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Abstract— Several authors have proposed sensor scheduling
methods that are driven by information theoretic measures.
In the information driven approach, the relative merit of
different sensing actions is measured by the corresponding
expected gain in information. Information driven approaches
stand in stark contrast to task driven methods, i.e., methods that
select some physical performance criteria and explicitly manage
the sensor based on that criteria. This paper investigates the
difference between a particular information driven approach,
one that maximizes an alpha-Rényi measure of information
gain, and task driven methods with a combination of theory and
simulation. First, we give a mathematical relation that shows
that when the decision error depends only weakly on the target
state a certain type of marginalized information gain is a close
approximation to the Bayes risk associated with performing
a specific task. Second, we perform an empirical comparison
between information driven and task driven approaches that
maximize information gain or minimize risk, respectively. In
particular, we give a task driven method that uses the sensor
in a manner that is expected to maximize the probability the
target is correctly located after the next measurement. We
find as expected that the task driven method outperforms the
information driven method when the performance is measured
by risk, i.e., probability of localization error. However, the
performance difference between the two methods is very small,
suggesting that the information gain is a good surrogate for
risk for this application.

I. INTRODUCTION

The problem of sensor management is to determine the
best way to task a sensor or group of sensors when each
sensor may have many modes and search patterns. Typically,
the sensors are used to gain information about the kinematic
state (e.g. position and velocity) and identification of a group
of targets. There are many tasks that the sensor manager
may be tuned to meet, e.g., minimization of track loss,
probability of target detection, and identification accuracy.
One can design a “task-driven” sensor management strategy
that addresses one of these objectives but it may be very
poor in addressing the others. Ad hoc methods that address
a number of objectives by assigning relative weight to
each task can also be used. However, this requires one to
enumerate all of the possible objectives and assign relative
values to each.
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To deal with a multitude of performance criteria in a di-
rect manner simultaneously, some researchers have proposed
using information theoretic measures as a means of sensor
management. In the context of Bayesian estimation, a good
measure of the quality of a sensing action is the reduction
in entropy of the posterior distribution that is expected
to be induced by the measurement. Therefore, information
theoretic methodologies strive to take the sensing action that
maximizes the expected gain in information. The possible
sensing actions are enumerated, the expected gain for each
measurement is calculated, and the action that yields the
maximum expected gain is chosen. Information as the criteria
for driving sensing actions has the desirable property that
different actions which gain different types of information
can be compared using a single metric.

Hintz et. al. [1][2] focus on using the expected change in
Shannon entropy when tracking a single target moving in one
dimension with Kalman Filters. A related approach uses dis-
crimination gain based on a measure of relative entropy, the
Kullback-Leibler (KL) divergence. Schmaedeke and Kastella
[3] use the KL divergence to determine optimal sensor-to-
target tasking. Kastella [4][5] uses KL divergence to manage
a sensor between tracking and identification mode in the
multitarget scenario. Mahler [6] uses the KL divergence as a
metric for optimal multisensor multitarget sensor allocation.
Kreucher [7] uses the Rényi Divergence, a generalization
of the KL divergence for multitarget detection, tracking,
and identification. Zhao [8] compares several approaches,
including simple heuristics, entropy, and relative entropy.

As a means of demonstrating the utility of information
theoretic methods, this paper investigates the relationship
between information driven and task driven methods. First,
we derive an explicit mathematical relationship between an
information driven sensor management algorithm based on
the Rényi Divergence and task driven methods. This result
indicates that such information gain methods can be expected
to be nearly optimal when the decision error is only weakly
dependent on the state and the incremental information gain
from each measurement is small. Second, we perform an em-
pirical comparison of information driven sensor scheduling
and task driven scheduling for target tracking. This inves-
tigation is done by designing a sensor scheduling method
that chooses the action so as to maximize the probability
the target is correctly located. Here the “task” that we are
specializing to is target tracking. We then compare this
method to an information driven sensor scheduling algorithm
that takes actions to maximize the gain in information. We
look at two variants of the information driven approach, the



first where information is maximized and the second where
marginalized information is maximized.

The paper proceeds as follows. First, in Section II we give
an overview of a Bayesian method of capturing uncertainty
about the number of targets, their states, and their identi-
fications. A more detailed version is given elsewhere [9].
This probabilistic approach is fundamental to describe the
entropy of the current estimate and to compute the expected
information gain achievable from each subsequent action.
Next, in Section III, we describe our information-driven
approach to sensor tasking. We show how this method can be
used to emphasize certain types of information over others
(e.g., kinematic information over identification information)
by marginalization of the relevant densities. Third, in Section
IV, we give a bound that describes the relationship between
information driven scheduling using the Rényi Divergence
and task driven scheduling. Fourth, in Section V, we describe
a task driven method that is designed to take actions that
maximize the probability of correctly estimating the target
position. Fifth, Section VI presents a simulation result where
the different methods are empirically compared. Finally, in
Section VII, we give some concluding remarks.

II. THE JOINT MULTITARGET PROBABILITY
DENSITY (JMPD)

In this section, we give an overview of a Bayesian method
of recursively estimating the uncertainty about the number
of targets, their states, and their identifications. This method
is based on recursive estimation of the joint multitarget prob-
ability density (JMPD) [5][9]. Among the other researchers
that have studied Bayesian methods for tracking multiple
targets are [10][11][12] and [13].

The estimated JMPD is used in the sensor management
strategies discussed in Sections III and V. In the information
driven case (Section III), actions are taken to maximally
gain information about the JMPD as measured by the Rényi
Divergence. In the task driven case (Section V), actions
are taken to maximize the probability targets are correctly
located.

Recursive estimation of the JMPD provides a means for
tracking an unknown number of targets in a Bayesian setting.
The statistical model employed uses the joint multitarget
conditional probability density

p(xlf,xg, ...ngl,ka’,TﬂZk) =
p(x}, x5, . xf_, xp|T%, ZF)p(T*27) (1)

as the probability density for exactly T targets with states
X1, X2, ...X7—1, X7 at time k based on a set of past observa-

tions Z*, i.e., Z¥ = {z°, 2%, ---z"¥~1 z¥F} where z* denotes
the measurement(s) collected at time k.
With a slight abuse of terminology, we call

p(xk, xk, .xk | xk TF|Z*) a density since T is a
discrete valued random variable. In fact, as (1) shows,
the JMPD continuous discrete hybrid as it is a product
of the probability mass function p(7%|Z*) and the
probability density function p(x¥, x5, ..x% | x&|Tk ZF).

The normalization condition is thus
o)
Z/dxl---dep(xl,---,xT,T|Z):1 ) 2)
T=0

Each of the state vectors x; in the density
p(xk,xk,..xk_ xK|T* Z*) is a vector quantity and
may (for example) be of the form [z, ,y,y, c|, where ¢ is
the target class. For convenience, the density will be written
more compactly in the traditional manner as p(X*|T*, Z¥),
which implies that the state-vector X represents a variable
number of targets each possessing their own state vector.
We will drop the time superscript k& for notational simplicity
when no confusion will arise.

The temporal update of the posterior likelihood proceeds
according to the usual rules of Bayesian filtering. The
model of how the JMPD evolves over time is given by
p(XF, Tk|Xk=1 Tk=1) and will be referred to as the kine-
matic prior (KP). The kinematic prior includes models of
target motion, target birth and death, and any additional prior
information that may exist such as terrain and roadway maps.
In the case where target identification is part of the state
being estimated, different kinematic models may be used for
different target types.

The time-updated (prediction) density is computed via the
model update equation as

p(X.k+17Tk+1|Zk) — (3)

o0
Z / dxkp(Xk+1,Tk+1|Xk,Tk)p(xk,Tk|Zk) )
Th—0 X"

The measurement update equation uses Bayes’ rule to
update the posterior density with a new measurement z**!
as

p(XMHL TR ZM) = @
k+1 k+1 k+1 k+1 k+1 k
P [XIHL TR p(XIHL TR Z8)
p(zh+1|ZF)

For the purposes of the simulations included in this paper,
we specialize to the case where T is known and fixed at
T = 1. The more general case, where T' is unknown, large,
and time varying is treated in [9] and [14].

X has a very large sample space. It contains all configu-
rations of state vectors for all values of 7. Discretization
on a grid has computational burden exponential in the
number of targets and grid cells allotted to each state. A
particle filter implementation with appropriately designed
importance density allows for computational tractability [9].
To implement JMPD via a particle filter, we approximate the
joint multitarget probability density by a set of N, weighted
samples (particles), i.e. p(X|Z) = Zévzpl wpd(X —X,).

In summary, by recursive estimation of the JMPD, we
capture all of the uncertainty about the number of targets
and their states conditioned on all of the measurements
made. Implementation of this is done via a particle filter
with an adaptive importance density. The JMPD then drives
the sensor management algorithms as described in the next
sections.




III. THE RENYI DIVERGENCE FOR
INFORMATION DRIVEN SENSOR MANAGEMENT

This section gives the details of our information driven
sensor management algorithm. As others have realized
[5]1[6][8], a good measure of the quality of a sensing action
is the reduction in entropy of the posterior distribution that is
induced by the measurement. Since we wish to determine the
best sensing action to take before actually executing it, we
require a measure of the expected reduction in entropy that a
sensing action will produce. This is done by first enumerating
all possible sensing actions. A sensing action may consist
of choosing a particular sensor mode, a particular dwell
point/pointing angle, or a combination of the two. Next, the
expected information gain is calculated for each of the possi-
ble actions, and the action that yields the maximum expected
information gain is taken. The measurement received is used
to update the JMPD, which is in turn used to determine the
next measurement to make.

A. The Rényi Divergence

In this work, the calculation of information gain between
two densities p; and pg is done using the Rényi information
divergence [15][16], also known as the a-divergence:

[ / pY(2)py % (x)dz . (5)

The « parameter may be used to adjust how heavily one
emphasizes the tails of the two distributions p; and pg. In
the limiting case of &« — 1 the Rényi divergence becomes
the commonly utilized Kullback-Leibler discrimination (6).

. . po(z)
ggamww/mmmm@ﬁx. ©)
If @ = 0.5, the Rényi information divergence becomes the

Hellinger affinity 21In [ \/p1(z)po(x)dz, which is related to
the Hellinger-Battacharya distance squared [17] via

Dictiner i 130) = 2(1 = exp (503 () ) - 1)

B. The Rényi Divergence In The JMPD Setting

The function D, in (5) is a measure of the divergence
between the densities pg and p;. In our application, we
are interested in computing the divergence between the
predicted density p(X*, T*|Z*~1) and the updated density
after a measurement is made, p(X*, T*|Z*). Therefore, the
divergence of interest is given by (8).

Do (p(12%)1p(1Z41)) = —

a—1
lnz/p(’(Xk,Tk|Zk)p1_(’(Xk,Tk|Zk_1)ka :

1
Da(pillpo) = —

x (8)

Using Bayes’ rule applied to the JMPD and simple alge-
bra, we can write D, as (9).

Do (p(1Z9)1p(1Z41)) = — !

X
N e (@ ZFT, m)

a—1

> / p* (28| XE TF m)p(XF, TF|ZF1)dX* . (9)

where m is the sensing action and z”* is the most recently
received measurement.

C. The Expected Rényi Divergence for a Sensing Action

Our real aim is to choose the sensing action to take
before actually receiving the measurement z. Specifically,
we would like to choose to take the action that makes the
divergence between the current density and the density after
a new measurement as large as possible. This indicates that
the sensing action has maximally increased the information
content of the measurement updated density, p(X*, T*|Z*),
with respect to the density before a measurement was made,
p(X* T*|Z*~1). However, we cannot choose the action that
maximizes the divergence as we do not know the outcome
of the action before taking it.

We propose, then, as a method of sensor management to
calculate the expected value of the Rényi Divergence for each
of the M possible sensing actions and to choose to take
the action that maximizes the expectation. In this notation
m (m = 1..M) will refer to any possible sensing action
under consideration, including but not limited to sensor mode
selection and sensor beam positioning. In this manner, we
say that we are making the measurement that maximizes
the expected gain in information as measured by the Rényi
Divergence.

The expectation may be written as an integral over all
possible outcomes z when performing sensing action m as

<Da>m = (10)
[ e p(a 12w D (o125 25 )

z
Therefore, the information based scheduling strategy is to
choose the action m,); as

(11)

D. Scheduling Using The Rényi Divergence Between Mar-
ginalized JMPDs

If is known a priori that certain types of information are
more important than others, one can use a Rényi divergence
between marginalized JMPDs to allocate the sensor.

Consider the case where one only wants to use kinematic
information when scheduling the sensor. The state of the
system X contains both kinematic (x, &, y, 9) and target class
(¢) information

Mopt = arg mgx(D@m )

X = [z1,%1,Y1,Y1, €1+ - 1y BT, YT, YT, CT) - (12)

In this case, one can marginalize across target type and
generate a new state variable Y that only contains kinematic
information

Y:[‘(I:lvj:lvylayla'"‘(I:Ta:tTayTﬂyT] . (13)
The marginalization is performed according to
p(x1, ¥1,91, 91, - o7, T, Y7, Y7| L) = (14)

/"'/dc1"'dCTP(fUthhZ/hZh,Ch"'|Z) .

C1 cTr



The density p(Y|Z) can then be used to calculate expected
information gain on the reduced state space using the diver-
gence between marginalized JMPDs

Da (p(1Z5)|p(-|2*71)) =

1
1 ln/pa(Yk,Tk|Zk)p17a(Yk,Tk|Zk71)dYk .
o —

Y

5)

One may additionally envision treating kinematic and
target type information separately (although this marginal-
ization ignores the coupling in uncertainty between the two)
by marginalizing out target type to get Y and marginalizing
out kinematics to get V and using

Do (p(-1Z¥)[[p(-|Z*1)) =
Wy ln/dYkpa(Yk,Tk|Zk)p1_a(Yk,Tk|Zk_l)+
Y

(16)

a—1

Wy

T / dVFEp(VE TR ZF)pt (VR TR 2Rt
o —

A%
where w,, and w, are the relative weight given to the different
information types.

IV. MATHEMATICAL RELATION BETWEEN THE
MARGINALIZED RENYI DIVERGENCE AND RISK

In this section we show that there is a simple mathematical
relation between marginalized Rényi « divergence and task
based performance, i.e., risk. This result establishes that,
with the right weighting, a certain function of the Rényi
divergence can be viewed as an approximation to the risk.

We start by proving a simple bound linking the expectation
of a non-negative random variable to weighted divergence.
Let U be an arbitrary r.v., let p and ¢ be densities for U, and
define Ep[g(U)] = [ g(u)p(u)du. Assume that ¢ dominates
p, i.e. ¢(u) = 0 implies p(u) = 0, and & > 0. Then for
any bounded non-negative function g, with w = iI’Lll,f g(u),

W = sup g(u):
i zus[(2)]. os
Eylg] <WE,/® [(1—;) } a>1, (17)

with equality when either « = 1 or when ¢ is constant and
pP=gq.
Proof: For a < 1 (o > 1) concavity (convexity) of

the function g(z) def z“ and Jensen’s inequality imply

that £,[Z°] < E2[Z] (E4[Z%] > Eg[Z]) for any non-
negative r.v. Z. Combining this inequality with the fact that
E,lgp/q] = Ep[g] yields the result (17).

To apply the above bound to the JMPD tracking appli-
cation we define U = [X*,z* m|T, define E[g(U)] as the
conditional Bayes risk associated with cost function g(U)
under action m when using the optimal estimate of state
Xk after observing z*, and define p(u) = p(X*|Z*,m)
and q(u) = p(X*|Z*~1 m) the posterior densities of the
state X* given the m-th action and observation sets Z*

and Z*~!, respectively. For example, for a single target, if
the state X* = [z y* ¢]T is composed of target position
gk = [xk,yk]T and target class ¢ then one can define
g(U) = (6" — (2, m))? or g(U) = 1 — I(c — &(z",m))
when the cost function is associated with the tracking MSE
of the optimal tracker or the classification error probability
of the optimal classifier, respectively.

More generally, let £ denote the components of the state
XF¥ over which the risk g(U) = g(¢*, 2z, m) is not constant.
When the above bound is applied to the conditional expec-
tation E[g(U)|z*, m] we obtain for o < 1 and bounded cost
function,

Elg(U)[2*, m] = / 9(E,25 m)p(€|2" m)de

cw ([ () )

W exp (—1 - “Da<p<-|z’“>||p<-|z’“>>) . as)

To obtain this bound, we have set ¢ = p(¢|Z*~1, m). Thus
we conclude the following:

o The RHS of the bound (18) involves the Rényi diver-
gence of the marginals of the posterior state given Z*
and Z*~!, respectively.

o When the cost function g is independent of the state
£, the RHS of (18) can be more tightly bounded by a
weighted Rényi divergence of the marginals.

o The RHS of (18) implies it is better to work with the
divergences between marginalized posteriors than the
divergence between the posteriors and the full state X*.

¢ One can sandwich the conditional Bayes risk by select-
ing a1 € [0,1] and a > 1 in the bounds (17)

(o] Ggesmn) o)

< Blg(€,2",m)|2",m] <

I

« The above bound becomes tighter when the cost func-
tion g only weakly depends on & and p(¢|Z*,m) is
close to p(&|ZF—1, m).

V. TASK DRIVEN SENSOR MANAGEMENT

In this section, we derive a task driven sensor scheduling
algorithm which chooses actions to minimize the expected
tracking error [18].

The details of this algorithm are as follows. The task
driven sensor management algorithm is designed to choose
the action that results in maximal certainty about target
position after the action is taken. Mathematically, this criteria
can be stated as taking the action that leads to the largest
maximum a posteriori (MAP) probability of target location.
As in the information driven tasking algorithm, we do not
know the outcome of a sensing action before taking the



action. Therefore, we again choose to take the action that
maximizes the expected certainty about target position.

We specialize here to the case where we are concerned
only with the location in terms of the sensor grid, although
the method is general. Let ¢ denote a sensor cell. Further-
more, let p(c|Z*~1) denote the probability that the target
is in cell ¢ given the measurements up to time k — 1,
Z*~1. Then the sensor allocation strategy that maximizes
location certainty is to choose the action m that is expected
to maximize the a posteriori probability the target is in cell
c for the most likely cell ¢, i.e.,

Mopt = argmax F, (maxgo(c|Zk_17 z", m)) (19)
m C

argmax/p(zk|Zk_1,m)(maxp(c|Zk_1,Zk,m)>dzk .
m C

zk

The important probability density p(c|ZF~1,z* m) is

computed in two steps. First, the posterior JMPD
p(Xk|Z*=1 zF m) is computed via Bayes’ rule using the
received measurement z”. In the case of interest in this paper,
this is just the single target posterior p(x*|ZF=1 z¥ m).
Then the probability p(c|ZF~1,z* m) is derived from this
by integrating over sensor cell ¢, i.e.,

p(c|ZF1, 28 m) = /dxkp(xk|Zk_1,zk,m) . 0)

x€Ec

Note that this could be generalized to any arbitrary region
(not necessarily tied to the sensor grid) by appropriate choice
of integration region corresponding to “cell” c.

VI. SIMULATION RESULT

We consider the following model problem to illustrate
the performance of the two sensor scheduling algorithms
developed here. There is a single target with unknown
position and identification present in a surveillance region.
An airborne sensor has the ability to interrogate any cell in
the surveillance region, where a cell measures 100m x 100m.
The sensor may choose to interrogate with one of two modes:
an identification mode or a target indication mode.

The identification mode idealizes a synthetic aperture radar
dwell and the associated signal processing algorithms. In
our abstraction, the result of an identification dwell is a
classification call. There are ten possible target classes. We
model the performance of the identification mode by the
confusion matrix given in Table I.

The target indication mode idealizes a ground moving
target indicator dwell and the associated signal processing
algorithms. In our abstraction, the result of a target indication
dwell is binary, corresponding to a no-detection or a detec-
tion. We model the performance of the target indication mode
using a detection rate P; which specifies the probability of
detection if the cell is occupied and a false alarm rate P
which specifies the probability of detection if the cell is not
occupied. In this simulation we set Py = 0.5 and Py = .001,
corresponding to an SNR of 10dB.

Cell Status
Classification
Probability Type 1 | Type2 | --- | Type 10 | Empty
Type 1 0.60 0.04 e 0.04 0.05
Type 2 0.04 0.60 e 0.04 0.05
Type 10 0.04 0.04 e 0.60 0.05
TABLE I

THE MODEL FOR THE IDENTIFICATION SENSOR. EACH MEASUREMENT
OF A SINGLE TARGET IS INDEPENDENT AND PROVIDES THE CORRECT
IDENTIFICATION 60% OF THE TIME. THE CLASSIFICATION ERRORS ARE
DISTRIBUTED UNIFORMLY OVER THE OTHER CLASSES. MEASUREMENTS
OF EMPTY CELLS RETURN A RANDOM CLASSIFICATION CALL.

At each time step, the sensor manager must choose (a)
which cell to interrogate, and (b) which sensor mode to use
for the interrogation. The chosen cell is then interrogated and
the measurement is used to update the probability density
describing the scenario. This procedure repeats for an entire
vignette.

We compare the information driven method, the infor-
mation driven method between marginalized JMPDs (where
only the position is important) and the task driven method as
the means of choosing which cell to interrogate via a set of
Monte Carlo runs. Motivated by the results of Section IV, we
maximize the integral in (10) without taking the logarithm.
We look at the performance of the algorithms in terms of two
quantities: The tracking error and the identification error.

Figure 1 shows that the scheduler derived specifically to
minimize tracking error is the best performing algorithm
when only the tracking performance is considered, although
only marginally so. The methods based on maximizing
expected information gain perform only slightly poorer when
considering tracking performance. On the other hand, using
identification quality as the metric, the information gain
criterion clearly outperforms the other two methods. This
is due to the fact that the information gain criteria tries to
learn about the target position and class simultaneously and
so uses some sensor dwells to identify the target.

An interesting property of the Figure is the oscillatory
behavior in tracking error. This property is due to the sensor
model used in this investigation, and has nothing to do
with the sensor management method used. The sensor model
in tracking mode is that the sensor is capable of making
measurements as to the presence or absence of a target in
a cell. This capability manifests itself in the tracking as
follows. When a target first enters a cell, its position is
known very well. The fact that a target has transitioned from
one cell to the next allows very accurate position prediction.
This explains the minimum of the oscillation in the error
curves. After a target remains in a cell for some time, its
position becomes less certain to the tracker. As the tracker
is only being updated with information about the presence
of the target in the cell, it will eventually estimate uniform



probability of position over the entire cell. This explains the
maximum in the oscillation in the error curve. Eventually,
the target transitions to another cell, repeating the process.
We see approximately 8 cell transitions in the simulation.
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Fig. 1. Comparison between the Rényi divergence scheduler, a Rényi
divergence between marginalized JMPDs, and a scheduler designed to
minimize tracking error. The divergence criteria is able to do good identifi-
cation with only a small degradation in tracking performance. As expected,
the scheduler designed to minimize track error performs best in terms of
tracking error, followed by the divergence between marginalized JMPDs
and the divergence. However, in terms of identification performance, the
divergence between full state JMPDs is superior.

VII. CONCLUSIONS

This paper has compared target tracking and identification
performance under information driven and task driven sensor
scheduling algorithms. As expected, when making the per-
formance comparison by looking at the task of interest, the
task driven scheduler slightly outperforms the information
driven scheduler. However, the power of the information
driven approach is evident when there are multiple competing
performance criteria. In this case, target classification is used
to show that the information driven approach is able to
balance the two desires. We see that the information based
approach sacrifices a small amount of tracking performance
to yield a high level of classification performance.
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