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Semidefinite Programming and Reachable Sets

of Dissipative Bilinear Control Systems

Dionisis Stefanatos and Navin Khaneja∗

Abstract

In this manuscript, we investigate optimal control problems which
arise in connection with manipulation of dissipative quantum dynam-
ics. These problems motivate the study of a class of dissipative bilinear
control systems. For these systems it is shown that the optimal so-
lution and the reachable set can be found by solving a semidefinite
program. In practice, solutions to these problems generate optimal
methods for control of quantum mechanical phenomena in presence
of dissipation. In the area of coherent spectroscopy, this translates
into the maximum signal to noise ratio that can be obtained in a
spectroscopy experiment.

1 Introduction-Statement of the Problem

Consider the following optimal control problem. Given the dynamical system
below
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(1)

and starting from the initial state e1 = (1, 0, 0, 0)T , what is the maximum
achievable value of x2 and what are the optimal controls v1(t) ∈ ℜ and
v2(t) ∈ ℜ that achieve this value? Problems like this are associated with
optimal manipulation of quantum mechanical phenomena under dissipation.

∗D. Stefanatos and N. Khaneja are with the Division of Engineering and Applied Sci-
ences, Harvard University, Cambridge, MA 02138 USA (e-mail: stefanat@fas.harvard.edu;
navin@eecs.harvard.edu).
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Specifically, the optimization problem stated above comes from Nuclear Mag-
netic Resonance (NMR) spectroscopy and is related to optimal control of
two coupled spins in presence of transverse relaxation [1]. The state vari-
ables xi, yi represent averages of various quantum mechanical spin operators.
The available controls v1(t) and v2(t) correspond to the components of the
magnetic field in the NMR experimental setup. Parameter k > 0 expresses
the transverse relaxation rate while J is the coupling constant between the
spins.

Observe that if v1 and v2 are set to 0 then the initial state e1 doesn’t
evolve at all and there is no build up of x2. However, by turning on v1, it
is possible to rotate x1 to y1, see Fig. 1. This evolves to y2 under the skew
symmetric matrix

[

0 −J
J 0

]

,

while both y1 and y2 dissipate under the term
[

−k 0
0 −k

]

.

The state y2 can then be rotated to x2 by switching on the control v2. We
want to find the optimal v1 and v2 that maximize the value of x2. It is
intuitively clear that no matter how large we make v1(t), v2(t), the transfer
x1 → x2 cannot be done without any loss, since the intermediate transfer
y1 → y2 is entirely due to internal dynamics over which there is no control,
thus there is an unavoidable dissipation because of k > 0.

Define
ri =

√

x2
i + y2i . (2)

Using (1), evolution equations for r1, r2 can be found. We get the system
[

ṙ1
ṙ2

]

=

[

−k cos2 φ1 −J cosφ1 cosφ2

J cosφ1 cosφ2 −k cos2 φ2

] [

r1
r2

]

,

where cosφ1 = y1/r1, cosφ2 = y2/r2, see Fig. 1. Using the control v1 which
rotates x1 to y1, we can control the angle φ1. Analogously, using v2 which
rotates y2 to x2, we can control the angle φ2. Denoting u1 = cos φ1, u2 =
cos φ2 and dilating time by a factor of J , the above system can be rewritten
as

[

ṙ1
ṙ2

]

=

[

−ξu2
1 −u1u2

u2u1 −ξu2
2

] [

r1
r2

]

. (3)

Here u1 and u2 are control parameters which take their values in the interval
[−1, 1] and ξ = k/J . The initial problem of maximum transfer from x1 to x2

has been transformed to the following equivalent question:
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Figure 1: Schematic representation of the evolution of system (1). Control v1
rotates x1 to y1. Under the J coupling y1 evolves to y2, while both dissipate
because of the relaxation term k. Control v2 rotates y2 to x2. The new
state variables r1, r2, defined by (2), are also shown. The corresponding new
control parameters are u1 = cosφ1, u2 = cosφ2.

Given the dynamical system (3) and the initial state (r1(0), r2(0)) =
(1, 0), find the optimal control (u1(t), u2(t)), |u1|, |u2| ≤ 1, such that r2 is
maximized.

Note that once r2 is maximized, the control v2 can be used to transfer it
to x2 with no loss, so the above question is indeed equivalent to the original
problem.

Motivated by this example, which originates from a real physical system,
let us consider the following n-dimensional generalization of system (1):

[

ẋ
ẏ

]

=

[

0 −V
V A

] [

x
y

]

, (4)

where x = (x1, x2, . . . , xn)
T , y = (y1, y2, . . . , yn)

T , V = diag(v1, v2, . . . , vn)
and A = {aij} is such that its symmetric part A + AT is negative definite.
This condition insures that the norm of the vector (x, y) can only decrease.
This models the physics in open quantum systems, where dissipation can only
reduce coherence in the system dynamics. Furthermore, A is such that any
two states yi and yj are coupled by its off-diagonal elements, not necessarily
directly (we say A is irreducible).

Problem 1 Given the dynamical system (4) and the starting state (x(0), y(0)),
find the optimal control (v1(t), v2(t), . . . , vn(t)) which maximizes xn.

It is shown in the following section that the negative definiteness condition
on A is a sufficient condition for the existence of an optimal solution.
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If we define ri =
√

x2
i + y2i and work as in the 2-dimensional case, we find

that ri satisfies the equation

dri
dt

=
n
∑

j=1

aijuiujrj , (5)

where ui = yi/ri. Problem 1 has been transformed to the following.

Problem 2 Given the dynamical system defined by (5) for i = 1, 2, . . . , n,
with A = {aij} irreducible and such that A + AT negative definite, and the
starting state (r1(0), r2(0), . . . , rn(0)), with ri(0) ≥ 0, find the optimal con-
trol (u1(t), u2(t), . . . , un(t)), |ui| ≤ 1, which maximizes rn, while it preserves
ri(t) ≥ 0.

Observe that if T1 < T2, then the maximum achievable value in time T1

cannot exceed the corresponding value in time T2, since by putting ui = 0
the evolution in the interval (T1, T2] can be stopped. Therefore, Problem 2
is considered as an infinite horizon problem.

Multiplying the ith equation of system (5) with 2ri, we get

d

dt

(

r2i
)

=
n
∑

j=1

2aijuiujrirj (6)

and from this
d

dt

(

r2i
)

= U2
n
∑

j=1

2aij
uiri
U

ujrj
U

, (7)

where

U =

√

√

√

√

n
∑

i=1

(uiri)2 . (8)

By setting

pi = r2i , mi =
uiri
U

, (9)

and rescaling time according to dt′ = U2dt, equation (7) becomes

dpi
dt′

=
n
∑

j=1

2aijmimj . (10)

The initial optimal control problem has been transformed to the following
one.
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Problem 3 Given the dynamical system defined by (10) for i = 1, 2, . . . , n
and the starting point p(0) = (p1(0), p2(0), . . . , pn(0))

T , pi(0) ≥0, find the
unit vector m(t′) = (m1(t

′), m2(t
′), . . . , mn(t

′))T that maximizes pn, while it
preserves pi(t

′) ≥ 0. Matrix A = {aij} is irreducible and such that A + AT

is negative definite.

Note that, although Problem 2 is an infinite horizon problem, Problem 3
defined above may achieve its maximum for a finite final time Tf . There is no
inconsistency here, since the times for the two systems are related through

dt′ = U2dt, so Tf =
∫ Tf

0 dt′ =
∫

∞

0 U2dt. If U(t) → 0 sufficiently fast as
t → ∞, then Tf is finite. As we will see, this is indeed the case.

In the following, we study problems 2 and 3 in detail. Having found an
optimal solution for the latter, we can easily find a corresponding optimal
control law for the former. The structure of the paper is as follows. In section
2, it is shown that the solution of Problem 3 can be reduced to the solution of
a semidefinite program and that the negative definiteness of the symmetric
part of A is a sufficient condition for the existence of an optimal solution. It
is also shown how the semidefinite programming formalism can be used for
calculating reachable sets. In section 3, some useful existent results regarding
the rank of matrices that solve our semidefinite program are presented. These
results are used in section 4, where some specific examples are examined. The
examples include system (3) and another system which again arises from an
optimal control problem of spin dynamics in NMR spectroscopy.

2 Reduction to a Semidefinite Program

In the following, the inner product 〈· , ·〉 in the space of symmetric n × n
matrices Symn is defined in the usual way as the trace of the matrix product,
i.e. 〈A,B〉 = tr(AB) for A,B ∈ Symn. Note also that A � 0 denotes that
matrix A ∈ Symn is positive semidefinite, A ≺ 0 that is negative definite etc.

Theorem 1 Let us define matrices Ai ∈ Symn, i = 1, 2, . . . , n, by the rela-
tion

Ai =





























ai1

Oi1
... Oi2

ai(i−1)

ai1 . . . ai(i−1) 2aii ai(i+1) . . . ain
ai(i+1)

Oi3
... Oi4

ain





























,
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where aij are the elements of matrix A given in Problem 3 and Oil, l =
1, 2, 3, 4, are zero matrices with appropriate sizes. The solution of Problem 3
can be reduced to the solution of the following semidefinite program:

Find E = max
M

〈An,M〉

subject to 〈Ai,M〉 = −pi(0) , i = 1, 2, . . . , n− 1

and M � 0 .

The maximum achievable value of pn is pn(0) + E .

Proof: Let Tf be the time when pn achieves its maximum, i.e. the final
time. From equation (10) it is

pi(Tf) = pi(0) +
n
∑

j=1

2aij

∫ Tf

0
mi(t

′)mj(t
′)dt′ . (11)

Observe that if we define the positive semidefinite matrix M through the
relation

M =
∫ Tf

0
m(t′)mT (t′)dt′ , (12)

then (11) becomes
pi(Tf ) = pi(0) + 〈Ai,M〉 . (13)

One other important observation is that the end point of the optimal
trajectory should lie on the line (0, 0, . . . , 0, pn) in p-space. Suppose that the
end point has a component pk > 0 for some k 6= n. If pk is directly coupled
to pn then choose m = (0, 0, . . . , 0, mk, 0, . . . , 0, mn)

T such that mn(ankmk +
annmn) > 0 and evolve the system until pk = 0. Thereby we get a greater
value of pn. If pk is not directly coupled to pn, we can still transfer from pk to
pn using intermediate states (because matrix A is irreducible). We conclude
that at the final time Tf the end point of the optimal trajectory should lie on
the line (0, 0, . . . , 0, pn). Thus, we have to maximize pn(Tf ) = pn(0)+〈An,M〉
under the conditions pi(Tf) = pi(0) + 〈Ai,M〉 = 0, i = 1, 2, . . . , n − 1.
Equivalently, we have to solve the following semidefinite program: Find E =
maxM〈An,M〉 subject to 〈Ai,M〉 = −pi(0) for i = 1, 2, . . . , n−1 and M � 0.

Having found an optimal M , we can always find an appropriate unit

vector m(t′) such that M =
∫ Tf

0 m(t′)mT (t′)dt′ and pi(t
′) ≥ 0. Since M � 0,

it can always be decomposed in the form

M =
r

∑

k=1

λkmkm
T
k ,
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where λk are the positive eigenvalues of M , mk are the corresponding (real)
normalized eigenvectors and r is the rank of M . Now let N be a positive
integer. Rewrite the above relation in the form

M = N
r

∑

k=1

∆λkmkm
T
k ,

where ∆λk = λk/N , and define the times t′k through

t′0 = 0 , t′k =
k
∑

l=1

∆λl for k = 1, 2, . . . , r .

Let us forget for a moment the restrictions pi(t
′) ≥ 0. If we apply the control

m(t′) = mk for t′k−1 ≤ t′ < t′k , k = 1, 2, . . . , r

and repeat for N times, then on the one hand the requirement

∫ Tf

0
m(t′)mT (t′)dt′ = M

is satisfied and on the other hand the trajectory in p-space approximates
the line joining the initial point I(p1(0), p2(0), . . . , pn(0)) to the final point
F (0, 0, . . . , pn(Tf)), see Fig 2(a). If N is large enough then the trajectory
actually follows this line, see Fig. 2(b), thus the restrictions pi(t

′) ≥ 0 are
satisfied. Note that Tf =

∑r
k=1 λk = tr(M) is finite, if tr(M) < +∞. In

the special case where r = 1, it is M = λmmT and thus m(t′) = m for
t′ ∈ [0, Tf ], Tf = λ.

The conclusion is that we just need to solve the semidefinite program
defined above. The maximum achievable value of pn is pn(Tf) = pn(0) + E .

We show next how this control law can be applied to system (5) in Prob-
lem 2. For 0 ≤ t′ ≤ t′1, m(t′) = m1 = constant. Since, additionally, m1 is a
unit vector, we can assume without loss of generality that its first component
m1 6= 0. Consider the ratios

uiri
u1r1

=
mi(t

′)

m1(t′)
= si , i = 1, 2, . . . , n.

For 0 ≤ t′ ≤ t′1, si are constant. Define

M = max
i

(∣

∣

∣

∣

sir1
ri

∣

∣

∣

∣

)

, i = 1, 2, . . . , n.
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Figure 2: (a) Trajectory in p-space following the control law presented in the
text, for r = 2 and N = 4. It approximates the straight line from the initial
point I to the final point F . Note that the restrictions pi(t

′) ≥ 0 may not be
satisfied when N is small (b) For large N the trajectory coincides with the
line IF , so the restrictions pi(t

′) ≥ 0 are satisfied.

The optimal policy can be realized as

u1 =
1

M
and

ui =
sir1
ri

u1 ,

where i = 2, 3, . . . , n. With the above choice we insure that |ui| ≤ 1. Using
this feedback law we can evolve system (5) in time t and calculate the function
U(t) =

∑n
i=1(uiri)

2. Then, we can find t′ =
∫ t
0 U

2dt. When t′ = t′1, we switch
to m(t′) = m2 and repeat the above procedure. If the rank of M is r = 1
then the ratios si keep the same value for all times. Note that the maximum
achievable value of rn is

rn(∞) =
√

pn(Tf ) =
√

pn(0) + E =
√

r2n(0) + E . (14)

In the above discussion we implicitly assumed that an optimal solution
exists, and we used for E the characterization “maximum” instead of the
more formal “supremum”. We show below that the negative definiteness of
A+AT is a sufficient condition for the existence of an optimal solution. The
following lemma is used.

Lemma 1 If B ≻ 0 and M � 0, B,M ∈ Symn, then 〈B,M〉 ≥ 0.

8



Proof: Since B ∈ Symn it can be diagonalized by an orthogonal ma-
trix O, B = O∆OT , where ∆ = diag(λ1, λ2, . . . , λn) and λi > 0 are the
eigenvalues of the positive definite matrix B. It is

〈B,M〉 = tr(BM) = tr(O∆OTM) = tr(∆OTMO) = tr(∆M̃) =
n
∑

i=1

λim̃ii ,

where M̃ = OTMO and m̃ii are its diagonal elements. But M̃T = M̃ and
xT M̃x = (Ox)TMOx ≥ 0 for every x ∈ ℜn, since M � 0. So, it is also
M̃ � 0 and thus m̃ii ≥ 0. Since, additionally, λi > 0, we conclude that
〈B,M〉 = ∑n

i=1 λim̃ii ≥ 0.

Theorem 2 If A+AT ≺ 0 then the semidefinite program defined in Theorem
1 has an optimal solution.

Proof: First we show that the set S of all matrices M � 0 satisfying
the equality constraints 〈Ai,M〉 = −pi(0), i = 1, 2, . . . , n− 1, is non-empty.
Indeed, the matrix

M = diag(−p1(0)/2a11,−p2(0)/2a22, . . . ,−pn(0)/2ann)

satisfies these conditions and, additionally, it is M � 0, since pi(0) ≥ 0 and
aii < 0 (A + AT ≺ 0). Note that S is closed and convex. Now consider
the function f : S → ℜ defined by f(M) = 〈An,M〉 and the matrix B =
−∑n

i=1Ai = −(A+ AT ) ≻ 0. From Lemma 1 and for M ∈ S, we have

〈B,M〉 ≥ 0 ⇒ 〈An,M〉 ≤ −
n−1
∑

i=1

〈Ai,M〉 =
n−1
∑

i=1

pi(0) < +∞ ⇒ f(M) < +∞ .

Thus supM∈S f(M) < +∞ and since S is closed the supremum is achieved
for a M0 ∈ S, so it is actually a maximum. The existence of an optimal
solution is established.

✟✟✟✟✟✟✟✟✟✟ Pq

Qq
I q

Nq

ε

Figure 3: Construction of the reachable set of point I.
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We finally show how the semidefinite programming formalism can be used
for calculating the reachable set of point I(p1(0), p2(0), . . . , pn(0)). Consider
the line ε parallel to pn-axis, with pi = constant ≥ 0, i = 1, 2, . . . , n − 1.
The maximum achievable value of pn on ε, starting from I, can be found by
solving the following semidefinite program: Find maxM〈An,M〉 subject to
〈Ai,M〉 = pi − pi(0) for i = 1, 2, . . . , n− 1 and M � 0. If this program has
a solution M0 such that pn = pn(0) + 〈An,M0〉 ≥ 0, then let P be the point
(p1, p2, . . . , pn) of ε, see Fig. 3. This point belongs to the reachable set of
I. Additionally, every point N(p1, p2, . . . , pn−1, p

′

n) of ε with 0 ≤ p′n ≤ pn,
see Fig. 3, belongs also to the reachable set (first arrive at P and then
use m = (0, 0, . . . , 1)T to go down, since (10) gives ṗn = ann < 0, ṗi = 0
for i 6= n). Thus, the segment PQ, where Q(p1, p2, . . . , pn−1, 0), is in the
reachable set. By repeating the above procedure for all the allowed ε ‖ pn,
the reachable set of I can be constructed.

3 Remarks on the Rank of the Semidefinite

Program Solutions

In the preceding section we saw that the bigger the rank of the optimal M for
the semidefinite program, the more complicated is the optimal control law.
Thus, it would be useful to know if there exist low rank optimal solutions
and, additionally, rank upper bounds for them. Even more, we would like
to know for what matrices A the corresponding semidefinite program has
solutions of the lowest possible rank r = 1. In this section we present a series
of results in these directions.

Lemma 2 Let us fix A1, A2, ..., Ak ∈ Symn and α1, α2, . . . , αk ∈ ℜ. If there
is a matrix M � 0 such that

〈Ai,M〉 = αi , i = 1, 2, . . . , k,

then there is a matrix M0 � 0 such that

〈Ai,M0〉 = αi , i = 1, 2, . . . , k

and, additionally,

rankM0 ≤
⌊√

8k + 1− 1

2

⌋

,

where ⌊·⌋ denotes the integer part of the embraced number.

Proof: See [2], chapter II, proposition 13.1.
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Proposition 1 If A + AT ≺ 0 then there is an optimal solution M0 to the
semidefinite program defined in Theorem 1, with

rankM0 ≤
⌊√

8n+ 1− 1

2

⌋

.

Proof: From Theorem 2 we have that, since A+AT ≺ 0, the semidefinite
program has an optimal solution M � 0, which satisfies

〈Ai,M〉 = −pi(0) , i = 1, 2, . . . , n− 1 , 〈An,M〉 = E .

According to Lemma 2, there exists a M0 � 0 such that

〈Ai,M0〉 = −pi(0) , i = 1, 2, . . . , n− 1 , 〈An,M0〉 = E

and

rankM0 ≤
⌊√

8n + 1− 1

2

⌋

.

Obviously M0 is also an optimal solution.

Corollary 1 If A + AT ≺ 0 and A is 2 × 2, then the semidefinite program
has an optimal solution of rank r ≤ 1.

Proof: Apply Proposition 1 for n = 2.
In general, the bound imposed by Lemma 2 is the best possible. However,
there is one special case where it can be sharpened.

Lemma 3 For some positive integer r, let us fix k = (r+2)(r+1)/2 matrices
A1, A2, ..., Ak ∈ Symn, where n ≥ r + 2, and k numbers α1, α2, . . . , αk ∈ ℜ.
If there is a matrix M � 0 such that

〈Ai,M〉 = αi , i = 1, 2, . . . , k

and the set of all such matrices is bounded, then there is a matrix M0 � 0
such that

〈Ai,M0〉 = αi , i = 1, 2, . . . , k

and, additionally,
rankM0 ≤ r .

Proof: See [2], chapter II, proposition 13.4.

Proposition 2 If A+AT ≺ 0 and A is 3×3, then the semidefinite program
has an optimal solution of rank r ≤ 1.
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Proof: Since A + AT ≺ 0, the semidefinite program has an optimal
solution M � 0, which satisfies

〈Ai,M〉 = −pi(0) , i = 1, 2 , 〈An,M〉 = E .

From Lemma 3 we see that the choice r = 1 gives k = 3 = n, since n = 3
according to the hypothesis of the proposition. In order to apply Lemma 3,
we just need to show that the set of optimal matrices, i.e. all the matrices
M � 0 satisfying the above relations, is bounded. Consider the matrix
B = −∑3

i=1Ai = −(A+AT ) ≻ 0. For a matrix M � 0 in the set of optimal
solutions, we have

〈B,M〉 = p1(0) + p2(0)− E < +∞ .

But from Lemma 1, we have also 〈B,M〉 =
∑3

i=1 λim̃ii, where λi are the
eigenvalues of B and m̃ii the diagonal elements of the matrix M̃ = OTMO,
O the orthogonal matrix diagonalizing B. Combining these we find that

3
∑

i=1

λim̃ii < +∞ .

Since λi > 0 and m̃ii ≥ 0, the above relation implies that

m̃ii < +∞ ,

thus
tr(M) = tr(M̃) < +∞ .

But
〈M,M〉 = tr(M2) ≤ (tr(M))2 < +∞ ,

since M � 0. So indeed the set of optimal M is bounded and we can apply
Lemma 3 with r = 1. This means that there is an optimal M0 � 0 with
rankM0 ≤ 1. Note that the bound that Proposition 1 gives in this case is
only ⌊(

√
8 · 3 + 1− 1)/2⌋ = 2.

Lemma 4 Let us call an n×n matrix A = {aij} r-diagonal if aij = 0 unless
|i − j| < r. Suppose that the matrices A1, A2, ..., Ak ∈ Symn are r-diagonal
and there exists a matrix M � 0 such that

〈Ai,M〉 = αi ∈ ℜ , i = 1, 2, . . . , k .

Then there exists a matrix M0 � 0 such that

〈Ai,M0〉 = αi , i = 1, 2, . . . , k

and, additionally,
rankM0 ≤ r .

12



Proof: See [2], chapter IV , corollary 10.3, problem 3.

Proposition 3 If A + AT ≺ 0 and A is r-diagonal, then the semidefinite
program has an optimal solution of rank ≤ r.

Proof: Since A + AT ≺ 0, there exists an optimal solution of the
semidefinite program. Since A is r-diagonal, the corresponding Ai are also
r-diagonal. Thus, we can apply Lemma 4, which assures the existence of an
optimal solution of rank ≤ r.

We conclude this section by noting that there is strong numerical evidence
that the following conjecture is true.

Conjecture 1 If A+AT ≺ 0 then the semidefinite program has an optimal
solution of rank r = 1.

4 Examples

In this section we solve problems 2 and 3 for some specific systems. We start
from the system with

A =

[

−ξ −1
1 −ξ

]

, ξ > 0 ,

which corresponds to system (3) appeared in the introduction. It is not neces-
sary to solve numerically the corresponding semidefinite program, because we
can attack this particular case analytically. Since A+AT = diag(−2ξ,−2ξ) ≺
0 and A is 2× 2, from Corollary 1 we have that there is an optimal solution
to the semidefinite program with rank r ≤ 1. Thus, there is an optimal
constant vector m = (m1, m2)

T , solution to Problem 3. The system equation
(10) with A given above and m constant gives

p1(Tf) = p1(0)−(ξm2
1+m1m2)Tf , p2(Tf) = p2(0)+(m2m1−ξm2

2)Tf . (15)

Optimality requires

p1(Tf ) = 0 ⇒ Tf =
p1(0)

ξm2
1 +m1m2

, (16)

so

p2(Tf ) = p2(0) +
m2m1 − ξm2

2

ξm2
1 +m1m2

p1(0) . (17)
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In order to maximize p2(Tf ), we just need to maximize the coefficient of
p1(0). If we set m2/m1 = x, then this coefficient takes the form

f(x) =
x− ξx2

x+ ξ
. (18)

Before maximizing f , we find the allowed values of variable x. It should be
p2(Tf) ≥ p2(0) ⇒ x − ξx2 ≥ 0 and p1(Tf ) ≤ p1(0) ⇒ x + ξ ≥ 0. These
are both satisfied when x ∈ [0, 1/ξ]. We calculate the maximum of f in this
interval. It is not difficult to verify that

f ′(x) = −ξ(x2 + 2ξx− 1)

(x+ ξ)2
(19)

becomes zero at the point

x0 =
√

1 + ξ2 − ξ (20)

of the interval [0, 1/ξ]. Also verify that f ′(x) > 0 for x ∈ [0, x0) and f ′(x) < 0
for x ∈ (x0, 1/ξ]. So f(x0) is a maximum in the interval [0, 1/ξ]. After some
manipulation we find that

f(x0) = x2
0 . (21)

The maximum achievable value of p2 is

p2(Tf ) = p2(0) + x2
0p1(0) (22)

and the optimal unit vector is

m = (
1

√

1 + x2
0

,
x0

√

1 + x2
0

) . (23)

The optimal trajectory in p-space is a straight line joining the points (p1(0), p2(0))
and (0, p2(Tf)).

The maximum achievable value of r2 is

r2(∞) =
√

r22(0) + x2
0r

2
1(0) . (24)

If the starting state is the point (r1(0), r2(0)) = (1, 0), the maximum transfer
efficiency takes the value

r2(∞) = x0 =
√

1 + ξ2 − ξ . (25)
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For ξ = 1 this efficiency is
√
2 − 1. The optimal controls u1, u2 for system

(3), can be found by using the method described in section 2. If we define

M = max
(

1,
x0r1
r2

)

,

the optimal policy can be realized as

u1 =
1

M , u2 =
x0r1
r2

u1 .

Observe that the initial point (1, 0) is a stationary point of the optimal control
policy [r2(0) = 0 ⇒ M = ∞ ⇒ u1 = 0 ⇒ u2 = 0]. This optimal policy in
the infinite horizon case should then be interpreted as the limit of optimal
control policy for the corresponding finite time problem [Finite time for the ri
system, don’t confuse it with the finite time problem for pi which corresponds
to the infinite horizon problem for ri. It is the special case k1 = k2 = 0 of
the finite time problem solved in the preceding chapter. The solution for this
particular case can be found in [1]]. In practice, we give a small but finite
value in r2(0) (an initial ’kick’ from zero) which makes the optimal control law
applicable. In Fig. 4(a) we plot the optimal controls u1 and u2. In Fig. 4(b)
we depict r1(t), r2(t) and in Fig. 4(c) the corresponding optimal trajectory
in r-space. For all these figures it is ξ = 1 and (r1(0), r2(0)) = (1, 0).

Remark 1 The closure of the reachable set of point (1, 0) is

R((1, 0)) = {r1, r2 ≥ 0 |
√

r22 + x2
0r

2
1 ≤ x0} ,

where x0 =
√
1 + ξ2 − ξ. This set is depicted in Fig. 4(c) for ξ = 1.

The closure of the reachable set R((1, 0, 0, 0)) for the corresponding bilinear
system (1) is

{(x1, x2, y1, y2) ∈ ℜ4 |
√

(x2
2 + y22) + x2

0(x
2
1 + y21) ≤ x0} .

The next case that we examine is the system with

A =







−ξ −1 0
1 −ξ −1
0 1 −ξ






, ξ > 0 .

Since A + AT = diag(−2ξ,−2ξ,−2ξ) ≺ 0 and A is 3 × 3, from Proposition
2 we have that the semidefinite program has a solution of rank r ≤ 1. Now
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Figure 4: (a) Optimal controls u1(t) and u2(t) for system (3) when ξ = 1 and
(r1(0), r2(0)) = (1, 0) (b) The corresponding state variables r1(t) and r2(t)
(c) The optimal trajectory in r-space.
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let us become more specific, so set ξ = 1 and consider the starting point
(p1(0), p2(0), p3(0)) = (1, 1, 0). The corresponding matrices Ai are

A1 =







−2 −1 0
−1 0 0
0 0 0






, A2 =







0 1 0
1 −2 −1
0 −1 0






, A3 =







0 0 0
0 0 1
0 1 −2






.

If we solve numerically the corresponding semidefinite program using some
appropriate software package, for example SDPT3 [3], we find that the opti-
mal matrix M � 0 is

M =







0.1775 0.3225 0.1304
0.3225 0.5856 0.2368
0.1304 0.2368 0.0958






,

and the maximum achievable value of p3 is

p3(Tf ) = p3(0) + 〈A3,M〉 = 〈A3,M〉 = 0.2821 .

It is easy to verify that this matrix has two zero eigenvalues and one nonzero,
so its rank is indeed r = 1. It can be written in the form M = λmmT , where
λ = 0.8589 (= Tf) is the nonzero eigenvalue and

m = (m1, m2, m3)
T = (0.4546, 0.8257, 0.3339)T

the corresponding eigenvector. This unit vector is the optimal solution for
Problem 3.

The maximum achievable value of r3 is r3(∞) =
√

p3(Tf) = 0.5311. We
find the optimal u1, u2, u3. Let us set

x0 =
m2

m1
= 1.8163 , y0 =

m3

m1
= 0.7345 .

If we define
M = max(1,

x0r1
r2

,
y0r1
r3

) ,

then the optimal policy can be realized as

u1 =
1

M , u2 =
x0r1
r2

u1, u3 =
y0r1
r3

u1 .

Observe that the initial point (1, 1, 0) is a stationary point of the optimal
control policy [r3(0) = 0 ⇒ M = ∞ ⇒ u1 = 0 ⇒ u2 = u3 = 0]. The
situation is similar with that in the previous example. Again, the optimal
policy in the infinite horizon case should be interpreted as the limit of the
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Figure 5: (a) Optimal controls u1(t), u2(t) and u3(t) for system (5), with A
the 3 × 3 matrix given in the text, when ξ = 1 and (r1(0), r2(0), r3(0)) =
(1, 1, 0) (b) The corresponding state variables r1(t), r2(t) and r3(t). Observe
that r2(t)/r1(t) = 1 throughout. Remember that the optimal trajectory in
p-space is a straight line ending at the point (0, 0, p3(Tf)), so p2(t)/p1(t) =
p2(0)/p1(0) = 1 for the starting point (1, 1, 0) (c) The optimal trajectory in
r-space.
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optimal policy for the corresponding finite time problem. In practice, a small
but finite value is given to r3(0). In Fig. 5(a) we plot the optimal controls
u1, u2 and u3. In Fig. 5(b) we depict r1(t), r2(t), r3(t) and in Fig. 5(c) the
corresponding optimal trajectory in r-space.

Another interesting case to examine is the same system with ξ > 0 un-
specified and starting point (p1(0), 0, p3(0)). This problem can be solved an-
alytically and has the practical application that it gives an upper bound for
our ability to coherently control a specific dissipative quantum system [4]. As
before, we know that there is an optimal constant vector m = (m1, m2, m3)

T .
From equations (10) we find

p1(Tf ) = p1(0)− (ξm2
1 +m1m2)Tf ,

p2(Tf ) = p2(0) + (m2m1 − ξm2
2 −m2m3)Tf , (26)

p3(Tf ) = p3(0) + (m3m2 − ξm2
3)Tf .

Optimality requires

p1(Tf ) = 0 ⇒ Tf =
p1(0)

ξm2
1 +m1m2

(27)

and
p2(Tf ) = 0 ⇒ m2m1 − ξm2

2 −m2m3 = 0 . (28)

So, we have to maximize

p3(Tf ) = p3(0) +
m3m2 − ξm2

3

ξm2
1 +m1m2

p1(0) (29)

subject to the constraint (28). We just need to maximize the coefficient of
p1(0) under the same condition. If we set

m2

m1
= x ,

m3

m1
= y ,

then this coefficient takes the form

g(x, y) =
xy − ξy2

x+ ξ
, (30)

while the condition becomes

x(1− ξx− y) = 0 ⇒ y = 1− ξx . (31)

Note that x=0 gives g ≤ 0 so it is rejected. Using (31), g becomes a function
of x only

f(x) = g(x, y(x)) =
−ξ(1 + ξ2)x2 + (1 + 2ξ2)x− ξ

x+ ξ
. (32)
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We find the allowed values of x. A natural requirement is p3(Tf ) ≥ p3(0) ⇒
y(x − ξy) ≥ 0 ⇒ (y ≥ 0 and x − ξy ≥ 0) or (y ≤ 0 and x − ξy ≤ 0).
Using (31) we find that the first option implies x1 ≤ x ≤ x2 and the second
x2 ≤ x ≤ x1, where x1 = ξ/(1 + ξ2), x2 = 1/ξ. Since x1 < x2, only the
first option is acceptable, so it must be x ∈ [x1, x2]. For such x, the similar
requirement p1(Tf) ≤ p1(0) ⇒ x + ξ ≥ 0 is satisfied. So we maximize f in
the interval [x1, x2] = [ξ/(1 + ξ2), 1/ξ]. Solving the equation f ′(x0) = 0, we
find

x0 =
√

ξ2 + 2− ξ. (33)

Indeed, x0 ∈ [x1, x2]. The corresponding maximum value of f is

fmax =
x4
0

4
. (34)

The maximum achievable value of p3 is

p3(Tf ) = p3(0) + fmaxp1(0) . (35)

Condition (28) implies that in the optimal case it is ṗ2 = 0, so it is also
ṙ2 = 0. If r2(0) = 0 then r2(t) = 0 and, as we can see from (5), there is no
transfer from r1 to r3. What we actually examine here is the limiting case
r2(0) = ǫ → 0+, where ǫ is an arbitrarily small positive number. We can still
use condition (28), i.e. ṙ2 = 0. The transfer r1 → r3 takes place through r2
which is held to the small constant value r2 = ǫ. The maximum achievable
value of r3, which corresponds to the limit ǫ → 0+, is

r3(∞) =
√

r23(0) + fmaxr21(0). (36)

If the starting state is the point (1, ǫ, 0), where ǫ → 0+, the maximum effi-
ciency is

r3(∞) =
√

fmax =
x2
0

2
=

(
√
ξ2 + 2− ξ)2

2
. (37)

For ξ = 1 we find that this efficiency is 2 −
√
3. In Fig. 6 we plot the

optimal controls u1(t), u2(t), u3(t), the state variables r1(t), r2(t), r3(t) and
the optimal trajectory in r-space. Observe that the starting point is actually
(1, ǫ, ǫ). It is necessary to give a small positive initial value to r3, since the
point (1, ǫ, 0) is still a stationary point of the optimal policy. If the starting
point is (1, ǫ, ǫ), then by solving the corresponding semidefinite program we
find numerically the same efficiency as in (37), in the limit ǫ → 0+.
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Figure 6: (a) Optimal controls u1(t), u2(t) and u3(t) for system (5), with A
the 3 × 3 matrix given in the text, when ξ = 1 and (r1(0), r2(0), r3(0)) =
(1, ǫ, ǫ), 0 < ǫ ≪ 1. Here we take ǫ = 0.01 for convenience (b) The cor-
responding state variables r1(t), r2(t) and r3(t). Note that transfer r1 → r3
takes place through r2 which is held to the small constant value r2 = ǫ. Thus,
this transfer requires more time compared to the preceding examples (c) The
optimal trajectory in r-space.
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5 Conclusion

In this paper we studied a class of bilinear control systems, motivated by
optimal control problems arising in the context of dissipative quantum dy-
namics. It was shown that the optimal solution and the reachable set of
these systems can be found by solving a semidefinite program. As a practi-
cal result, solutions to these problems give upper bounds for the ability to
coherently control quantum mechanical phenomena in presence of dissipa-
tion. In the area of coherent spectroscopy, these results translate into the
maximum signal that can be obtained in an experiment. The paper also mo-
tivates the use of semidefinite programming to study reachable sets of more
general bilinear control systems.
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