
Motion Coordination using Virtual Nodes
Nancy Lynch, Sayan Mitra, and Tina Nolte

CSAIL, MIT
32 Vassar Street

Cambridge, MA 02139, USA
{lynch,mitras,tnolte }@csail.mit.edu

Abstract— We describe how a virtual node abstraction layer
can be used to coordinate the motion of real mobile nodes
in a region of 2-space. In particular, we consider how nodes
in a mobile ad hoc network can arrange themselves along a
predetermined curve in the plane, and can maintain themselves
in such a configuration in the presence of changes in the
underlying mobile ad hoc network, specifically, when nodes
may join or leave the system or may fail. Our strategy is to
allow the mobile nodes to implement a virtual layer consisting
of mobile client nodes, stationary Virtual Nodes (VNs) at
predetermined locations in the plane, and local broadcast
communication. The VNs coordinate among themselves to
distribute the client nodes relatively evenly among the VNs’
regions, and each VN directs its local client nodes to form
themselves into the local portion of the target curve.

Index Terms— Motion coordination, virtual nodes, hybrid
systems, hybrid I/O automata.

I. INTRODUCTION

Motion coordination is the general problem of achiev-
ing some global spatial pattern of movement in a set of
autonomous agents. An important motivation for studying
distributed motion coordination, that is, coordination among
agents with only local communication ability and therefore
limited knowledge about the state of the entire system,
stems from the developments in the field of mobile sensor
networks. Previous work in this area includes different co-
ordination goals, for example: flocking [9], rendezvous [1],
[10], [13], deployment [2], pattern formation [15], and
aggregation [7]. Owing to the intrinsic decentralized nature
of sensor network applications like surveillance, search and
rescue, monitoring, and exploration, centralized or leader
based approaches are ruled out. However, the lack of central
control makes the programming task quite difficult.

In prior work [3], [4], [5], [6], we have developed a notion
of “virtual nodes” for mobile ad hoc networks. A virtual
node is an abstract, relatively well-behaved active node that
is implemented using less well-behaved real nodes. Virtual
nodes can be used to solve problems such as providing
atomic memory [4], geographic routing [3], and point-to-
point routing [6].

In this paper, we explore the use of virtual nodes in
solving motion coordination problems. Namely, we con-

*Research supported by AFRL contract number F33615-010C-1850,
DARPA/AFOSR MURI contract number F49620-02-1-0325, NSF ITR
contract number CCR-0121277, and DARPA-NEST contract number
F33615-01-C-1896.

sider virtual nodes associated with predetermined, well-
distributed locations in the plane, communicating among
themselves and with mobile “client nodes” using local
broadcast. We describe one way of implementing such
virtual nodes using the real mobile nodes, and describe how
such virtual nodes can be used to solve a simple motion
coordination problem. We use the Hybrid I/O Automata
(HIOA) mathematical framework [11] for describing the
components in our systems.

The paper is organized as follows: Section II describes the
underlying mobile network. Section III describes our virtual
node layer. Section IV defines the motion coordination
problem we consider. Section V describes an algorithm for
solving this motion coordination problem using the virtual
node layer. Section VII gives the proofs of correctness of
the algorithm. Section VII outlines one way to implement
the virtual node layer, and Section VIII concludes.

II. THE PHYSICAL LAYER

Our physical model of the system consists of a finite but
unknown number of communicating physical nodes in a
bounded square B in R2. We assume that each node has a
unique identifier from a set I. Formally, our physical layer
model consists of three types of HIOA (see Figure 1): (1)
automata PN i to model physical nodes with identifiers i ∈
I, (2) a LBcast automaton that models the local broadcast
communication service between the physical nodes, and
(3) a “real world” automaton RW to model the physical
location of all the nodes and the real time.

Figure 2 shows the required components of each automa-
ton PN i; it may have other internal variables (initially set
to unique initial values) and actions, which are not specified
here. PN i continuously receives from RW the current time
as the input variable realtime and its position as the input
variable xi, and communicates its velocity to RW through
the output variable vi. The speed of PN i is bounded by
vc. The trajectories of the continuous variable vi and the
effects of the send and receive actions are unspecified.
At each point PN i is either in active or inactive mode;
we assume that, initially, finitely many nodes are active.
The faili input action sets the mode to inactive and the
recoveri input action sets it to active. In inactive mode,
all internal and output actions are disabled, no input action
except recoveri affects the internal or output variables, and
during trajectories, the locally-controlled variables remain

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

PSfrag replacements

PN 1

x
1
,r

ea
lt

im
e

v
1

send(m)1

receive(m)1

PN 2

PN i

x
i
,r

ea
lt

im
e

v
i

send(m)i
receive(m)i

PN j

RW (real world) LBcast

xi, i ∈ I, realtime

Fig. 1. The Physical Layer: PN automata communicate with each other
through an LBcast service and receive time and location information
continuously from RW .

constant and the velocity vi remains zero. Thus, we assume
that, in inactive mode, PN i stops moving. We model the
departure of a node from B as a failure. For convenience,
we assume that transitions are instantaneous.

Signature: Transitions:
Input Input faili

receive(m)i Effect
faili vi ← 0
recoveri mode ← inactive

Output Other internal variables ← initial
send(m)i

Input recoveri
Variables: Effect

Input mode ← active
xi ∈ B
realtime ∈ R≥0

Output
vi ∈ R2 , |vi| ≤ vc, initially 0

Internal
mode ∈ {active, inactive}
Finite set of other variables, initially set to unique initial values.

Fig. 2. Hybrid I/O Automaton PN i.

The PN s communicate using a local broadcast service,
LBcast, which is a generic local broadcast service param-
eterized by a radius Rp and a maximum message delay
dp. The LBcast(Rp, dp) service guarantees that when PN i

performs a send(m)i action at some time t, the message is
delivered within the interval [t, t + dp], by a receive(m)j

action, to every PN j that remains in active mode and
within Rp distance of PN i for the entire interval [t, t+dp].

The RW automaton (see Figure 3) reads the velocity
output vi from each PN i, i ∈ I, and produces the position
xi for PN i and the LBcast automaton. LBcast requires
the node position information because it guarantees delivery
only between “nearby” nodes. RW also produces realtime
for all physical layer components.

Variables:
Input

vi ∈ R2 , for each i ∈ I
Output

xi ∈ B, for each i ∈ I, initially arbitrary
realtime ∈ R≥0, initially 0

Trajectories:
Invariant

xi ∈ B, for each i ∈ I
Evolve

d(xi) = vi, for each i ∈ I
d(realtime) = 1

Fig. 3. RW automaton.

PSfrag replacements

CN 1

x
1
,r

ea
lt

im
e

v
1

send(m)1

receive(m)1

CN 2

CN i

x
i
,r

ea
lt

im
e

v
i

send(m)i
receive(m)i

CN j

VN f

Bf

VN g

se
nd

(m
) g

re
ce

ive
(m

) g

Bg

VN h

send(m)h
receive(m)h

RW (real world) VLBcast

xi, i ∈ I, realtime

Fig. 4. Virtual Node Layer: VN s and CN s communicate using the
V LBcast service.

III. THE VIRTUAL LAYER

The bounded square B is partitioned into a finite set of
zones Bh, h ∈ H. For simplicity we assume B is a m×m
square grid, with each grid square corresponding to a zone
and having sides of length b. Each boundary point of a
square is unambiguously assigned to one zone. The index
set H is the set of coordinates of the centers of all squares.
For each Bh, the set Nbrsh contains the zone identifiers of
the north, south, east, and west neighboring grid squares.

Our virtual layer abstraction (see Figure 4) consists of: (1)
client node automata CN i with identifiers i ∈ I, (2) one
stationary virtual node automaton VN h for each h ∈ H,
located at the center oh of the square Bh, (3) a virtual
communication service, VLBcast = LBcast(Rv, dv), for
the VN s and the CN s, and (4) an automaton RW to model
the physical location of all the CN s and the real time.

A client node automaton CN i, i ∈ I, is a portion of a
PN i automaton that has the input variables realtime and
xi from the RW automaton and an output variable vi to
the RW automaton. With respect to failures, an automaton
CN i behaves the same as PN i. CN i also has send and
receive actions for interacting with the V LBcast service.

A virtual node automaton VN h, h ∈ H, is an MMT
automaton [12], [14] parameterized by a time upper bound,
dMMT ; it has no realtime clock variable. MMT automata
are discrete I/O automata that have a “task” structure, which
is an equivalence relation on the set of locally-controlled
actions, such that from a point in an execution where a task
becomes enabled, within at most time dMMT , some action
in that task must occur. VNh can fail, disabling internal and
output actions, preventing any inputs other than recoverh

from resulting in state changes, and setting the automaton
to an initial state. If a recoverh occurs, the VN actions
become enabled with all tasks restarted. If VN h is failed
and a CN later enters Bh and remains active in the zone
for dr time, then a recoverh occurs within that dr time.
VN h communicates with other VN s and CN s using the
VLBcast service through sendh and receiveh actions.

VLBcast is an LBcast service (as described in the
physical layer) for the virtual layer, parameterized by radius
Rv and maximum message delay dv, where Rv ≥ b. It
allows VN h to communicate with the VN s in the set
Nbrsh and with CN s that are located in Bh. It does not
allow CN automata to communicate with one another.

The RW automaton in the virtual layer is similar to the
one in the physical layer, but here it communicates (through
the realtime and x variables) only with the CN automata
and the VLBcast automaton, and not the VN automata.

This virtual layer will be used in Section V to implement
a solution to the distributed motion coordination problem.
Details of how this virtual layer can be implemented using
the physical layer are in Section VII. There we further
discuss the relation between the parameters dMMT , dr, dv,
and Rp, the physical layer broadcast radius.

IV. THE MOTION COORDINATION PROBLEM

A differentiable parameterized curve Γ is a differentiable
map P → B, where the domain set P of parameter values
is an interval in the real line. The curve Γ is regular if
for every p ∈ P , |Γ′(p)| 6= 0. For a, b ∈ P , the arc length
of a regular curve Γ from a to b, is given by s(Γ, a, b) =
∫ b

a
|Γ′(p)|dp. Γ is said to be parameterized by arc length

if for every p ∈ P , |Γ′(p)| = 1. For a curve parameterized
by arc length, s(Γ, a, b) = b − a.

For a given point x ∈ B, if there exists p ∈ P such that
Γ(p) = x, then we say that the point x is on the curve Γ;
abusing the notation, we write this as x ∈ Γ. We say that
Γ is a simple curve provided for every x ∈ Γ, Γ−1(x) is
unique. A sequence x1, . . . ,xn of points in B are said to
be evenly spaced on a curve Γ if there exists a sequence
of parameter values p1 < p2 . . . < pn, such that for each
i, 1 ≤ i ≤ n, Γ(pi) = xi, and for each i, 1 < i < n,
pi − pi−1 = pi+1 − pi.

In this paper we fix Γ to be a simple, differentiable curve
that is parameterized by arc length. Let Ph = {p ∈ P :
Γ(p) ∈ Bh} be the domain of Γ in zone Bh ⊂ B. The local
part of the curve Γ in zone Bh is the restriction Γh : Ph →
Bh. We assume that Ph is convex for every zone Bh ⊂

B; it may be empty for some Bh. We write |Ph| for the
length of the curve Γh. The quantization of the length of Γh,
with quantization constant σ > 0, is defined as Qσ(|Ph|) =

d |Ph|
σ

eσ. For the remainder of the paper we fix σ and write
Qσ(|Ph|) as Qh. We also write Qmin and Qmax for the
minimum and maximum Qh, such that Ph 6= ∅.

Our goal is to design an algorithm that runs on the phys-
ical nodes such that, if there are no failures or recoveries
after a certain point in time, then: (1) within finite time
the set of nodes in each zone Bh, h ∈ H, becomes fixed,
and the size of this set is “approximately” proportional to
the quantized length Qh, (2) within finite time all physical
nodes in Bh for which Qh 6= 0 are located on Γh, and (3)
in the limit all the nodes in each Bh are evenly spaced on
Γh.

V. SOLUTION USING VIRTUAL NODE LAYER

In our algorithm each virtual node VN h, h ∈ H, uses
only information about the portions of the target curve Γ in
zone Bh and the neighboring zones. For convenience, we
assume that all client nodes know the complete curve Γ;
we could instead model the client nodes in Bh as receiving
inputs from another automaton about the nature of the curve
in zone Bh and neighboring zones only.

The Virtual Node abstraction is used as a means to
coordinate the movement of client nodes in a zone. A VN

controls the motion of the CN s in its zone by setting
and broadcasting target waypoints for the CN s: VN h

periodically receives information from clients in its zone,
exchanges information with its neighbors, and sends out
a message containing a calculated target point for each
client node “assigned” to zone h. Informally, VN h performs
two tasks when setting the target points: (1) it re-assigns
some of the CN s that are assigned to itself to neighboring
VN s, and (2) it sends a target position on Γ to each
CN that is assigned to itself. The objective of (1) is to
prevent neighboring VN s from getting depleted of CN s
and to achieve a distribution of CN s over the zones that is
proportional to the length of Γ in each zone. The objective
of (2) is to space the nodes evenly on Γ in each zone. A
CN , in turn, receives its current position information from
RW and its target location from a VN , and continuously
computes a velocity vector that will take it to its latest
received target point.

A. Client Node Algorithm
The CN (δ)i, i ∈ I, algorithm (see Figure 5) follows

a round structure, where rounds begin at times that are
multiples of δ. Recall that VN automata do not have access
to realtime whereas CN automata do. To help VN s follow
the round structure, the CN s send “trigger” messages to
prompt the VN s to perform transitions.

At the beginning of each round, a CN sends a cn-update
message. The cn-update message tells the local VN (in
whose zone the CN currently resides) the CN ’s id, assigned
VN , current location in B, and current round number.

Signature:
2 Input

receive(m)i, m ∈ ({target-update} × H × B)
4 Output

send(m)i, m ∈ ({cn-update} × I × H × B × N)
6 ∪ ({exchange-trigger, target-trigger} × B × N)

8 Variables:
Input

10 xi ∈ B
realtime ∈ R≥0

12 Output
vi ∈ R2 , velocity vector, initially 0

14 Internal
assigned ∈ H, initially h ∈ H such that xi ∈ Bh

16 x
∗ ∈ B, target point, initially same as x

round ∈ N, initially drealtime/δe
18 next-vn ∈ R, initially drealtime/δe · δ + dv + ε

next-target ∈ R, initially drealtime/δe · δ + dMMT + 3dv + 2ε
20

Transitions:
22 Input receive(〈target-update, h, target〉)i

Effect
24 if (assigned = h ∧ target(i) 6= null) then

x
∗ ← target(i)

26 assigned ← h ∈ H such that x
∗ ∈ Bh

28 Internal send(〈cn-update, i, assigned, xi, round〉)i

Precondition
30 realtime = round · δ

Effect
32 round ← round + 1

34 Internal send(〈exchange-trigger, xi, round -1〉)i

Precondition
36 realtime = next-vn

Effect
38 next-vn ← next-vn + δ

40 Internal send(〈target-trigger, xi, round -1〉)i

Precondition
42 realtime = next-target

Effect
44 next-target ← next-target + δ

46 Trajectories:
Evolve

48 if xi = x
∗ then vi = 0

else vi = vc · (x∗ − xi)/||x∗ − x||
50 Stop when

realtime = round · δ or next-vn or next-target

Fig. 5. Client node CN (δ)i automaton.

The CN then sends an exchange-trigger message dv +ε
later to its local VN . An additional dMMT + 2dv + ε time
later, the CN sends a target-trigger message to its local
VN . Both these messages are trigger messages that include
the CN ’s current location and the current round number,
used by the local VN to determine whether the CN is in
its zone and what the current round number is.

CN i processes only one kind of message, target-update
messages sent by its assigned VN (to which it is currently
assigned). Each such message describes the new target
location x

∗
i for CN i, and possibly an assignment to a

different VN . CN i continuously computes its velocity

vector vi, based on its current position xi and its target
position x

∗
i , as vi = vc(xi − x

∗
i)/||xi − x

∗
i ||, moving it

with maximum velocity towards the target.

B. Virtual Node Algorithm
In designing the motion coordination algorithm we make

use of the apparent synchrony created by the virtual layer
implementation. The VN (e, ρ1, ρ2)h, h ∈ H, algorithm
(see Figure 6) follows the CN s’ round structure. However,
VN s do not have access to the realtime variable and must
instead rely on trigger messages from CN s to determine
when enough time has elapsed to perform required actions.
We begin by explaining how we implement the round
structure for a VN and then explain the VN algorithm.

Round structure. At the beginning of a round, each CN

sends a cn-update message to its local VN . The CN s then
send exchange-trigger messages dv +ε after the beginning
of the round, signalling that the VN has received all cn-
update messages that were transmitted at the beginning
of the round in its zone. The VN waits before using
information from the cn-update messages until it receives
one of the CN s’ exchange-trigger messages. The VN then
sends vn-update messages to its neighbors.

Each CN sends a target-trigger message to its local
VN dMMT + 2dv + ε time after it sends an exchange-
trigger message. This is late enough in the round that:
(1) neighboring VN s have received an exchange-trigger
message (dv time), (2) each neighboring VN has performed
a vn-update transmission to its neighboring VN s, includ-
ing this one (dMMT time), and (3) the neighboring VN

transmissions have arrived (dv time). When a VN first
receives a target-trigger message for a particular round
from any CN in its region, it knows it has received any
vn-update messages from neighboring VN s for the round.
The VN then performs some computation and transmits a
target-update message to CN s local to it.

A target-update message might not be received by a
CN until dMMT + 2dv time after the CN sent the target-
trigger message. This accounts for: (1) the time it can take
for the target-trigger message to be received by the VN

(dv), (2) the time it can take for the VN to perform the
target-update broadcast (dMMT), and (3) the time for
the broadcast to be delivered at the CN (dv). Given the
maximum distance between a point in one zone and the
center of a neighboring zone,

√
2.5b =

√

(3b/2)2 + (b/2)2,
and a constant speed of vc for each client node, it can take
up to

√
2.5b
vc

time for the CN to reach its target. Also, after
the CN just arrives in the zone it was assigned to, up to√

10b/3 =
√

2.5b · 2
3 distance from where it started, it could

find that the local VN is failed, in which case it could take
up to the dr VN -startup time for the VN to recover.

To ensure a round is long enough for a client node to send
the cn-update, exchange-trigger, and target-trigger mes-
sages, receive a target-update message, arrive at its new
assigned target location, and be sure a virtual node is alive in

its zone before a new round begins, we require that δ satisfy
δ > 2dMMT +5dv +2ε+max(

√
2.5b/vc,

√
10b/3vc +dr).

VN algorithm. Each VN h automaton collects cn-update
messages sent at the beginning of the round from CN s
located in its zone, aggregating the location and round
information from the message in a table, M . When VN h

first receives an exchange-trigger message for a particular
round from any CN in its zone, VN h tallies and computes
from its table M the number of client nodes assigned
to it that it has heard from in the round, and sends this
information in a vn-update message to all of its neighbors.

When VH h receives a vn-update message from a neigh-
boring VN , it stores the CN population and round number
information from the message in a table, V . When VN h

first receives a target-trigger message for a particular round
from any CN in its region, VN h uses the information
in its tables M and V about the number of CN s in its
zone and its neighbors’ zones to calculate how many of the
CN s assigned to itself should be reassigned and to which
neighboring VN s. This is done through the assign function
(see Figure 7) which calculates a partial function assign
mapping CN identifiers to zones that they are assigned
to. If the number of CN s y(h) assigned to VN h exceeds
the minimum critical number e, then the assign function
reassigns some of the CN s to neighbors of VN h.

Let Inh denote the set of neighboring VN s of VN h that
are on the curve Γ and yh(g), g ∈ Nbrsh∪{h}, denote the
number num(Vh(g)) of CN s assigned to VN g . If Qh 6= 0,
meaning VN h is on the curve (lines 7–11), then we let
lowerh denote the subset of Nbrsh that are on the curve and
have fewer assigned CN s than VN h has after normalizing
with Qg

Qh
. For each g ∈ lowerh, VN h reassigns either ra =

ρ2 · [Qg

Qh
yh(h) − yh(g)]/2(|lowerh| + 1) or the number of

nodes over e it has not already reassigned, whichever is
smaller, of the CN s that are currently assigned to itself to
VN g , where ρ2 < 1 is a damping factor.

If Qh = 0, meaning VN h is not on the curve, and
VN h has no neighbors on the curve (lines 13–17), then
we let lowerh denote the subset of Nbrsh that have fewer
assigned CN s than VN h. For each g ∈ lowerh, VN h

reassigns either ra = ρ2 · [yh(h) − yh(g)]/2(|lowerh| + 1)
or the number of nodes over e it has not already reassigned,
whichever is smaller, of the CN s currently assigned to itself
to VN g.

VN h is on a boundary if Qh = 0, but there is a g ∈
Nbrsh with Qg 6= 0. In this case, yh(h) − e of VN h’s
CN s are assigned equally to neighbors in Inh (lines 19–
22).

The client assignments are then used to calculate new
target points for local CN s through the calctarget function
(see Figure 7). This function assigns to every CN i assigned
to VN h a target point locMh(i) ∈ Bg , g ∈ Nbrsh∪{h}, to
move to. The target point locMh(i) is computed as follows:
If CN i is assigned to VN g , g 6= h, then its target is set
to the center og of Bg (lines 30–31); if CN i is assigned to

Signature:
2Input

receive(m)h, m ∈ ({cn-update} × I × H × B × N)
4∪ ({exchange-trigger, target-trigger} × B × N)

∪ ({vn-update} × H × N × N)
6Output

send(m)h

8

Constants:
10In = {g ∈ Nbrs: |Pg | 6= 0}

12State variables:
M : I → H× B × N, partial map from CN ids to assigned VN id,

14current location, and round number, initially ∅.
Accessors: assigned, loc, round.

16V : H → N× N, partial map from VN ids to the number of CN s, and
round number, initially {〈g, 〈0, 0〉〉} for each g ∈ Nbrs ∪ {h}.

18Accessors: num, round.
send-buffer, queue of messages, initially ∅.

20vn-done, target-done ∈ Z, initially 0.

22Derived variables:
assignedM = {i ∈ id(M) : assigned(M(i)) = h}

24locM = λ(i ∈ id(M)). loc(M(i))
y = λ(g: Nbrs ∪ {h}). num(V(g))

26

Transitions:
28Input receive(〈cn-update, id, assigned, loc, round〉)h

Effect
30if loc ∈ Bh then

M ← M ∪ {〈id, 〈assigned, loc, round〉〉}
32

Input receive(〈exchange-trigger, loc, round〉)h

34Effect
if (loc ∈ Bh ∧ vn-done 6= round) then

36for each i ∈ id(M)
if round(M(i)) 6= round then

38M ← M \ {〈i, M(i)〉}
V(h) ← 〈|assignedM|, round〉

40send-buffer ← send-buffer ∪ {〈vn-update, h, y(h), round〉}
vn-done ← round

42

Input receive(〈vn-update, id, n, round〉)h

44Effect
if id ∈ Nbrs then

46V(id) ← 〈n, round〉

48Input receive(〈target-trigger, loc, round〉)h

Effect
50if (loc ∈ Bh ∧ target-done 6= round) then

for each i ∈ id(M)
52if round(M(i)) 6= round then

M ← M \ {〈i, M(i)〉}
54V(h) ← 〈|assignedM|, round〉

for each g ∈ Nbrs
56if round(V(g)) 6= round then

V(g) ← 〈0, 0〉
58let target = calctarget(assign(assignedM, y), locM)

send-buffer ← send-buffer ∪ {〈target-update, h, target〉}
60target-done ← round

62Output send(m)i

Precondition
64send-buffer 6= ∅ ∧m = head(send-buffer)

Effect
66send-buffer ← tail(send-buffer)

68Tasks and bounds:
{send(m)h}, bounds [0, dMMT]

Fig. 6. VN (e, ρ1, ρ2)h IOA signature, variables, transitions, and tasks,
implementing motion coordination algorithm with parameters: safety e,
and damping ρ1, ρ2.

Functions:
2 function assign(assignedM: 2I , y: Nbrs ∪{h} → N): I → H =

assign: I → H, initially {〈i, h〉} for each i ∈ assignedM
4 n: N, initially y(h)

ra: N, initially 0
6 if y(h) > e then

if Qh 6= 0 then
8 let lower = {g ∈ In: Qg

Qh
y(h) > y(g)}

for each g ∈ lower
10 ra ← min(bρ2 · [

Qg

Qh
y(h) − y(g)]/2(|lower|+1)c, n− e)

update assign by reassigning ra nodes from h to g
12 n ← n− ra

else if In = ∅ then
14 let lower = {g ∈ Nbrs : y(h) > y(g)}

for each g ∈ lower
16 ra ← min(bρ2 · [y(h)− y(g)]/2(|lower|+1)c, n− e)

update assign by reassigning ra nodes from h to g
18 n ← n− ra

else
20 ra← b(y(h) − e)/|In|c

for each g ∈ In
22 update assign by reassigning ra nodes from h to g

return assign
24

function calctarget(assign: I → H, locM: I → B): I → B =
26 seq, indexed list of pairs in P × I, initially the list, for each i ∈ I :

assign(i)= h ∧ locM(i) ∈ Γh, of 〈p, i〉 where p= Γ−1

h
(locM(i)),

28 sorted by p, then i
for each i ∈ I : assign(i) 6= null

30 if assign(i) = g 6= h then
locM(i) ← og

32 else if locM(i) /∈ Γh then
locM(i) ← choose {minx∈Γh

{dist(x, locM(i))}}

34 else let p = Γ−1

h
(locM(i)), seq(k) = 〈p, i〉

if k = first(seq) then locM(i) ← Γh(inf(Ph))
36 else if k = last(seq) then locM(i) ← Γh(sup(Ph))

else let seq(k − 1) = 〈pk−1, ik−1〉, seq(k + 1) = 〈pk+1, ik+1〉

38 locM(i) ← Γh(p + ρ1 · (
pk−1+pk+1

2
− p))

return locM

Fig. 7. VN (e, ρ1, ρ2)h IOA functions.

VN h but is not located on the curve Γh then its target is
set to the nearest point on the curve, nondeterministically
choosing one if there are several (lines 32–33); if CN i is
either the first or last client node on Γh then its target is set
to the corresponding endpoint of Γh (lines 35–36); if CN i

is on the curve but is not the first or last client node then
its target is moved to the mid-point of the locations of the
preceding and succeeding CN s on the curve (line 38). For
the last two computations a sequence seqh of nodes on the
curve sorted by curve location is used (line 27).

VN h finally broadcasts the new target waypoints for the
round through a target-update message to its CN s.

VI. CORRECTNESS AND PERFORMANCE

We say CN i, i ∈ I, is active in round t if its mode is
active for the duration of round t. A VN h, h ∈ H, is active
in round t if there is some active CN i with xi ∈ Bh for the
duration of rounds t− 1 and t. None of the VN s are active
in the starting round 0. We use the following notation: In(t)
is the set of ids h ∈ H of VN s that are active in round t
and for which Qh 6= 0. Out(t) is the set of ids h ∈ H of

VN s that are active in round t and for which Qh = 0. C(t)
is the set of active CN s at round t, and Cin(t) and Cout(t)
are the sets of active CN s located in zones in In(t) and
Out(t), respectively, at the beginning of round t.

For any pair of neighboring zones g and h, and for any
round t, we use yg(h)(t) to refer to the value of yg(h) at
the point in time in round t when VN g finishes processing
the first target-trigger message of round t. For any f, g ∈
Nbrsh ∪ {h}, in the absence of failures and recoveries of
CN s in round t, yf (h)(t) = yg(h)(t); we write this simply
as yh(t).

In the following subsection we prove that the VN algo-
rithm satisfies our first goal, that is, if there are no failures
or recoveries of CN s after a certain round t0, then within
a finite number of rounds after t0, a round Tstab is reached
after which: (1) the set of CN s assigned to each VN is
fixed, and (2) the number of CN s assigned to each VN h

such that Qh 6= 0 is proportional to Qh within a constant
additive factor.

A. Assignments Stabilize

For each of the following lemmas, we assume that there
are no failures or recoveries of CN s after round t0. The first
lemma states some basic facts about the assign function
(see Figure 7):

Lemma 1: In every round t > t0: (1) In(t) ⊆ In(t+1),
(2) Out(t) ⊆ Out(t + 1), (3) Cin(t) ⊆ Cin(t + 1), (4)
Cout(t + 1) ⊆ Cout(t), and (5) if yh(t) ≥ e for some
h ∈ H, then yh(t + 1) ≥ e.

The next lemma states a key property of the assign
function after round t0: VN h, h ∈ Out(t), is never assigned
a larger number of CN s in round t + 1 than the largest
number of CN s that were assigned to any of VN h’s
neighbors in round t. A similar property holds for VN h,
h ∈ In(t), with respect to the density of CN s.

Lemma 2: In every round t > t0, for g, h ∈ H with
h ∈ Nbrsg :
(1) If g, h ∈ Out(t), yh(t) = maxf∈Nbrsg

yf (t), and
yg(t) < yh(t), then yg(t + 1) ≤ yh(t) − 1, and
(2) If g, h ∈ In(t), yh(t)

Qh
= maxf∈Nbrsg

yf (t)
Qf

, and yg(t)
Qg

<
yh(t)
Qh

, then yg(t+1)
Qg

≤ yh(t)
Qh

− σ
Q2

max
.

Proof: (1) Fix g, h and t, as in the statement of
the lemma. Since yh(t) > yg(t) and g, h ∈ Out(t),
we see from line 16 of Figure 7 that the number of
CN s that VN g is assigned from VN h in round t is at
most ρ2(yh(t)− yg(t))/2(|lowerh(t)|+ 1). This is at most
ρ2(yh(t) − yg(t))/4, because yh(t) > yg(t) implies that
lowerh(t) ≥ 1. Then, the total number of CN s assigned
to VN g in round t by all four of its neighbors is at most
ρ2(yh(t)−yg(t)). Therefore, yg(t+1) ≤ yg(t)+ρ2(yh(t)−
yg(t)) = ρ2yh(t) + (1 − ρ2)yg(t). As ρ2 < 1, we have
yg(t + 1) < yh(t). The result follows from integrality of
yg(t + 1) and yh(t).

(2) As in part 1, fix g, h and t. Here yh(t)
Qh

>
yg(t)
Qg

and
g, h ∈ In(t). From line 10 of Figure 7, it follows that
the number of CN s that VN g is assigned from VN h in
round t is at most ρ2(

Qg

Qh
yh(t) − yg(t))/2(|lowerh(t)| +

1). This is at most ρ2(
Qg

Qh
yh(t) − yg(t))/4. Then, the total

number of CN s assigned to VN g in round t by all four
of its neighbors is at most ρ2(

Qg

Qh
yh(t)− yg(t)). Therefore,

yg(t + 1) ≤ (1 − ρ2)yg(t) + ρ2
Qg

Qh
yh(t), that is yg(t+1)

Qg
≤

(1 − ρ2)
yg(t)
Qg

+ ρ2
yh(t)
Qh

. As ρ2 < 1, we have yg(t+1)
Qg

<
yh(t)
Qh

. A simple calculation shows that if yh(t)
Qh

6= yg(t)
Qg

,
then yh(t)

Qh
− yg(t)

Qg
≥ σ

Q2
max

.

Lemma 3: There exists a round Tin > t0 such that in
any round t ≥ Tin, the number of CN s assigned to VN h,
h ∈ Out(t), is unchanged: yh(t + 1) = yh(t).

Proof: Let Nout be the total number of h ∈ H such
that Qh = 0. For any k, 1 ≤ k ≤ Nout, we define maxk(t)
to be the kth largest number of CN s that are assigned to
any VN h, h ∈ Out(t), at the beginning of round t > t0:

maxk(t)
∆

=







max{yh(t) : h ∈ Out(t)}, if k = 1
max{yh(t) : h ∈ Out(t) ∧

yh(t) < maxk−1(t)}, otherwise.

Let maxvnsk(t) be the set of VN ids that have maxk(t)
CN s assigned to them. If there exists an l, 1 ≤ l ≤ Nout,
such that ∀h ∈ Out(t) : maxl(t) ≥ yh(t), then for all k,
l < k ≤ Nout, maxk(t) = 0 and maxvnsk(t) = ∅.

Let E(t) = (|Cout(t)|, max1(t), |maxvns1(t)|, . . .,
maxNout

(t), |maxvnxNout
(t)|). Let w be the minimum

yh(t0) for any h ∈ Out(t0), and S = {h ∈ Out(t0) :
yh(t0) = w}. Observe that if w < e, then Emin =
(w|S|, w, |S|, 0, 0 . . . , 0, 0) is a minimum value for E(t),
otherwise Emin = (e|S|, e, |S|, 0, 0 . . . , 0, 0) is a minimum
value. It suffices to show that for any round t > t0, either
E(t + 1) = E(t), that is, t = Tin, or E(t + 1) is less
than E(t) by some constant amount, meaning there is a
k, 1 ≤ k ≤ Nout, such that for every l, 1 ≤ l < k, the lth

component of E(t + 1) is equal to the lth component of
E(t), and the kth component of E(t + 1) is less than the
kth component of E(t) by at least 1.

Consider any round t after t0. From Lemma 1 we know
that |Cout(t + 1)| ≤ |Cout(t)|. If |Cout(t + 1)| < |Cout(t)|,
then the first component of E(t + 1) is less than that of
E(t) by at least 1. Otherwise, |Cout(t + 1)| = |Cout(t)|. If
for every h ∈ Out(t), ra = 0 for all g ∈ lowerh(t) (see
line 16 of Figure 7), then none of the CN s in Cout(t) are
reassigned in round t + 1, and E(t + 1) = E(t). Setting
Tin = t, we are done. Otherwise, there exists a nonempty
set of VN s with ids in Out(t) that reassign some CN s
to a neighboring VN . We select the nonempty set A of
such VN s with the highest number of assigned CN s. Let
A ⊆ maxvnsk(t), for some k, 1 ≤ k ≤ Nout.

For any g ∈ Out(t) with yg(t) < maxk(t), the maximum
value of yh(t) for any h ∈ Nbrsg such that VN g gets

some CN s from VN h in round t is at most maxk(t). From
Part(1) of Lemma 2 it follows that yg(t+1) ≤ maxk(t)−1.

For any VN h, h ∈ A, since no VN with y >
maxk(t) assigns any CN s to VN h, yh(t + 1) = yh(t) −
∑

g∈lowerh(t) rag(t), where rag is the number of CN s
VN h assigns to its neighbor VN g in round t. We have
shown above that for any g ∈ Out(t), if yg(t) < maxk(t)
then yg(t + 1) ≤ maxk(t) − 1. There are two possi-
ble cases: (1) if maxvnsk(t) = A, then the kth max
decreases, maxk(t + 1) ≤ maxk(t) − 1. That is, the
(2k + 1)st component of E decreases by at least 1, and
(2) if A ⊂ maxvnsk(t), then maxk(t + 1) = maxk(t)
and |maxvnsk(t + 1)| = |maxvnsk(t)| − |A|. That is, the
(2k + 2)nd component of E decreases by at least 1.

Corollary 1: In every round t ≥ Tin, the set of CN s
assigned to VN h, h ∈ Out(t), is unchanged.

Proof: Suppose the set of CN s assigned to VN h

changes in some round t ≥ Tin. We know that yh(t+1) =
yh(t) for all h ∈ Out(t). Summing, |Cout(t + 1)| =
|Cout(t)| and using Lemma 1 we get Cout(t+1) = Cout(t).
The only way the set of CN s assigned to VN h could
change, without changing yh and the set Cout, is if there
existed a cyclic sequence of VN s with ids in Out(t) in
which each VN gives up c > 0 CN s to its successor VN

in the sequence, and receives c CN s from its predecessor.
However, such a cycle of VN s cannot exist because the
lower set imposes a strict partial ordering on the VN s.

Corollary 1 implies that in every round t ≥ Tin, In(t) =
In(Tin), Cin(t) = Cin(Tin), and Cout(t) = Cout(Tin); we
denote these simply as In, Cin, and Cout.

Corollary 2: |Cout| = O(m3).
Proof: From Corollary 1, the set of CN s assigned

to each VN h, h ∈ Out(t), is unchanged in every round
t ≥ Tin. This implies that in any round t ≥ Tin, the
number of CN s assigned by VN h to any of its neighbors
is 0. Therefore, from line 20 of Figure 7, for any boundary
VN g , (yg(t) − e)/|Ing| < 1. Ing is the (constant) set of
h ∈ Nbrsg with Qh 6= 0. Since |Ing| ≤ 4, yg(t) < 4 + e.
From line 16 of Figure 7, for any non-boundary VN g,
g ∈ Out(t), that is 1-hop away from a boundary VN h,
ρ2(yg(t)−yh(t))
2(|lowerg(t)|+1) < 1. Since |lowerg(t)| ≤ 4, yg(t) ≤
10
ρ2

+4+e. Inducting on the number of hops, the maximum
number of CN s assigned to a VN g, g ∈ Out(t), at l
hops from the boundary is at most 10l

ρ2
+ e + 4. Since

for any l, 1 ≤ l ≤ 2m − 1, there can be at most m
VN s at l-hop distance from the boundary, summing gives
|Cout| ≤ (e + 4)(2m − 1)m + 10m2(2m−1)

ρ2
= O(m3).

Lemma 4: There exists a round Tstab ≥ Tin such that in
every round t ≥ Tstab, the set of CN s assigned to VN h,
h ∈ In, is unchanged.

The next lemma states that the number of CN s assigned
to each VN h, h ∈ In, in the stable assignment after Tstab

is proportional to Qh within a constant additive factor.

Lemma 5: In every round t ≥ Tstab, for g, h ∈ In(t):
∣

∣

∣

∣

yh(t)

Qh

− yg(t)

Qg

∣

∣

∣

∣

≤
[

10(2m− 1)

Qminρ2

]

.

Proof: Consider a pair of VN s for neighboring zones
Bg and Bh, g, h ∈ In. Assume w.l.o.g. yh(t) ≥ yg(t). From
line 10 of Figure 7, it follows that ρ2(

Qg

Qh
yh(t) − yg(t)) ≤

2(|lowerh(t)|+1). Since |lowerh(t)| ≤ 4, | yh(t)
Qh

− yg(t)
Qg

| ≤
10

Qgρ2
≤ 10

Qminρ2
. By induction on the number of hops from

1 to 2m − 1 between any two VN s, the result follows.

B. On the Curve and Evenly Spaced
We continue to assume that there are no failures or

recoveries of CN s after round t0.
From line 33 of Figure 7, it follows immediately that by

the beginning of round Tstab+2, all CN s in Cin are located
on the curve Γ. This establishes that the VN algorithm
satisfies our second goal. In the remainder of this section,
we prove that the locations of the CN s in each zone Bh,
h ∈ In, are evenly spaced on Γh in the limit.

Lemma 6: Consider a sequence of rounds t1 =
Tstab, . . . , tn. As n → ∞, the locations of CN s in Bh,
h ∈ In, are evenly spaced on Γh.

Proof: From Lemma 4 we know that the set of CN s
assigned to each VN h, h ∈ In, remains unchanged. Then,
at the beginning of round t2, every CN assigned to VN h is
located in Bh and is on the curve Γh. Assume w.l.o.g. that
VN h is assigned at least two CN s. Then, at the beginning
of round t3, one CN is positioned at each endpoint of Γh,
namely at Γh(inf(Ph)) and Γh(sup(Ph)). From lines 35–
36 of Figure 7, we see that the target points for these
endpoint CN s are not changed in successive rounds. Let
seqh(t2) = 〈p0, i(0)〉, . . . , 〈pn+1, i(n+1)〉, where yh = n+2,
p0 = inf(Ph), and pn+1 = sup(Ph). From line 38 of
Figure 7, for any i, 1 < i < n, the ith element in seqh at
round tk, k > 2, is given by:

pi(tk+1) = pi(tk) + ρ1

(

pi−1(tk) + pi+1(tk)

2
− pi(tk)

)

.

For the endpoints, pi(tk+1) = pi(tk). Let the ith evenly
spaced point on the curve Γh between the two endpoints be
x̄i. The parameter value p̄i corresponding to x̄i is given by
p̄i = p0+ i

n+1 (pn+1−p0). In what follows, we show that as
n → ∞, the pi converge to p̄i for every i, 0 < i < n + 1,
that is, the location of the non-endpoint CN s are evenly
spaced on Γh. [[The rest of this proof is exactly the same
as the proof of Theorem 3 in [8]. They prove convergence
of points on a straight line with even spacing, which is the
same as proving convergence of the parameters in our case.
I am writing this here to make the proof complete, but we
should just cite their paper.]]

Observe that p̄i = 1
2 (p̄i−1 + p̄i+1) = (1 − ρ1)p̄i +

ρ1

2 (p̄i−1 + p̄i+1). Define error at step k, k > 2, as ei(k) =
pi(tk)−p̄i. Therefore, for each i, 2 ≤ i ≤ n−1, ei(k+1) =
pi(tk+1) − p̄i = (1 − ρ1)ei(k) + ρ1

2 (ei−1(k) + ei+1(k)),

PSfrag replacements

LBcast

TOBcast i,f

TOBcast i,g

TOBcast i,h

CN i

PN i

VNE i,f

VNE i,g

VNE i,h

RW (real world)

xi, realtime

xi, realtime

xi, i ∈ I, realtime

vi

send(m)i

receive(m)i

send(m)i
receive(m)i

send(m1)i

receive(m1)i

TO
Bc

as
t(m

) i
,h

TO
Bc

as
t-r

cv
(m

) i
,h

xi, realtime

Fig. 8. PN i’s subautomata: A physical node runs several programs,
including VNE and TOBcast automata as well as a CN automaton.

e1(k + 1) = (1 − ρ1)e1(k) + ρ1

2 e2(k), and en(k + 1) =
(1 − ρ1)en(k) + ρ1

2 en−1(k). The matrix for this can be
written as: e(k + 1) = Te(k), where T is an n× n matrix:












1 − ρ1 ρ1/2 0 0 . . . 0
ρ1/2 1 − ρ1 ρ1/2 0 . . . 0
· · · · · ·
0 . . . 0 ρ1/2 1 − ρ1 ρ1/2
0 . . . 0 0 1 − ρ1 ρ1/2













.

Using symmetry of T , ρ1 ≤ 1, and some standard theorems
from control theory, it follows that the largest eigenvalue
of T is less than 1. This implies limk→∞T k = 0, which
implies limk→∞e(k) = 0.

VII. IMPLEMENTING THE VIRTUAL NODE LAYER

In addition to client CN i, a physical node PN i, i ∈ I, in
zone Bh runs a TOBcast i,h service and a VNE i,h, h ∈ H,
algorithm (see Figure 8) to help implement each virtual
node VN h and the VLBcast service of the virtual layer.

In this section we present a sketch of our implementation
of the virtual layer by the physical layer. Our implementa-
tion is an adaptation of techniques from [6] to emulate a
virtual mobile node. The only substantive changes made
in our current implementation are: (1) the changing of
virtual node locations to be stationary, (2) the replacement
of a periodic location update with a continuous real-time
location update, and (3) the restart of a virtual node as
soon as a physical node discovers it is in a failed virtual
node’s zone. The virtual nodes we implement here are also
modeled differently from those in [6], as MMT automata,
rather than simple I/O automata.

We use a standard replicated state machine approach to
implement robust virtual nodes that takes advantage of a
TOBcast service to ensure that all VNE s in a zone receive
the same messages in the same order. Using the LBcast

service of the physical nodes and common knowledge about
realtime, the totally ordered broadcast service TOBcast

for a zone can be implemented as follows: At the time of
sending, a message is tagged with the sender’s identifier,
zone id, and a timestamp, which is the current value of
realtime. Assuming that a PN does not make multiple
broadcasts at the same point in time, the tags define a
total order on sent messages. Before delivering a message
TOBcast i,h waits until dp + ε time has elapsed since it
was sent, ensuring that earlier messages were received.
TOBcast i,h only processes messages tagged for zone Bh.

Each VNE i,h independently maintains the state of VN h

and simulates performing actions of the VN on that state. In
order to keep the state replication consistent across different
VNE s running on different physical nodes in the same zone,
when VNE i,h wants to simulate an action of the VN , it
broadcasts a suggestion to perform the action to the other
VNE s of the region using the TOBcast service. This action
could, for example, be a suggestion to receive a message on
behalf of the VN that was actually received by VNE i,h.
When an action suggestion is received by VNE i,h, it is
saved in a pending-action queue. Actions are removed
from a pending-action queue in order by VNE i,h and
simulated on VNE i,h’s local version of the VN state. A
completed action is then moved into a completed-action

queue, referenced by VNE i,h to prevent reprocessing of
completed actions.

When a VNE enters a zone, it executes a join protocol to
get the zone’s VN state. The join protocol begins by using
TOBcast to send a join-req message. Whenever a VNE

receives its own join-req message, it starts saving messages
to process in its pending-action queue. If a VNE that has
already joined receives the join-req, it uses TOBcast to
send a join-ack containing a copy of its version of the VN

state. When the joining VNE receives the join-ack, it copies
the included VN state and starts processing the actions in its
pending-action queue. If a VNE ’s join-req is not answered
in 2dp +2ε time, indicating the VN is failed, the VNE will
reset the VN ε time later by using TOBcast to send a reset
message. When a VNE receives a reset message, it sets
the VN state to its initial state, clears the pending-action

queue, and starts simulating the VN .

Theorem 1: Assuming Rp ≥
√

5b, the TOBcast i,h,
VNE i,h, i ∈ I, h ∈ H, and trivial client implementation
correctly implement the Virtual Node abstraction with VN

task upper time bound dMMT = dp + ε, VN -startup time
dr = 3dp + 4ε, VLBcast broadcast radius Rv ≥ b, and
VLBcast maximum message delay dv = 2dp + ε.

Proof: The correctness of the implementation of
the Virtual Node layer largely follows from the proof of
correctness for the implementation of the VMN layer in
[6]. We here discuss the correctness of the implementation
with respect to: (1) the task upper bound, (2) the VN -startup
time, and (3) the requirements for LBcast and VLBcast .

(1) Once one of an abstract VN h’s output or internal

transitions is enabled, the precondition for sending a sug-
gestion to simulate the action through TOBcast is satisfied
at all VNE i,h for PN i in Bh, and the broadcast occurs. It
takes at most dp + ε time for the message to be delivered
at other VNE i,h for PN i in Bh, after which the action
is simulated. Given that PN transitions are assumed to be
instantaneous, dMMT = dp + ε.

(2) If PN i enters a zone Bh with a failed VN , its
VNE i,h’s join-req will not be answered in 2dp + 2ε time,
and the VNE will send a reset message an additional ε
later. It takes the VNE at most dp + ε time to receive the
reset message and restart the VN . The total time 3dp +4ε
for a joining node to succeed in restarting a VN is dr.

(3) As in [6], dv = 2dp + ε since the underlying LBcast

service used to implement VLBcast takes up to dp time
to deliver a transmitted message from a VN or CN , after
which TOBcast takes an additional dp +ε time to redeliver
a message at a receiving VN . Also similarly to [6], we
require that Rp ≥

√
5b, in order to guarantee that Rv ≥ b,

allowing a CN i in Bh, i ∈ I, h ∈ H, and VN h to
communicate, and a VN h (located at oh) and each of its
neighboring zones’ VN g, g ∈ Nbrs(h), (located at og) to
communicate. This is because a VNE emulating a zone Bh

can be as far away as
√

(2b)2 + b2 from a VNE emulating
the VN of neighboring zone Bg . To guarantee the two
can communicate while emulating their respective VN s, the
broadcast radius Rp of the physical LBcast service must be
be at least

√
5b. Unlike [6], however, we do not require an

additional tolerance factor to account for periodic location
updates from the RW ; here, the RW automaton is assumed
to continually update the VNE of its current location.

VIII. CONCLUSIONS

Future work/extensions: In our algorithm each virtual
node VN h, h ∈ H, uses only local information about the
target curve Γ. We can consider a problem extension where
the curve is dynamically changing. The curve (or point,
even) could be moving targets being tracked. In this case,
the coordination of nodes we talked about here is important
for two big reasons: (1) maintaining alive VN s to detect
targets and (2) guiding physical nodes to the moving targets.
The fact that we employed a local solution here for curve
discovery should adapt well to this more dynamic problem.

It would be possible to modify our algorithm to allow
shorter rounds that don’t require completed relocation of
client nodes; instead we could, for example, have VN s
update their neighboring region VN s of the client nodes
that are currently in transit to them.

REFERENCES

[1] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed
memoryless point convergence algorithm for mobile robots with
limited visibility. IEEE Transactions on Robotics and Automation,
15(5):818–828, 1999.

[2] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo.
Coverage control for mobile sensing networks. IEEE Transactions
on Robotics and Automation, 20(2):243–255, 2004.

[3] Shlomi Dolev, Seth Gilbert, Limor Lahiani, Nancy Lynch, and Tina
Nolte. Virtual stationary automata for mobile networks. Technical
Report MIT-LCS-TR-979, 2005.

[4] Shlomi Dolev, Seth Gilbert, Nancy Lynch, Alex Shvartsman, and
Jennifer Welch. Geoquorums: Implementing atomic memory in
mobile ad hoc networks. In 17th International Symposium on
Distributed Computing (DISC), 2003.

[5] Shlomi Dolev, Seth Gilbert, Nancy Lynch, Alex Shvartsman, and
Jennifer Welch. Geoquorums: Implementing atomic memory in
mobile ad hoc networks. Technical Report MIT-LCS-TR-900, 2003.

[6] Shlomi Dolev, Seth Gilbert, Nancy A. Lynch, Elad Schiller, Alexan-
der A. Shvartsman, and Jennifer L. Welch. Virtual mobile nodes
for mobile ad hoc networks. In 18th International Symposium on
Distributed Computing (DISC), pages 230–244, 2004.

[7] V. Gazi and K. M. Passino. Stability analysis of swarms. IEEE
Transactions on Automatic Control, 48(4):692–697, 2003.

[8] David Kiyoshi Goldenberg, Jie Lin, and A. Stephen Morse. Towards
mobility as a network control primitive. In MobiHoc ’04: Proceed-
ings of the 5th ACM international symposium on Mobile ad hoc
networking and computing, pages 163–174. ACM Press, 2004.

[9] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules. IEEE
Transactions on Automatic Control, 48(6):988–1001, 2003.

[10] J. Lin, A. Morse, and B. Anderson. Multi-agent rendezvous problem.
In 42nd IEEE Conference on Decision and Control, 2003.

[11] Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O
automata. Information and Computation, 185(1):105–157, August
2003.

[12] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.
[13] Sonia Martinez, Jorge Cortes, and Francesco Bullo. On robust

rendezvous for mobile autonomous agents. In IFAC World Congress,
Prague, Czech Republic, 2005. To appear.

[14] Michael Merritt, Francemary Modugno, and Mark Tuttle. Time con-
strained automata. In 2nd International Conference on Concurrency
Theory (CONCUR), 1991.

[15] I. Suzuki and M. Yamashita. Distributed autonomous mobile robots:
Formation of geometric patterns. SIAM Journal of computing,
28(4):1347–1363, 1999.

APPENDIX

Signature:
Input

receive(m)i, m a client message
TOBcast-rcv(m)i, m a TOBcast message

Output
send(m)i, m a client message
TOBcast(m)i m a TOBcast message

Internal
zone-updatei

joini

restarti
init-action(act)i, act ∈ VNh.sig
simulate-action(act)i, act ∈ VNh.sig

Variables:
Input

xi ∈ B, current location of mobile node
realtime ∈ R≥0

Internal
status ∈ {joining, listening, active}, initially active
h ∈ H ∪ {⊥}, zone id, initially ⊥
val ∈ VNh.states, state of VN h, initially V Nh.start
answered-joins, set of ids of answered join reqs, initially ∅
join-id, a tuple of time and a mobile node id, initially 〈0, i〉
pending-actions, queue of V Nh.actions to be simulated, initially ∅
completed-actions, queue of V Nh.actions simulated, initially ∅
TOBcast-out, queue of outgoing TOBcast msgs, initially ∅
local-out, queue of outgoing client messages, initially ∅

Fig. 9. Signature and variables of VNE i,h algorithm implementing
VNh.

Input receive(m)i

Effect
TOBcast-out ← TOBcast-out ∪ {〈simulate, 〈receive, m〉, ⊥〉}

Output send(m)i

Precondition
local-out 6= ∅ ∧m = head(local-out)

Effect
local-out ← tail(local-out)

Internal init-action(act)i

Precondition
status = active ∧ x ∈ Bh ∧ δ(val, act) 6= ⊥

Effect
TOBcast-out ← TOBcast-out ∪ {〈simulate, act, 〈realtime, i〉〉}

Internal joini

Precondition
status = idle ∧x ∈ Bh

Effect
status ← joining
join-id ← 〈realtime, i〉
TOBcast-out ← TOBcast-out ∪ {〈join-req, ⊥, join-id〉}

Internal restarti
Precondition

status = listening ∧ realtime = join-id.time + 2dp + 3ε
Effect

TOBcast-out ← TOBcast-out ∪ {〈reset〉}

Internal zone-updatei

Precondition
x /∈ Bh

Effect
status ← idle
h ← id of zone h′ such that x ∈ Bh′

val ← VNh.start
pending-actions ← ∅

Internal simulate-action(act)i

Precondition
status = active ∧x ∈ Bh

head(pending-actions) = 〈simulate, act, oid〉
Effect

dequeue(pending-actions)
if (〈simulate, act, oid〉 /∈ completed-actions ∧ δ(val, act) 6= ⊥) then

val ← δ(val, act)
if act = 〈send, m〉 then

local-out ← local-out ∪ {m}
completed-actions ← completed-actions ∪ {〈simulate, act, oid〉}

Input TOBcast-rcv(〈optype, param, oid〉)i

Effect
if optype = simulate then

if status = listening or active then
enqueue(pending-actions, 〈simulate, param, oid〉)

if optype = join-req then
if (status = joining ∧ oid = join-id) then

status ← listening
if (status = active ∧ oid /∈ answered-joins ∧x ∈ Bh) then

TOBcast-out ← TOBcast-out ∪ {〈join-ack, 〈val, completed-actions〉, oid〉}
if optype = join-ack then

answered-joins ← answered-joins ∪ {oid}
if (status = listening and oid = join-id) then

status ← active
〈val, completed-actions〉 ← param

if optype = reset then
status ← active
pending-actions ← ∅

Output TOBcast(m)i

Precondition
TOBcast-out 6= ∅ ∧m = head(TOBcast-out)

Effect
TOBcast-out ← tail(TOBcast-out)

Trajectories:
Stop when any Precondition above is satisfied

Fig. 10. Transitions and trajectories of VNE i,h algorithm.

