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Message-Embedded Cryptosystems: Cryptanalysis and
Identifiability

Floriane Anstett, Gilles Millerioux and Gérard Bloch*

Abstract

The aim of this paper is to compare two encryption
schemes, the standard stream cipher and a so-called
message-embedded cryptosystem. The comparison is
based on two main aspects. The first aspect deals
with the synchronization of the time-varying keys at the
transmission side and at the reception side. The second
aspect focuses on the cryptanalysis of the encryption al-
gorithms. The cryptanalysis focuses on the system pa-
rameter retrieving. For message-embedded cryptosys-
tems, the cryptanalysis is thus treated as a parametric
identifiability issue. Two methods, the local state iso-
morphism approach and the Grobner bases method, are
presented for systems including polynomial nonlinear-
ities. It is shown that these systems are weak against
algebraic attack.

1 INTRODUCTION

Since 1993, a lot of methods involving nonlinear dy-
namic systems in order to mask an information have
been proposed, because these systems can exhibit com-
plex behaviors. In particular, the chaotic behaviors can
be distinguished by their extreme sensitivity to initial
conditions and to model parameters changes. Thus, the
signals resulting from chaotic systems are broadband,
long-term unpredictable and present random-like statis-
tical properties although they are generated by deter-
ministic systems. That is why, there is likely a connec-
tion between the random-look behaviors exhibited by
chaotic systems and the required properties like confu-
sion and diffusion of cryptosystems. The chaotic mask-
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ing [1], the parametric modulation [2], the approach by
inclusion [3] (and references therein) have been pro-
posed. An overview of these different methods can be
found in [4]. However, very few works have really es-
tablished the connection between the standard encryp-
tion algorithms and those based on the generation of
chaotic sequences, except for deep comparative studies
in [5][6]. In particular, the cryptanalysis of the chaos-
based encryption algorithms is really missing today, al-
though it constitutes an essential step of their valida-
tions.

The aim of this paper is to compare two encryption
schemes, the standard stream cipher and a so-called
message-embedded cryptosystem. The comparison is
based on the synchronization of the time-varying keys,
also called running keys, at the transmission and at the
reception and on the cryptanalysis of the encryption al-
gorithms, studied through the particular problem of the
static key reconstruction. In the case of the message-
embedded cryptosystem, the cryptanalysis is treated
here as a parametric identifiability problem, borrowed
from the control theory. Note that the parametric iden-
tifiability has been evoked and illustrated for the first
time in [7], but, until now, has never been really formal-
ized. The paper is organized as follows. In Section 2.1,
we recall the principle of usual stream cipher. Then,
in Section 2.2, we present the message-embedded cryp-
tosystem, its principle and the information reconstruc-
tion based on observers. Finally, the Section 3 deals
with the static key reconstruction problem and with the
parametric identifiability. The local state isomorphism
approach and the Grobner bases method are presented
for testing the parametric identifiability for the suitable
choice of the static key, in the case of systems including
polynomial nonlinearities. In Section 4, two examples
emphasize the weakness of such systems.



2 Principles of Encryption: Com-

parison

2.1 Usual Stream Cipher

There exists two common classes of stream cipher, one
is called synchronous and the other self-synchronous
[8]. They are respectively illustrated on the Figures 1(a)
and 1(b).

my Ck y,

e(Ky,my)

(b)

Figure 1: Stream cipher: (a) synchronous, (b) self-
synchronous

2.1.1 Transmitter and encryption

The synchronous stream cipher obeys, at the transmitter
side:
Ky = fo(Ki—
{ k= fo(Ki-1) 1)

Cl — e(K]ﬁmk)

In this encryption scheme, the information signal, also
called the plaintext, is divided into blocks of same
length, called symbols and denoted by my. The en-
cryption transformation e can change for each symbol
since e depends on a time-varying key Kj which is
called keystream. The keystream K} is generated by a
function fp, parameterized by a constant 6. Usually,
the plaintext my and the ciphertext c; are binary words,
the function e is a simple XOR operation. If the
running key Kj is randomly chosen and never used
again, the encryption scheme is called “one-time pad”.

Generally, the running key is generated iteratively by
feedback shift registers which produce pseudo-random
sequences, as, for instance, the Linear Feedback Shift
Registers (LFSR). The ciphertext ¢y is available at the
transmitter output.

The self-synchronous stream cipher obeys, at the
transmitter side:
Ki = folck—1,---,Cr—
{ k f 9( k—1 k—1 ) (2)

cr = e(Ki,my)

fe is a function parameterized by the constant param-
eter 0, which generates the keystream Kj. Unlike the
synchronous stream cipher, Kj does not depend on an
internal dynamic but only on a fixed number of past
values of c¢;. However, as previously, cj is generated
by the encryption transformation e which combines the
running key K} and the plaintext my.

2.1.2 Receiver and reconstruction of the plaintext

For the usual stream cipher, the reconstruction of the
plaintext requires the synchronization of the sequences
of the running keys at the transmission and at the re-
ception. At the receiver side, the decryption process is
described, in the synchronous case, by:

p 3)

{ Ki = f3(Ki1)
iy = d(Kg, ck)

and, in the self-synchronous case, by:

. 4
iy = d(Ki, cx) X

{ Ki = falckt,---cx)
In both cases, the decryption transformation d is such
that /iy, = my if K, = K;.. For the synchronous stream
cipher, the sequence {Kj} resulting from autonomous
recurrences, the key generators fg at both sides have
to be initialized at the same value (Ky = K). This ini-
tial value Ky can be considered as a static key. At the
contrary, for the self-synchronous stream cipher, the se-
quences of the running key synchronize automatically.

2.2 Message-Embedded Cryptosystem
2.2.1 Transmitter and encryption

Generally, the message-embedded cryptosystem [3]
obeys, at the transmitter side:



®)

v { X1 = fo (o, my)
O i = he(xi, [mi])

where x; € R", my € R and y; € R. [my] means that
hg can depend on my but not necessary. The principle
of the message embedded cryptosystem is illustrated on
Figure 2.

my Yk - n
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Figure 2: Message-Embedded Cryptosystem

Each symbol m is embedded in a sequence {x; } gen-
erated by a nonlinear chaotic map fy, where 0 € O is
a constant parameter. The most common nonlinearities
fe are of polynomial type (Henon map, Logistic map,
...), or of linear piecewise type (Markov map). Only the
quantity y is available at the transmitter output, x; be-
ing an internal state which is not directly transmitted to
the receiver.

2.2.2 Receiver and reconstruction of the plaintext

At the receiver side, the decryption process is described
by:

Frv1 = g (%u, k)
iy = d(x,\kh)i)

(6)

where y; denotes a “window” of delayed outputs and
of length to be determined.

The decryption transformation d is such that 7y = my
if X = xx. However, it is not necessary here that the
key generators at both sides are initialized to the same
initial state xo. Indeed, g is chosen such that, if 6= 0,
then Xy = x, for all Xy and independently of my. More
precisely, we ensure either an asymptotic convergence:

limy oo || — X[l = 0 Vo, Vi

)

or a finite-time convergence:

Hkﬂ ||xk —)?k|| Von,mG,Vk > kf (8)

Particular structures of g ensuring a so-called Infor-
mation Independent Global Synchronization (I1IGS)
have been introduced for encryption purposes in
[31[9][10]. In [3][10], the synchronization of x; and
Xx is formulated as a state reconstruction problem. An
unknown input observer is proposed for g in (6). Its
design is recalled below.

We consider a particular structure for the system
(5), where fy and hy are some functions charaterized
by the matrices, &7 € R"™", By € R"™! and Cy € R'*",
such that:

{ Xy 1 = o (Pr)xx + Bomy

9
i = Coxy ©)

where p; = g(yx) with ¢ a nonlinear function of y.
These systems are known as LPV (Linear Parameter
Varying) systems and p; is assumed to be available
through the output. The matrices depend on a con-
stant parameter vector 8 = [0y,...,0;]T € ©. Actually,
this structure is not very conservative because a speci-
ficity of usual chaotic systems including a nonlinearity
of polynomial or linear piecewise type is that <7y can al-
ways be expressed in the following polytopic form [3]:

Ay(pr) = T, & (pr)AY

NED (o) =1 (10)

£ (pr) > 0,Vi,Vk

where the Ag) ’s are constant matrices.

In order to ensure the reconstruction of the internal state
Xk, the function g has a structure of an unknown input
polytopic observer, described by:

Y

where P, # and Q are gain matrices which have to
fulfill (7) or (8).

The stability conditions of the scheme (9)-(11) are
given by the following theorem:

K1 = (Pelp — H Co) Xy + H yr + Oyt

Theorem 1 [3] The encryption scheme (9)-(11) is
1IGS whenever the following conditions are satisfied:

e rank(CB) = rank(B) = 1



o there exists S; >0, S; > 0, G; and F;, such that the
following set of linear matrix inequalities:

Gi+Gl =8 GIPAY —FTCo | _
(PAY)T G~ CF, S
(12)

is feasible ¥(i, j) € {1,...,N} x {1,...,N}.

Remark 1 The rank condition means that the relative
degree of (9) has to be equal to 1, which is not conser-
vative in practice.

In [11], it has been proved that the conservatism

of the stability conditions (12) can be reduced by
(i)

considering the vertices Ael of the minimal polytope
including pg, which are functions of the chaotic attrac-
tor. Thus, this polytopic observer can be an alternative,
for example, to the well-known Extended Kalman Filter
which does not take into account the chaos specificities.

The reconstruction of the information my at each
iteration k is then given by:

iy = (CoBg) ' (Vir1 — Ctpy) (13)

and fﬁk = my ifok = Xk

According to (13), the reconstruction of the plain-
text my requires the knowledge of the internal state
vector x; although it is not transmitted. Since x; is
essential to retrieve my, x; plays the role of a running
key. To reconstruct xi, from (11), it is clear that the
system parameter 6 is necessary and 0 is considered as
the static key.

An advantage of this method compared to the usual
stream cipher is that whenever the synchronization is
lost accidentally, an automatic resynchronization is
ensured.

3 Cryptanalysis

Cryptanalysis is the science of studying attacks against
cryptosystems in order to reveal their possible weak-
ness.

For the standard stream cipher, according to (3) for the
synchronous case and to (4) for the self-synchronous
case, the plaintext my reconstruction requires the

synchronization of the sequences {K; } and {Kj } acting
as the running keys.

The generation of these sequences by LFSR is a
common mecanism for synchronous stream cipher.
Nevertheless, Massey [12] has proved that the recon-
struction of a whole sequence can be achieved from
the knowledge of a fragment whose length is fixed and
linked to the linear complexity of the LFSR. This is
an example of weakness. Indeed, the pseudo-random
sequence can be retrieved by carrying out a known
plaintext attack, which consists in choosing a segment
of the plaintext my and in analysing the corresponding
ciphertext c;. Thus, it is worth noting that forcing my to
0in (1) or in (2), e being the XOR operation, we obtain
Ky = ¢ which is available at the output. The analysis
of the sequence {Kj} can then allow to retrieve the
initial condition Ky of K} (see 2.1.2), which is the static
key.

For the message-embedded cryptosystem, we consider
the so-called known plaintext attack, i.e, the eavesdrop-
per is supposed to know a sequence of {my} and the
corresponding {y;}. To retrieve my, an eavesdropper
cannot analyse the sequence {x; } since, even if my = 0,
x; does not appear at the output. We admit that the
eavesdropper has no other strategy than trying all the
possible static keys 0 (brute force attack or exhaustive
search) and analyzing the corresponding pairs (my,yx).
Thus, the most difficult situation for the eavesdropper
is that there exists a unique O that generates y; from
my. The unicity of 8 can be formulated in terms of
the parametric identifiability whose some basics are
recalled below.

The following definition is borrowed from [13].

Definition 1 The system Lg is structurally globally
identifiable if for almost any 6 € ©, X5 =X = 6 = 6.

The system Yg is structurally locally identifiable if
for almost any 0 € O, there exists a neighbourhood
v(0) such that 6 € v(0) and Ly =Lg = 6 = 6.

The system Xg is structurally unidentifiable if for
almost any 0 € O, there is no neighbourhood v(0) such
that 6 € v(0) and Xy =Yg = 6 = 6.

Several methods for testing the parametric identifia-
bility exist as the Taylor series expansion [14], the local
state isomorphism approach [15] and the Grobner bases



method [16]. We only describe here the local state iso-
morphism approach and the Grobner bases method.

3.1 Local state isomorphism approach

Consider the general system expressed as:

1 2

{ Xk+1 :fé )(xk) erkfé )(xk) (14)
Vi = h(xz)

where fén and fé2> are nonlinear functions of x; and
0 = [6,...,6,)" € ©. The initial condition of x; is
denoted by x((0).

Remark 2 For the systems of the form (9) considered

. . 2 .
in the Section 2.2.2, f(g ) — Bg where Bg is a constant
matrix.

Consider the system (14). Assume that Xg is locally
reduced at xo(6) for almost any 0 € O, that is, it
satisfies both the controllability rank condition and
the observability rank condition [17]. The following
proposition establishes a condition for global identifi-
ability of system (14), as a discrete counterpart of the
theorem found in [15].

Proposition 1 Xy and X4 have the same input-output
behavior for any my. if and only if there exists a local
state isomorphism @, defined by x; € v(xp) — ¢ (x;) €
R", such that, for any x;. in the neighborhood v(xo), the
following conditions are satisfied:

(i) rank( a")(x")) =n,

7
dx;,

(ii)  §(x0(8)) =x0(0),

(i) f (0n) =530 (). (19)

(v)  hy(¢(xx)) = he(xz)-

These conditions express that ¢ is a diffeomorphism
(i), the initial states coincide (ii), the dynamic terms
coincide (iii), the control terms coincide (iv) and the

observation terms coincide (V).

After checking that X is locally reduced at xo(8), one
can look for all solutions for 6 and ¢ of (15). If, for
almost any 6, the only possible solution is & = 6 and
¢ (x) = x¢, then Xy is globally identifiable.

In the case f(gl) and féz) are polynomials in xg,
parameterized by 6, and hg(x;) = Coxi, ¢ can directly
be written as a linear transformation ¢(xgz) = Txy,
which simplifies the calculations. Hence, the Proposi-
tion 1 turns into:

Proposition 2 Xy and X, have the same input-output
behavior for any my. if and only if there exists a linear
transformation T such that the following conditions are
satisfied:

(i) det(T) 0,

(ii)  Txo(8) =x0(0),

(iii) £ (Tx) = T3 (w0), (16)
(iv)  f3) (Txe) = Tf§) (x0),

(v) C4T =Ce.

If, for almost any 6, the only possible solution is = 6
and T = I where [ is the identity matrix of dimension
n, then Xg is globally identifiable.

Note that Propositions 1 and 2 are just conjec-
tures.

Another approach to test the parametric identifia-
bility is the Grobner bases method, exposed in the next
section.

3.2 Grobner bases approach
In order to test the parameter identifiability, we want to

obtain an input/output relation, with the general form:

fe(ykvykJrlv'"7mk7mk+l7"‘):O (17)

with %}, a function parameterized by 6.
To this end, the internal state x; must be eliminated and



hence is considered as indeterminate. The elimination
can be achieved thanks to the method of the Grébner
bases, borrowed from algebra. The first algorithm of
this type is due to [16]. Some notions of differential
algebra can be found in [18] for continous-time sys-
tems. However, they can equally be defined with the
derivative operator (continous-time case) or with the
delay operator (discrete-time case). Some recalls in the
case of discrete-time systems are carried out below.

Consider a system XYg of the polynomial ring, de-

noted by A = R[x,((l), e ,x,i")] where the indeterminates

(1) (n)

are x; ’,...,x; ~ and the coefficients are real numbers.

Definition 2 Arn ideal of A is a subset I of A, such that:

— VpelNgqel,p+qel
(18)
— VpelVgel pgeA

Definition 3 The ideal, generated by the system with
polynomial nonlinearities Xy (5), in A, is the set of
all linear combinations of the elements of Xy with any
elements of A for coefficients.

Definition 4 A lexicographic order is a ranking accord-
ing to the names of the variables and their iterates such
that:

x,(j) <x,(:ll,Vl eNT,

%) < xl(il = XI@H < xl(cilwnw eNT,vi eNT,

x,((i) <x,(cj) = (x,ii))“ < (x,((j))ﬁ,VOc eNT,VB e NT

19)

The variables to be eliminated are considered as the
greatest.

If a given pair (my,y;) satisfies (5), it will also
satisfy equations that are obtained by addition and by
multiplication of (5), that is the ideal generated by
(5). For a given lexicographic order, it then suffices
to find a basis of this ideal whose expressions do no
longer contain the variables x;, but only contain yy,
my, their iterates and 6. These expressions of the basis

are of the required form (17). Such a basis is called
a Grobner basis. A more formal definition of the
Grobner bases can be found in [16] and a theorem of
variable elimination based on this method is detailed
in [19]. After obtaining the relation (17) thanks to
the Grobner basis method, the following theorem
formulates a necessary and sufficient condition for
parameter global identifiability.

Theorem 2 [20] The parameter vector 0 is globally
identifiable if and only if the equations (17) can be re-
arranged in a linear regression such that, parameter by
parameter:

Bi(yksmy)0; — Qi(yk,my) =0 i=1,....L  (20)
where P; and Q; are polynomials depending only on yy,
my, and on their iterates, and L =dim(0).

Discussion

3.2.1 Brute force attack

If the equation (17) admits several possible solutions
for the parameter 6;, 0; is not identifiable. In this case,
an eavesdropper has a favorable chance to find 6; by a
brute force attack because several solutions are possible
for 6;. Thus, the parameter 6; is a bad candidate to play
the role of the static key.

If the equation (17) admits a unique solution for 6;, then
it is more difficult for the eavesdropper to find 6; from
(17) by an exhaustive search. Consequently, the param-
eter 6; may be a good candidate to play the role of the
static key against a brute force attack.

3.2.2 Algebraic attack

Contrarily to the brute force attack, if the eavesdropper
knows the structure of the algorithm, (20) highlights
the fact that he is able to retrieve easily the parameters.
Indeed, he must solve a system with L linear equations
with L unknowns. Solving (20) is a kind of algebraic
attack.

A fundamental conclusion derived from this anal-
ysis is that cryptosystems involving only polynomial
nonlinearities (for which Grobner bases are dedicated)
are weak against algebraic attacks.



4 Illustrative examples

4.1 Example1

Consider the message-embedded cryptosystem which
obeys, at the transmitter side:

(D _ oD _ @

K1 = Xy
A7) = b 00+ 65 (0P) 4 603 (x7)) - my
Yk = X,

(2D
where my, represents the plaintext.

4.1.1 Local state isomorphism approach

It can be shown that system (21) is locally reduced at
x0(0) for all 6 € ©. The system (21) has polynomial
nonlinearities and hg(x;) = x,?). Hence, the local state
isomorphism ¢ can be written as a linear transformation

¢ (xx) = Txi. Let define the matrix T, with ¢; € R, as:

T— [ n n }
3 I
with det(7)# 0. The conditions (16)-(v) and (16)-(iv)

implies respectively that#3 =0, #4 = 1 and, t, = 0. Con-
dition (16)-(iii) implies:

(22)

anxl) —bx® = (@) —px®) (23)
bx/(cl) + élxl(cz) + é2 (X/((2>)2 + éS( (2>)3 = (24)

Xk
bx,(cl) + 91x,(<2) +6, (x,((z) )2+ 65 (x,(cz))3
The equation (23) leads to t; = 1. The equation (24) is
equivalent to:

(61— 0157 + (82— 6:) (72 + (85 - 63)(v))* =0

(25
which implies that é] =0, éz =6, and 93 = 03, assum-
ing that x,(f) # 0. Consequently, the matrix T reduces to
the identity matrix of dimension 2. Hence, 6;, 8, and
63 are globally identifiable.

4.1.2 Grobner bases approach
Since x,(cl) is not directly transmitted through the signal
Yk, it is chosen to be the greatest and the corresponding
lexicographic order is:

(2) ) (1)

2) Q)
N <Xt < X2 <N

<) <xly, @6

+2

The ideal of the Grobner basis generated by the system
(21), with the lexicographic order (26), is:

Yis2 + 01 (aye — yir1) + 02(ayi — v, 1) + 03(ayi — yi, ) —

ayps1 — by +amp —m 1 =0
27
By iterating the equation (27), we get a system of linear
equations with three unknowns 0y, 6, and 6;. We can
then write three expressions of the form:

Py (yi,mi)01 — Q1 (i, i) =0

P> (yr,mi) 02 — Q2 (yk,my) =0 (28)

P (yi,my) 03 — Q3 (yi,my) =0

So, Theorem 2 is fulfilled for each parameter and the
same conclusion is reached as with the local state iso-
morphism approach: the parameters 0y, 6, and 63 are
globally identifiable. Hence, against brute force attack,
6,, 6, and 63 may play the role of the static key. On
the other hand, it is easy to solve the system (28), high-
lighting the weakness of the cryptosystem (21) against
algebraic attack.

4.2 Example 2

Consider now the message-embedded cryptosystem
where the plaintext my, is embedding in the Henon map:

A =00+ 0
x,(i)l = 93)6]((1) + O4my,
Y= x,((])

(29)

This example is only treated through the Grobner bases
method.
Since x,(cz) is not directly transmitted through the signal



Yk, it is chosen to be the greatest and the corresponding
lexicographic order is:

1 1 ) _ (2 2
Pl <x1(<+)2 <x <x1(<+>1 <5

X! (30)
The ideal of the Grobner basis generated by the system
(29), with the lexicographic order (30), is:

O1y7 | + 6203yk — Yira + My 1+ 6:0am =0 (31)

By iterating the equation (31), we get three expressions
of the form:

Pi (yi,mi) 01 — Q1 (yi,mi) =0

P> (yi,my)0203 — Q2 (yk,my) =0 (32)

P5(yie, mi) 0204 — Q3 (yk,my) =0

Theorem 2 is satisfied for 6; and the products 6,653
and 6,04. 6, the products 6,03 and 6,0, are globally
identifiable, but not the parameters 6,, 63 and 04 them-
selves. As there is several possible solutions for 6,, 83
and 0y, they are bad candidates for the static key against
brute force attacks.

5 Conclusion

This paper has carried out a comparison between two
encryption schemes, the standard stream cipher and the
message-embedded cryptosystem. The comparison was
focused, on one hand, on the synchronization of the
running key sequences and, on the other hand, on the
cryptanalysis of the encryption algorithms. The crypt-
analysis has been studied through the reconstruction of
the transmitter static parameter. A formalism based on
the parametric identifiability has been proposed in the
case of the message-embedded cryptosystem. As a re-
sult, the identifiable parameters are good candidates to
play the role of the static key against brute force attack.
However, they can easily be retrieved by performing an
algebraic attack. A fundamental conclusion is that the
cryptosystems involving only polynomial nonlinearities
are weak against algebraic attacks.
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