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Abstract— This paper presents a Lyapunov design for the
stabilization of collective motion in a planar kinematic model
of N particles moving at constant speed. We derive a control law
that achieves asymptotic stability of the splay state formation,
characterized by uniform rotation of N evenly spaced particles
on a circle. In designing the control law, the particle headings
are treated as a system of coupled phase oscillators. The
coupling function which exponentially stabilizes the splay state
of particle phases is combined with a decentralized beacon
control law that stabilizes circular motion of the particles in the
splay state formation around the center of mass of the group.

I. INTRODUCTION
Feedback control laws that stabilize collective motions

of particle groups have a number of engineering applica-
tions including unmanned sensor networks. For example,
autonomous underwater vehicles (AUVs) are used to collect
oceanographic measurements in formations that maximize
the information intake, see e.g. [1]. This can be achieved by
matching the measurement density in space and time to the
characteristic scales of the oceanographic process of interest.
Coordinated, periodic trajectories such as the one studied in
this paper, provide a means to collect measurements with the
desired spatial and temporal separation.

In this paper, we consider a kinematic model of identical,
all-to-all coupled, planar particles [2]. In a sensor network
application, this represents an all-to-all communication topol-
ogy. The particles move at constant speed and are subject to
steering controls that change their orientation. In previous
work [3], [4], we observed that the norm of the average
linear momentum of the group is a key control parameter: it
is maximal in the case of parallel motions of the group and
minimal in the case of circular motions around a fixed point.
We exploited the analogy with phase models of coupled
oscillators to design control laws that stabilize either parallel
or circular motions.

In the present paper, we further develop this design
methodology to stabilize a splay state formation of the group.
This formation is characterized by a circular motion around
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the (fixed) center of mass of the group, with all particles
being evenly spaced on the circle. Our Lyapunov analysis
proves asymptotic stability of the splay state formation and
suggests convergence to that configuration from a large set
of initial conditions. The splay state formation is not only
relevant to the design of mobile sensor networks, but it is also
illustrative of more general group formations characterized
by a high level of symmetry. The applicability of the pro-
posed design to a broader class of symmetric configurations
will be discussed in future work.

The general philosophy of the proposed design is dis-
cussed in Section II. We treat the stabilization of the particle
relative orientations in Section III and the stabilization of
each particle position relative to the group center of mass in
Section IV. Section V presents the complete control law and
the construction of a composite Lyapunov function for the
closed-loop dynamics.

II. PARTICLE MODEL AND CONTROL DESIGN
We consider a continuous-time kinematic model of N > 1

identical particles (of unit mass) moving in the plane at unit
speed [2]:

ṙk = eiθk

θ̇k = uk, (1)

where k = 1, . . . ,N. In complex notation, the vector rk = xk +
iyk ∈C≈R2 denotes the position of particle k and the angle
θk ∈ S1 denotes the orientation of its (unit) velocity vector
eiθk = cosθk + isinθk. We use the variable without index to
denote the corresponding N-vector, e.g. θ = (θ1, . . . ,θN). The
configuration space consists of N copies of the group SE(2).
In the absence of steering control (θ̇k = 0), each particle
moves at unit speed in a fixed direction and its motion is
decoupled from the other particles.

We study the design problem of choosing feedback con-
trols that stabilize a prescribed collective motion. The feed-
back controls are identical for all the particles and only
depend on relative orientation and relative spacing, i.e., on
the variables θk j = θk −θ j and rk j = rk − r j, j,k = 1, . . . ,N.
Consequently, the closed-loop vector field is invariant under
an action of the symmetry group SE(2) and the closed-
loop dynamics evolve on a reduced quotient manifold (shape
space). Equilibria of the reduced dynamics are called relative
equilibria and can be only of two types [2]: parallel motions,



characterized by a common orientation for all the particles
(with arbitrary relative spacing), and circular motions, char-
acterized by circular orbits of the particles around a fixed
point.

In the present paper, we study the stabilization of a
particular relative equilibrium characterized by a high level
of symmetry: the splay state formation. In the spirit of
our previous work, we decompose the design into two
parts: an orientation control, aimed at stabilizing the relative
orientations of the velocity vectors; and a spacing control,
aimed at stabilizing the position of each particle relative to
the center of mass of the group. The orientation control law
is independent of the position variables rk and is designed
to stabilize the splay state of the phase variables θk ∈ S1,
which corresponds to the N phases evenly distributed on the
circle. The phase dynamics evolve in a reduced configuration
space consisting of N copies of S1 modulo the action of the
symmetry group S1 of uniform rotations.

The orientation control law, designed in Section III,
achieves gradient dynamics with respect to a potential that
reaches its global minimum at the splay state of the phase
variables. The spacing control law stabilizes the position of
each particle relative to the center of mass of the group
in an identical manner to the single particle beacon control
law presented in Section IV. The main result of the paper
shows that the sum of the orientation control law and the
spacing control law results in stabilization of the splay state
formation. Stability of this relative equilibrium is proven with
a composite Lyapunov function that combines the phase and
spacing potentials.

III. SPLAY STATE STABILIZATION

In this section, we prove exponential stabilization of the
particle relative orientations to the splay state, also known
as “ponies on a merry-go-round” in the literature [5]. The
approach relies on including higher harmonics of the phase
differences in the coupling function, as has been considered,
for example, in [6]. Besides the splay state, all of the
fixed points that we are able to identify are unstable, which
suggests that the splay state has a large region of attraction.

Consider the system of N phases, θk, k = 1, . . . ,N, subject
to control uk, i.e. θ̇k = uk. We define the centroid of the mth
harmonic of the particle phases to be

pmθ =
1

Nm

N

∑
j=1

eimθ j = |pmθ |eiΨm , (2)

where m = 1,2, . . ., Ψm ∈ S1, and 0 ≤ |pmθ | ≤ 1/m. We
refer to the phase configurations for which m|pmθ | = 1
(|pmθ |= 0) as having the mth phase harmonic synchronized
(antisynchronized). Let the centroid of the m = 1 phase
harmonic be given by pθ = p1θ .

The synchronized state, |pθ | = 1, occurs for θ1 = θ2 =
. . . = θN , and, in the planar particle model (1), corresponds
to parallel motion. Note that |pθ |= 1 implies that m|pmθ |= 1
for m > 1. The antisynchronized state, |pθ |= 0, corresponds
to a fixed center of mass of the group in the planar particle

model (1). The splay state of the particle phases is charac-
terized by θk = 2πk

N , k = 1, . . . ,N, i.e. the phases are evenly
distributed around the unit circle. For even N, the splay state
corresponds to antisynchronization of the first N/2 phase
harmonics, given by

|pθ |= |p2θ |= · · ·= |p N
2 θ
|= 0. (3)

In the case when N is odd, the highest antisynchronized
harmonic is (N−1)/2.

Consider a quadratic potential Um(θ) = N
2 |pmθ |2 for m =

1,2, . . .. The potential Um(θ) is maximal (minimal) in the
synchronized (antisynchronized) state of the mth phase har-
monic. To stabilize the splay state, we use the potential

U(θ) =
N
2

N/2

∑
m=1

|pmθ |2, (4)

which is maximal for the synchronized state and minimal
in the splay state (3). The kth element of the gradient of
this potential, gradU(θ), is the partial derivative of (4) with
respect to θk, given by

∂U
∂θk

= N
N/2

∑
m=1

< pmθ ,
∂ pmθ

∂θk
>

=
N/2

∑
m=1

< pmθ , ieimθk >, (5)

with the inner product < z1,z2 >= Re{z1z̄2}, z1,z2 ∈ C.
Theorem 1: Gradient dynamics of the system θ̇ = u with

respect to the potential (4) are obtained by choosing u =
−KgradU(θ), i.e.

uk =
K
N

N

∑
j=1

N/2

∑
m=1

1
m

sinmθk j (6)

where K > 0 is a scalar gain. All trajectories asymptotically
converge to the critical points of the potential U(θ). In
particular, the splay state is a stable equilibrium and a global
minimum of the potential U(θ).

Proof: The time derivative of the potential U(θ) along
the trajectories of the particle phases, θk, is

U̇(θ) =−K‖gradU(θ)‖2 ≤ 0. (7)

Therefore, all trajectories converge to the largest invariant set
for which U̇(θ) = 0, i.e. the critical points of the potential
U(θ) defined by gradU(θ) = 0. The splay state (3) is the
global minimum of the potential since U(θ) = 0 for |pmθ |=
0, m = 1, . . . ,N/2.

Theorem 1 proves asymptotic convergence of (6) to the
set of critical points of U(θ). Next, we address the stability
of the critical points that we have identified.

Theorem 2: The splay state is the only exponentially
stable symmetric pattern of the orientation control law (6).
All other symmetric patterns of M < N phase clusters are
unstable equilibria of (6). In addition, the set of general
M = 2 patterns for which θk j = 0 or π for j,k = 1, . . . ,N
are unstable equilibria of (6).



Proof: Let the control (6) be defined in terms of the
coupling function, Γ(θk j), i.e.

θ̇k =
1
N

N

∑
j=1

Γ(θk j) (8)

where

Γ(θk j) = K
N/2

∑
m=1

1
m

sinmθk j. (9)

Let Γ′(θk j) be the derivative of Γ(θk j) with respect to θk j,
given by

Γ
′(θk j) = K

N/2

∑
m=1

cosmθk j. (10)

As shown in [6], the linearization of coupling functions
of this form about symmetric patterns of M ≤ N phase
clusters has N eigenvalues that can be described as the sum
of two sets. The first set consists of the eigenvalue λ̃ (M)

with multiplicity N −M. These eigenvalues are associated
with intra-cluster fluctuation. The second set consists of
M eigenvalues λ

(M)
p , p = 0, . . . ,M − 1. These eigenvalues

are associated with inter-cluster fluctuation. Both sets of
eigenvalues can be expressed as functions of the Fourier
coefficients Γ′(θk j). For a general coupling function, the
Fourier expansion of Γ′(θk j) is

Γ
′(θk j) =

∞

∑
l=1

(
a′l cos lθk j +b′l sin lθk j

)
. (11)

The formulas for calculating the (real part of) the eigenvalues
are as follows [6]:

λ̃
(M) =

∞

∑
l=1

a′Ml (12)

Re{λ
(M)
p } =

∞

∑
l=1

(
a′Ml −

a′M(l−1)+p +a′Ml−p

2

)
. (13)

Note that only the a′l coefficients determine stability and that
Re{λ

(M)
p }= Re{λ

(M)
M−p}.

The splay state of particle phases has M = N evenly spaced
clusters of one phase each. In this case, λ̃ (N) has multiplicity
zero so all N eigenvalues are in the set λ

(N)
p . Also, since

(8) is a gradient system, the Jacobian is symmetric and all
the eigenvalues are real. The a′l coefficients are given by
integrating

a′l =
1
π

∫
π

−π

Γ
′(θk j)cos lθk jdθk j (14)

which gives
a′l = K, l = 1, . . . ,N/2 (15)

and
a′l = 0, l = 0, l > N/2. (16)

As a result, a′N
2 l

= 0 for l > 1, which, using (13), yields

λ
(N)
p =−K

2 < 0 for p = 1, . . . ,N−1 and λ
(N)
0 = 0. The only

exception is for even N and p = N/2, in which case λ
(N)
p =

−K < 0. The zero eigenvalue corresponds to rigid rotation of

all N phases [6]. Therefore, the splay state is exponentially
stable because the remaining N−1 eigenvalues are negative
definite.

Next, we show that the other critical points of U(θ) that
we have identified are unstable. Symmetric patterns of M
equally spaced clusters of N/M phases can be shown to
be solutions of (8) [6]. In the case M < N, the eigenvalue
λ̃ (M) has multiplicity N −M > 0 and, using (12) and (15),
is positive definite. Therefore, all symmetric patterns with
M < N clusters of phases are unstable equilibria of the
coupling function (9).

Finally, we show that the general M = 2 patterns for which
θk j = 0 or π for j,k = 1, . . . ,N are unstable equilibria of
(8). In this configuration, all of the even phase harmonics
with m ≤ N/2 are synchronized. The odd phase harmonics
satisfy m|pmθ | = α , where α ∈ [0,1], for odd m ≤ N/2. If
θ̄ = (θ̄1, . . . , θ̄N) is an asymmetric M = 2 pattern, then there
exists at least one pair k and l in {1, . . . ,N} such that θ̄k =
θ̄l , k 6= l. Define the variation δθ = (δθ1, . . . ,δθN). In the
vicinity of the critical point θ̄ , U(θ) can be expanded as

U(θ̄ +δθ) = U(θ̄)+δθ
T Hδθ +O(|δθ |3), (17)

where H is the Hessian of U(θ) evaluated at θ̄ . Using (2),
equation (5) can be written

∂U
∂θk

=
1
N

N/2

∑
m=1

1
m

<
N

∑
j=1, j 6=k

eimθ j , ieimθk >

so that the diagonal terms of H are

∂ 2U
∂θ 2

k
=− 1

N

N/2

∑
m=1

<
N

∑
j=1, j 6=k

eimθ j ,eimθk > (18)

and the off-diagonal terms of H are

∂ 2U
∂θl∂θk

=
1
N

N/2

∑
m=1

< eimθl ,eimθk >, (19)

for k 6= l.
Assume, without loss of generality, that θ̄1 = θ̄2 = Ψm = 0,

i.e. we choose two phases from the larger cluster and this
cluster is aligned with the positive real axis. Also, let 1 ≤
M ≤ N/2 be the number of synchronized phase harmonics.
Consider a variation with δθ1δθ2 6= 0 and δθk = 0 for k =
3, . . . ,N. Evaluating the Hessian at θ = θ̄ , the diagonal terms
(18) become

∂ 2U
∂θ 2

k
= − 1

N

N/2

∑
m=1

< Nmpmθ − eimθk ,eimθk >

= − 1
N

N/2

∑
m=1

(
Nm|pmθ |< eiΨm ,eimθk >−1

)
= −M +

1
2

+α

(
M− N

2

)
,

for k = 1,2. The off-diagonal terms (19) become

∂ 2U
∂θl∂θk

=
1
2
,



Fig. 1. The coordinates that describe the position and velocity of the kth
planar particle with respect to the beacon at the origin, used in Section IV.

for k, l = 1,2, k 6= l. The upper left 2×2 block of the Hessian
is

H12 =
[
−M + 1

2 +α
(
M− N

2

) 1
2

1
2 −M + 1

2 +α
(
M− N

2

)] .

This matrix is negative definite since

−M +α

(
M− N

2

)
<−1, (20)

for all α ∈ [0,1] and M ≤ N/2. Therefore, θ̄ is not a
minimum of U(θ) since, using (17), U(θ̄ +δθ) < U(θ̄). As
a result, the set of general M = 1 patterns for which θk j = 0
or π for j,k = 1, . . . ,N are all unstable equilibria of (8).
This includes the synchronized state (α = 1), the symmetric
M = 2 patterns (α = 0), and the asymmetric M = 2 patterns,
0 < α < 1.

Since the splay state is exponentially stable and all other
critical points of U(θ) that we have identified are unstable,
Theorems 1 and 2 suggest a large region of attraction of the
dynamics (6) to the splay state.

IV. BEACON CONTROL LAW

In this section, we set aside the splay state control term
of Section III and derive the spacing control term for stabi-
lization of the splay state formation. This is identical to the
control of a single particle circling a beacon at a fixed radius,
ρe. Consider the kinematic model (1) for N self-propelled
particles in the plane subject to steering control. The position,
rk = ρkeiψk , and heading, θk, of the kth particle, respectively,
are shown in Figure 1. We consider a control law that is
the composition of Hamiltonian and dissipative terms. A
constant control such as uk = −ωe drives the kth particle
in a clockwise circular motion with radius ρe = ω−1

e > 0
about an arbitrary fixed center.

To stabilize clockwise circular motion with radius ρe about
a fixed beacon at the origin of the inertial coordinate system,
we add dissipation to the constant control, so the spacing
control becomes

uk =−ωe−κωe < rk, ṙk >, (21)

where κ > 0 is a scalar gain. The potential, Sk(rk,θk), given
by

Sk(rk,θk) =
1
2
|rk − iρeeiθk |2 (22)

is nonincreasing along solution trajectories because

Ṡk(rk,θk) = < rk − iρeeiθk ,(1+ρeuk)eiθk >

= −κ < rk, ṙk >2≤ 0.

The only invariant set for which Ṡk(rk,θk) = 0 is a circle of
radius ρe centered at the origin, on which the kth particle
travels clockwise at constant angular speed ωe = ρ−1

e .
Since clockwise circular motion is a relative equilibrium

of (1) with control (21), exponential stability is established in
shape coordinates, (ρk,φk) as shown in Figure 1. Differenti-
ating with respect to time rk = ρkeiψk and φk = θk−ψk +π/2
and using (1) gives

ρ̇keiψk +ρkiψ̇keiψk = eiθk

and
φ̇k = θ̇k − ψ̇k.

In the coordinates (ρk,φk,ψk), the system (1) with control
(21) becomes

ρ̇k = sinφk

φ̇k = −ωe−κωeρk sinφk +ρ
−1
k cosφk, (23)

and
ψ̇k =−ρ

−1
k cosφk. (24)

Note that the equations of motion of the shape coordinates,
ρk and φk, are independent of ψk, which reflects the rotational
symmetry of the system.

Theorem 3: For particle k, the relative equilibrium corre-
sponding to clockwise circular motion with radius ρe about
the origin is the exponentially stable fixed point of (23)
given by (ρk,φk) = (ρe,0) with ψ̇k =−ωe. Furthermore, the
equilibrium is globally asymptotically stable.

Proof: The Jacobian, A, of the system (23), evaluated
at the unique fixed point (ρk,φk) = (ρe,0), has eigenvalues,
λ = (−κ ±

√
κ2−4ω2

e )/2, with strictly negative real part.
Global attractivity of this fixed point is proved using the
Lyapunov function (22) since it is radially unbounded in the
coordinate ρk.

V. COMPOSITE LYAPUNOV FUNCTION

In this section, we construct a composite Lyapunov func-
tion to prove stabilization of the splay state formation: i.e.
uniform clockwise rotation of N evenly spaced particles on
a circle of prescribed radius. The control law combines the
orientation control from Section III with the spacing control
of Section IV. Numerical simulation results of stabilizing the
splay state formation are included in Figure 3.

Define the center of mass of the particles to be R =
1
N ∑

N
k=1 rk. Note that the average linear momentum, Ṙ, is

equivalent to the centroid of the first harmonic of the particle
headings, pθ , defined in (2) for m = 1. The vector from the
center of mass to particle k is r̃k = rk −R = 1

N ∑
N
j=1 rk j, as

shown in Figure 2. Define the distance from the center of
mass to the kth particle to be |r̃k|= ρk. Let ρe = ω−1

e > 0 be
the desired equilibrium radius.



Fig. 2. The coordinates that describe the position and velocity of the kth
planar particle with respect to the center of mass, R, used in Section V.

Consider a composite Lyapunov function, V (r,θ), which
combines the splay potential (4) with a modified beacon
potential (22), given by

V (r,θ) = KU(θ)+κS(r,θ), (25)

where K > 0 and κ > 0 are scalar gains as before. The
potential S(r,θ) is given by

S(r,θ) =
1
2

N

∑
k=1

|r̃k − iρeeiθk |2. (26)

The potential V (r,θ) is positive definite and is minimum
(zero) for clockwise circular motion with radius ρe in the
splay state formation.

The time derivative of U(θ) is

U̇(θ) =< gradU(θ), θ̇ >, (27)

where the kth element of gradU(θ) is given by (5). Let 1 =
(1, . . . ,1) ∈ RN . Then,

< gradU(θ),1 > =
N

∑
k=1

N/2

∑
m=1

< pmθ , ieimθk >

=
N/2

∑
m=1

Nm < pmθ , ipmθ >= 0.

Consequently, (27) can be written,

U̇(θ) =< ωegradU(θ),1+ρeθ̇ > . (28)

The time derivative of S(r,θ) is

Ṡ(r,θ) =
N

∑
k=1

< r̃k − iρeeiθk , ṙk − Ṙ+ρeeiθk θ̇k >

=
N

∑
k=1

(1+ρeθ̇k) < r̃k,eiθk > . (29)

Combining (28) and (29) gives

V̇ (r,θ) =
N

∑
k=1

< Kωe
∂U
∂θk

+κ < r̃k,eiθk >,1+ρeθ̇k > .

Choosing the control u = θ̇ , such that

uk =−ωe(1+Kωe
∂U
∂θk

+κ < r̃k,eiθk >) (30)

results in

V̇ (r,θ) =−
N

∑
k=1

(
Kωe

∂U
∂θk

+κ < r̃k,eiθk >

)2

≤ 0. (31)

The control (30) is the composition of the orientation control
(6) with the spacing control (21), where the coordinate ρk
(previously distance to the beacon) is now defined with
respect to the center of mass. The control law (30) can be
written

uk = −ωe +ω
2
e

K
N

N

∑
j=1

N/2

∑
m=1

1
m

sinmθk j

−ωe
κ

N
<

N

∑
j=1

rk j, ṙk > . (32)

Note that choosing K = 1 and κ = ωe weights the orientation
and spacing controls equally by the constant gain ω2

e .
Theorem 4: The system (1) with control (30) asymptot-

ically stabilizes all particles to clockwise circular motion
with radius ρe about a fixed center and with relative phases
determined by the critical points of the potential (4). In
particular, rotation in a splay state formation is a stable
relative equilibrium which minimizes the Lyapunov function
V (r,θ). The fixed center of rotation is the center of mass of
the group.

Proof: The Lyapunov V (r,θ) is nonincreasing along the
solutions and, by the LaSalle Invariance principle, solutions
converge to the largest invariant set Λ where

uk = θ̇k =−ωe, (33)

for k = 1, . . . ,N. In this set, each particle orbits a fixed circle
of radius ρe. We want to show that all centers coincide.
Differentiating (2) along the trajectories of (33) gives, and

ṗmθ =− iωe

N

N

∑
k=1

eimθk =−imωe pmθ . (34)

For m = 1, this implies that the center of mass R satisfies the
differential equation,

R̈ =−iωeṘ. (35)

Another consequence of (34) is that gradU(θ) is constant in
Λ since, using (5), (33), and (34),

d
dt

∂U
∂θk

=
N/2

∑
m=1

< ṗmθ , ieimθk > + < pmθ ,−meimθk θ̇k >

=
N/2

∑
m=1

<−imωe pmθ , ieimθk > + < pmθ ,mωeeimθk >= 0

Combining this result with (30) and (33) yields

d
dt

< r̃k, ṙk >= 0 (36)

for every solution in the invariant set Λ.
Using (35), we note that solutions in Λ also satisfy

¨̃rk = r̈k − R̈ =−iωe ˙̃rk,



which, integrated twice, provides the explicit solution

r̃k(t) = r̃k(0)+ iρe ˙̃rk(0)(e−iωet −1). (37)

Similarly, integrating (35) twice yields

R(t) = R(0)+ iρeṘ(0)(e−iωet −1). (38)

Substituting (37) in (36) results in

d
dt

< r̃k(0)+ iρe ˙̃rk(0)(e−iωet −1), ṙk(0)e−iωet >= 0,

which can be rewritten as
d
dt

< r̃k(0)− iρe ˙̃rk(0), ṙk(0)e−iωet >= 0 (39)

since < ˙̃rk(0)e−iωet , ṙk(0)e−iωet >=< ˙̃rk(0), ṙk(0) > is a con-
stant. But (39) can be satisfied only if

r̃k(0) = iρe ˙̃rk(0) (40)

for each k = 1, . . . ,N.
Substituting (40) in (37) shows that solutions in Λ satisfy

rk(t) = R(t)+ iρe ˙̃rk(0)e−iωet . (41)

Using (38) in (41), we thus arrive at the explicit solution

rk(t) = R(0)− iρeṘ(0)+ iρeeiθk (42)

which shows that all solutions in Λ circle with radius
ρe around the same fixed point R(0)− iρeṘ(0). Because
S(r,θ) = N

2 ρeṘ(0) is constant along these solutions, U(θ)
must be constant in Λ and the relative phases must cor-
respond to a critical point of U(θ). Rotation in the splay
state formation is a stable relative equilibrium by Theorem 1
since it minimizes U(θ). Furthermore, since pθ = Ṙ = 0 in
the splay state formation, the fixed center of rotation is the
center of mass of the group.

We include a simulation of the splay state formation in
Figure 3. Simulations suggest a large region of attraction of
the splay state formation using the control (30).

VI. CONCLUSIONS

In this paper we provide a control law that stabilizes the
splay state formation in a kinematic model of N particles
moving at constant velocity. The control law is the sum of
an orientation control and a spacing control. The orientation
control is independent of the position variables and assigns
gradient dynamics for the phase variables with respect to
a potential that reaches its minimum in the splay state
configuration, that is, when the phase variables are evenly
spaced on the unit circle. The spacing control stabilizes the
position of each particle relative to the center of mass. The
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Fig. 3. The result of a numerical simulation of stabilizing the splay state
formation using control (30) with N = 12, ρe = 10, K = 1, κ = ωe, and
random initial conditions. The particle trajectories are shown in grey and
their final positions are black circles. The center of mass is depicted by the
black crossed circle.

sum of the two controls is shown to stabilize the splay state
formation by means of Lyapunov analysis. Similar studies on
connected but not complete coupling networks suggest that
the splay state formation is can be stabilized by a topology
that is not all-to-all [7].
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