable,
and we need a scheme with finite length codes sent per time
stage. We know from Proposition 2.2 that the encodable set
has to be unbounded, and we need to represent this with a
finite (in an expectation or a deterministic sense) number of
codewords. The controller has access to the plant dynamics;
therefore, there is some side information available at the
controller about the next value of the state, but this side
information is not available at the sensor as in the Slepian-
Wolf coding context. We introduce a new coding scheme
for dynamic systems using this interpretation. The scheme
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Fig. 3: Illustration of the binning approach to the joint
source channel code; the symbols in a given CodeBin are
represented by the same channel code -letters A, B, C,. . .
-; the mode symbol -1,2,3. . . -is carried by the side channel.

is based on binning [19], where we partition the state space
into cosets, and transmit the coset of the symbol. We also
assume that there is a possibly noisy side channel carrying
the indices of the cosets. In [20] uniform binning was used
in a decentralized linear system context. Here the system
is centralized but the channel is noisy. Instead of uniform
binning, we apply here logarithmic binning to satisfy the drift
requirements. We quantify below the requirements needed by
this scheme.

Suppose we haveK = 2Nf Rf symbols that we will
transmit over each sampling interval. We will partition the
entire state space into bins and groupK adjacent elements
into one larger bin, indexed byI, and represent them by
a single channel codebook. We refer to this ensemble of
bins as aCodeBin. Hence, a total of2Nf Rf codewords are
used to represent the entire state space (see Figure 3). Thus,
CodeBin(I) := {x : δINf Rf

≤ x < δ(I+1)Nf Rf
}. This

applies to the controller also, with the bin edges,δ, being
scaled by−a/b.

We denote the bin indices byδI,i, which means the edge
belongs to CodeBinI and is represented by theith channel
codeword. We say the source code is in modeI, if the state
is in CodeBinI (see Figure 4). The reconstruction value of
each bin is assumed to be the midpoint, such thatQi =
(1/2)(δi + δi+1). We definepm(J |I) as the probability of
error of CodeBin (mode of the quantizer) transmission from
mode I to modeJ through the side channel. This means
the mode is erroneously transmitted from the plant to the
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the system is tolerant to the errors in the side channel as
well.

controller if J 6= I. Likewise for the feedback channel we
havepm′

(L|J) as the side channel mapping.
Theorem 3.3: Suppose the scalar continuous-time system

dxt = (ξxt+b′u′
t)dt+dBt, is remotely controlled. LetTs be

a sampling period which is function of block lengths:Ts =
αNf +βNr, α, β be possibly depending on the codelengths,
and the number of symbols in the state and control beK =
|X ′| = |U| = |U ′|. Suppose the forward and reverse channel
codes are ofNf andNr bits long, and let the rates beRf =
log2(K)/Nf and Rr = log2(K)/Nr. Define T (γ, pm, I),
U(γ, I), andZ respectively as

T :=
∑

L,L6=I

∑

J

pm′

(L|J)pm(J |I)4γ2(max(0,Nf Rf (|L|−I))+1)

U := γ2
∑

L

∑

J

pm′

(L|J)pm(J |I)γ2max(0,Nf Rf (|L|−I+1))

Z := Ke−Nf Ef

L
(Rf )−NrEr

L(Rr)+e−Nf Ef

L
(Rf )+e−NrEr

L(Rr)

If for some γ > 1, the forward, reverse and side channels
satisfy the following

lim sup
I→∞

U(γ, I) =: Ū(γ) < ∞

lim sup
I→∞

T (γ, pm, I) =: T (γ, pm) < 1

γ < 1 + 2(e−ξ)αNf +βNr

.
√

[(1 − ǫ) − 4Z2Nf Rf Ū(γ) − T (γ, pm)],

then drift conditions are satisfied, and there exists a coding
scheme leading to a finite second moment. The source coder
is a symmetric logarithmic quantizer with expansion ratioγ,
i.e., |δi+1| < γ|δi|.

Proof: See [1] ⋄

IV. VARIABLE LENGTH ENCODING FORSIDE CHANNELS

In case we have noiseless side channels, there is a restric-
tion on the number of channel uses for the side channels.
If the restriction is only on the average number of channel
uses, Huffman coding can be used to obtain a finite expected
codelength, since the entropy of the invariant process is finite.
However, in practice, there is a bound on the actual number
of channel uses and not only on its average. Markovian
stability theory can be used to show that even with such



a restriction, stability can be achieved. In case an invariant
density exists, the occurrence of high magnitude signals will
be rare. We build on this in the following.

A. Variable Length Encoding for Side Channels

The controller and the sensor can sendside channel infor-
mation over variable periods by using variable length codes
(such as uniquely decodable prefix codes). To achieve this,
Codebins are generated according to the number of sampling
periods required to send the side channel information, thus
the effective sampling period will vary. However, in this case
the drift analysis we employed earlier becomes inapplicable
and one ought to use state-dependent drift conditions [21] to
study stability. If the effective sampling period iskTs, k ∈
Z+, then the system will be open loop duringkTs seconds.
These considerations lead to the following counterpart of
Theorem 3.3 in the case of variable-length encoding.

Theorem 4.1: Let U(γ) := γ2(Nf Rf +1), and

Z(k) := e−kNf Ef

L
(Rf /k)−kNrEr

L(Rr/k)2Nf Rf

+e−kNf Ef

L
(Rf /k) + e−kNrEr

L(Rr/k).

If for someγ > 1, ∃k0 > 0 such that,∀k > k0, ∀x ∈ {x :
|x| > γkNf Rf δ1}, the following holds

γ < 1 + 2(e−kξ)αNf +βNr

.

√

[(1 − ǫ) − 4Z(k)2Nf Rf U(γ) −
e2ξkTs − 1

2ξγ2kNf Rf δ2
1

,

then drift conditions hold and there exists a coding scheme
leading to a finite second moment. The source coder is a
symmetric logarithmic quantizer with expansion ratioγ, i.e.,
|δi+1| < γ|δi|. There exists a solution for small enoughξ.

B. Relaxation of the Forward Side Channel

The control has access to the plant dynamics and there is
already some side information available to it. This informa-
tion might be useful in relaxing the conditions on the forward
side channel.

Proposition 4.1: Suppose the forward channel error has
a bound of∆f , the system noise has a bound of∆s, and the
reverse channel is bounded. To achievelim supt→∞ |xt|

2 <
∞, there is no need for a forward side channel.
Proof: The total uncertainty will be bounded by∆ =:
|a|(∆f + ∆r) + ∆s. Clearly for large enoughx, using a
logarithmic quantizer, there exists ak0 such that∀k > k0,
γkNrRf δ1 > 2∆. Using binning [20], there will be no
error in distinguishing between two codewords with the
same coset. In this case if the two nearest bins sharing
the same coset are spread out with a distance greater than
|a|(∆f +∆r)+∆s, then with only the coset information, the
controller can find out the exact value of the bin, see [20].⋄

Unlike the transmissions from the controller, in general
the plant cannot predict the control signal it will receive,
since it does not have access to the decision policy at the
controller. Therefore such a relaxation does not apply to the
reverse channel.

Remark: The essential difficulty in code construction is to
transmit sufficient information in a finite time over a finite
symbol channel. In a continuous alphabet channel, this is
not an issue, as is studied in [12], since for instance in
the Gaussian channel case, arbitrary values can be coded
in one channel use, and one can use high magnitude signals
provided that the expected power remains finite. ⋄

V. H IGHER DIMENSIONAL SYSTEMS

We have not discussed here the multi-dimensional case,
first because of page limitations, and second because the
analysis in this case would be quite tedious. If the system
can be transformed to a first-order Markovian system, since
the drift conditions apply to any finite dimensional space,
the coding schemes can be readily applied.
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