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Abstract 

The paper concerns Drag-Free and Attitude Control of the European satellite Gravity field and steady-state Ocean 
Circulation Explorer (GOCE) during the science phase. Design has followed Embedded Model Control, where a space-
craft/environment discrete-time model becomes the real-time control core and is interfaced to actuators and sensors via 
tuneable feedback laws. Drag-free control implies cancelling non-gravitational forces and all torques, leaving the satellite to 
free fall subject only to gravity. In addition, for reasons of science, the spacecraft must be carefully aligned to the local 
orbital frame, retrieved from range and rate of a Global Positioning System receiver. Accurate drag-free and attitude control 
requires proportional and low-noise thrusting, which in turn raises the problem of propellant saving. Six-axis drag-free 
control is driven by accurate acceleration measurements provided by the mission payload. Their angular components must 
be combined with the star-tracker attitude so as to compensate accelerometer drift. Simulated results are presented and 
discussed. 
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1. Introduction 

The Gravity field and steady-state Ocean Circulation 
Explorer (GOCE) satellite, to be launched in spring 2008, 
is part of the European space program dedicated to explor-
ing the Earth’s gravity field (Aguirre-Martinez & Cesare, 
1999). The GOCE satellite will fly in a near-circular, sun-
synchronous, dawn-dusk orbit (96.5° inclination) at a mean 
geodetic height 250 kmh ≅ , corresponding to the orbital 
rate 31.17 10  rad/sOω

−≈ ⋅ . At this altitude, drag effects are 
still significant due to the thermosphere (Section 1.1.2), 
which is a major control problem.  

Spacecraft and control design are driven by three main 
concepts.  
1) Gravity gradiometry. An on-board electrostatic gradi-

ometer measures the gravity gradient from the linear 
combination of differential accelerations provided by 
six three-axis accelerometers (Touboul, Rodrigues, 
Willemenot & Bernard, 1996). Due to accelerometer 
drift (see Fig. 6 and Section 1.1.2), only small-scale 
spatial components of the gravity field can be recov-
ered, leading to the mission (measurement) bandwidth : 

 { }1 1 20.005 0.1 Hzf f f= = ≤ ≤ =F . (1) 

Drag-free control derives from the need to cancel non-
gravitational linear accelerations and angular accelera-
tions in this region, so as to bound systematic instru-
ment errors.  

2) Orbit determination by satellite-to-satellite tracking. To 
recover the large-scale components of the gravity field, 
gradiometry must be complemented by precise satellite 
orbit. To this end, a Global Positioning System (GPS) 
receiver is embarked; GPS range and rate are also em-
ployed to estimate the reference attitude in real time, 
the so-called Local Orbital Reference Frame (LORF), 
prescribed by the instantaneous orbit (Section 2). Since 
gravity measurements will be referred to this frame, at-
titude control must accurately align the spacecraft to 
the orbital frame. The relevant pointing accuracy is 
tight within the mission frequency band, but rather 
loose at lower frequencies. 

3) Drag-Free and Attitude Control (DFAC). Drag-free 
control at low altitudes requires low-noise proportional 
thrusters capable of tens of mN and with a time re-
sponse shorter than 0.1 s. Attitude control is more 
stringent, calling for micro-thrusters having noise close 
to 1 Nμ  and range below 1 mN. Proportional thrusting 
may raise the problem of propellant saving, micro-
propulsion that of thrust peak restraint (Section 5.2). 
Micro-propulsion derives from the need of cancelling 
angular accelerations, from aerodynamic to gravity-
gradient, in the mission bandwidth. To be accurate, an-
gular drag-free control must be driven by gradiometer 
measurements that, being affected by bias, tend to 
cause attitude drifting. The gradiometer must be com-
plemented by a star-tracker quaternion so as to align 
the spacecraft to the orbital frame. Attitude and angular 
acceleration estimation becomes a sensor fusion prob-
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lem to be solved by careful noise design (Canuto, 
2010). 

The design of the GOCE drag-free and attitude control 
has followed the Embedded Model Control inspired by 
Donati & Vallauri (1984) and developed by Canuto 
(2007a). Embedded Model Control is not intended to im-
prove performance over that of other techniques, but to 
equalise design, implementation and maintenance, a goal 
that is pursued by embedding the design model, thus 
known as an Embedded Model (EM), into the control unit 
(Section 3). Thus: (i) control design is done in the discrete-
time domain (Section 4), (ii) the Embedded Model be-
comes the real-time plant image driven by commands and 
by accurate, up-to-date disturbance realizations (Sections 
3.3 and 3.4), which are essential in drag-free control, (iii) 
the model error, the difference between plant measures and 
model output, is an explicit control signal and the sole 
source of feedback from plant to model, allowing real-time 
disturbance update through noise (Section 4.3). Control 
design is thus concerned with the following EM-to-plant 
interfaces.  
1) The Control Law (Section 4.2) computes the digital 

commands one-step ahead as a combination of tracking 
errors and disturbances to be rejected.  

2) The Noise Estimator (Section 4.3) estimates the driving 
noise capable of updating disturbance realizations.  

3) The Reference Generator (Section 4.3) estimates the 
LORF quaternion as the attitude reference.  

Control parameters either derive univocally from the 
Embedded Model itself or from the closed-loop eigenval-
ues, which result from closing Noise Estimator (output-to-
state feedback) and Control Law (state-to-command feed-
back) on the model. As such, they are easily related to Em-
bedded Model parameters, robust stability and perfor-
mance (Section 4.4). The ensemble comprising the Em-
bedded Model and the Noise Estimator constitutes a 
closed-loop state predictor. Eigenvalue design and tuning 
is first done by analytic techniques and then refined 
through simulation and in field during commissioning. In 
this respect, the architecture of the Embedded Model Con-
trol looks rather similar to Linear Quadratic Gaussian 
(LQG) architecture, but no optimization is explicitly 
sought and state-predictor eigenvalues are designed with 
respect to neglected dynamics, so as to recover model-
based stability and performance (Section 4.4).  

Drag-free control has mostly been designed in the fre-
quency domain using H∞ techniques (Vaillon, Borde, Du-
hamel & Damilano, 1996, Ziegler & Blanke, 2002, Fichter, 
Gath, Vitale & Bartoluzzi, 2005). First of all, the design 
model is decoupled as far as possible, thus neglecting 
cross-couplings or treating them as unknown disturbance, 
unlike Embedded Model Control in which they are accu-
rately modelled and cancelled if significant to stability and 
performance. Mixed sensitivity inequalities are then estab-
lished for each degree of freedom, with the help of disturb-
ance shaping filters and performance templates. The result-
ing controllers look blind with respect to the model and 
requirements, hence are not easily adjustable. Further ob-
scurity may come from conversion into digital filters for 
coding. Controllers are never reported, nor is the design 

model distinguished from the fine model, so as to account 
for neglected dynamics. LQG design, endowed with the 
explicit model of a harmonic disturbance, is reported by 
Vaillon, Borde, Duhamel & Damilano (1996), who ac-
count for precautions in converting to digital filters and 
mention the difficulty of guaranteeing robust stability, 
mainly because of solar panel vibrations close to the con-
trol bandwidth. Simple PID laws lacking explicit disturb-
ance rejection have been treated by Haines (2000). Model 
predictive control has been proposed by Prieto & Ahmad 
(2005) for treating propellant saving, but through quadratic 
cost. Some of the cited papers refer to GOCE, but compar-
ison is awkward due to a lack of details about simulation 
and control algorithms. On the contrary, the orbit and atti-
tude simulator developed for the purpose by the author was 
so effective that the control code transported to the end-to-
end GOCE simulator provided the same performance, and 
constituted the prototype for final code development. 

Reference frames and control requirements are present-
ed in Section 2. The Embedded Model is derived in Sec-
tion 3, briefly justifying simplifications with respect to the 
simulated fine model. Care is devoted to disturbance dy-
namics as a way to squeeze an accurate and timely pertur-
bation state from the measurements, ready to be counter-
acted by drag-free control. Actuator and sensor dynamics 
are briefly mentioned as they contribute to neglected dy-
namics. Section 4 provides an overview of the relevant 
digital control. Simulated results and discussion are given 
in Section 5. 

2. Reference frames and DFAC requirements 

The main GOCE frame is the Local Orbital Reference 
Frame { }, , ,O O O OC= i j kR , which is defined (i) by the 
motion direction /Vv  of the spacecraft Centre-of-Mass 
(CoM), where v  is the inertial velocity and V = v  the 
velocity amplitude, and (ii) by the orbital plane orthogonal 
to the angular momentum sm= ×h r v , where 

1080 kgsm �  denotes the spacecraft mass and r  the 
centre-of-mass position (Fig. 1). The origin C  coincides 
with the satellite CoM, while the LORF axes are defined 
by: 

 
( ) 6

/ , / ,

7760 m/s, 6.380 10  m
O O O O O

E O E

V

V r h rω

= = × × = ×

+ ×

i v j r v r v k i j

� � �
, (2) 

where Oω  is the instantaneous orbital rate defined by 

 2/Oω = ×r v r . (3) 

The axes, ordered from Oi  to Ok , are referred to as along-
track, out-of-plane and radial, respectively. The matrix 

( ) [ ],O O O OR =r v i j k , i.e. the LORF-to-inertial-frame 
transformation, defines the reference quaternion OQ  to be 
tracked by the spacecraft attitude quaternion Q .  

The body frame { }, , ,C= i j kR  is imposed by the ge-
ometry and mass distribution of the spacecraft, which has a 
slender cylindrical body (Fig. 2). The cylinder length is 
4.9 m  and the cross-section area is 20.65 m . The body 
unit vectors are quasi-aligned with the principal axes of 
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inertia, and i , aligned with the cylinder axis, points toward 
v . 

O

Jj
Ji

Jk

LEO sun-synchronous orbit

Ok
ki

Oj

v
Sun

Oi

Earth rotation

  

Fig. 1 Main reference frames of the GOCE satellite in 
a dawn-dusk orbit (orbit and spacecraft are not 

in scale).  

i

k

j

C

 

Fig. 2 Artist's view of the GOCE satellite in a dawn-
dusk orbit. 

Modelling and control design assumes attitude control 
to keep the inertial attitude quaternion Q  aligned with the 
reference quaternion OQ  less a few milliradians. Accord-
ingly, the attitude vector { }, ,x y zq q q=q  is defined as the 
vector of the Euler angles entering the body-to-LORF 
transformation 

 ( ) ( ) ( ) ( )z y xR Z q Y q X q=q . (4) 

where ( ) ( ),  x yX q Y q  and ( )zZ q  denote roll, pitch and 
yaw rotation matrices, respectively. 

Control requirements are defined in terms of the follow-
ing performance variables: 
1) the residual non-gravitational acceleration la  of the 

spacecraft centre-of-mass, in body coordinates,  
2) the satellite angular acceleration q =a ω� ,  
3) the misalignment between the body frame  R  and the 

orbital frame OR , expressed by the attitude q  and the 
rate  

 ( )T
O ORΔ ω= −ω ω q j , (5) 

where { }, ,x y zω ω ω=ω  is the inertial angular rate in 
body coordinates. 

Drag-free and attitude zero tracking are expressed by  

 0,  0,  0,  0l q= = = =a a Δω q , (6) 

where underline denotes reference values.  
Equation (6) clarifies a key difference. 

1) Centre-of-mass motion has to be free falling, i.e. only 
forced by gravity, which implies no control require-
ment on position r  and rate v . Only the non-
gravitational acceleration la  must be controlled to ze-
ro, which is referred to as pure drag-free. 

2) Attitude control, taking advantage of acceleration (gra-
diometer) and attitude sensors (star tracker), can be 
broken down hierarchically into (i) drag-free control, as 
for the centre-of-mass, having a larger bandwidth (BW) 
to cancel drag and gravity torques, and (ii) attitude con-
trol, having a narrower bandwidth but sufficient to can-
cel the gradiometer drift ab , and to keep attitude and 
rate bounded. Hence, the angular acceleration aa  in-
cluding the gradiometer drift ab  must be distinguished 
from the attitude acceleration qa , free of drift and de-
fined by q a q= +a a d , where q a= −d b  must be can-
celled by attitude control. 

Control requirements on tracking errors are shown in 
Table 1. They are not uniform within the control frequency 
band cF  ranging from DC to Nyquist frequency 

max 0.5 / 5 Hzf T= = , where 0.1 sT =  is the control time 
unit. Requirements are stringent in the mission bandwidth 
defined in (1), but more relaxed in the lower-frequency re-
gion { }0 1f f= ≤F  and in the higher-frequency region 

{ }2 2 maxf f f= ≤ ≤F . Spectral density bounds in Table 1 
are completed with a root-mean-square (RMS) bound. 

  
Table 1. GOCE drag-free and attitude requirements

Variable Unit 0F  1F  2F
Spectral density upper bounds 
a ( )2μm/ s Hz  35  0.025 0.2
ω� ( )2μrad/ s Hz 70 0.025 0.025

Δω ( )μrad/ s Hz  700  0.5 NA

q mrad/ Hz 26  0.008 NA
RMS upper bound
a 2μm/s 0.5 
ω� 2μrad/s 1 
Δω μrad/s 10 
q μrad 0.37 

 
Further requirements come from micro-thruster tech-

nology: gas propulsion requires propellant saving, electric 
micro-thrusting may require peak restraining. Propellant 
saving can exploit micro-thruster redundancy, since they 
amount to 8m = , a size greater than the total degrees-of-
freedom 2 1 5n − =  of lateral position and attitude. To this 
end, the 1l  norm of the commanded thrust vector mu , sized 
m , must be minimized at each control time i  by solving   
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( ) [ ]

( ) ( ) ( )
min ,  1 1

,  0 
m

T T
m

m m m m

i

B i i i

=

= ≥
u e u e

u a u

…
, (7) 

where ma  is the vector of the commanded accelerations, 
lateral and angular, to be defined in Section 3.5, and mB  
the relevant scale-factor matrix. Peak restraining, if formu-
lated as a l∞ -norm minimization, a subject not treated 
here, would become an alternative to propellant saving. 
Actually, a more sophisticated approach was applied as 
outlined in Section 5.2. 

3. From fine to Embedded Model 

3.1. Introduction 

Embedded Model Control distinguishes between the fi-
ne model to be implemented as a numerical simulator for 
control assessment, and the Embedded Model, the stylized 
model part of the control unit. Discrepancies between fine 
and Embedded Model are essential, as they fix the simpli-
fying assumptions separating modelled and neglected dy-
namics. Control laws descend from the Embedded Model, 
but closed-loop eigenvalues are tuned versus requirements 
and neglected dynamics.  

This section focuses on the Embedded Model, neglect-
ing fine-model design. Actually, fine model complexity 
must be carefully designed to enhance model discrepancies 
with respect to the Embedded Model. For instance, consid-
er milliradian attitude accuracy, as reported in Table 1, and 
the relevant zero reference in (6). This would suggest 
adopting linearized attitude dynamics for both the fine and 
the Embedded Model. In practice this would imply ne-
glecting square terms of the order of 610− , which is the 
same magnitude of the requirement in Table 1, in the col-
umn labelled 1F . The fine attitude must thus be non-linear 
or expanded up to second-order terms, while the Embed-
ded Model is linear, discrepancies being accommodated by 
a careful modelling of the unknown perturbations. Similar 
considerations apply to cross-coupling terms and attitude-
dependent torques, such as aerodynamic and gravity-
gradient. Last but not least, the high-frequency dynamics 
due to sensors and actuators, having time constants and 
natural frequencies close to control time unit T  - taken as 
the EM time unit - become an essential part of the fine 
model and the main candidates to neglected dynamics.  

The above considerations fix the pathway from fine to 
Embedded Model. 
1) The controllable/observable part of the fine model is 

simplified by neglecting: (i) cross-coupling and internal 
feedback, treated as unknown/known perturbations to 
be explicitly cancelled if significant; (ii) the high-
frequency dynamics, whose effect, although excited by 
commands, remains within a tolerance compatible with 
control requirements. 

2) Disturbance and cross-couplings split into known and 
unknown terms. A class of unknown, observable dis-
turbances is then synthesized, capable of encompassing 
the expected realizations to be counteracted within the 
target tolerance. Each class is synthesized as the output 
of discrete-time, linear state equations driven by a noise 
vector w . Class complexity corresponds to equation 
order and descends from simulated/experimental spec-
tral densities as in Fig. 5. As a baseline, no statistics are 
appended to w , except for a priori performance as-
sessment (Section 4.4), thus leaving w  to be interpret-
ed as a class of bounded and arbitrary signals, having 
asymptotic zero average and zero prediction. Moreover, 
by placing eigenvalues on the unit circle, wide, robust 
classes of random drifts can be synthesized, since they 
are parameter-free. 

3) The Embedded Model is completed by an analytic 
model of the neglected dynamics and the relevant un-
certainty range, not to be embedded but driving closed-
loop eigenvalues. Details on neglected dynamics are 
omitted for brevity’s sake. 

3.2. Notations and block-diagram 

Three sets of subscripts and two dimensional indices are 
employed. 
1) The centre-of-mass (or attitude) subscript , ,c x y z= , 

denotes either a generic axis, or the along-track (roll), 
out-of-orbit plane (pitch) and radial (yaw) axes, respec-
tively; 

2) The decomposition subscript , , ,h l a r q= , either de-
notes a generic dynamics/variable or it is restricted to 
CoM acceleration, angular acceleration, CoM position 
and attitude, respectively; 

3) The thruster subscripts t  and m  refer to ion thruster 
(along-track axis) and micro-thrusters (lateral axes and 
attitude), respectively, as explained in Section 3.5. 

4) The micro-thruster size is 8m =  and the CoM/attitude 
degrees-of-freedom are 3n = . 

Spacecraft dynamics is directly written in the discrete-
time domain, using the Z -transform notation, also when 
nonlinear, time-varying terms are involved. The notation 
( ) ( ) ( )z z z=y P u  is simplified to = ⋅y P u  when z  is 

dropped. Note that the Z  notation hides the initial state 
and free response, which would be made explicit by state 
equations, omitted for brevity’s sake. Derivation from con-
tinuous-time dynamics is shown when necessary. The 
block-diagram of the Embedded Model is shown in Fig. 3 
and corresponds to a set of discrete-time state equations 
driven by 1m +  commands and ending in 5n  measures. 
Clouds denote driving noise and express causal uncertain-
ty. The open switch between thrust matrix B  and orbit dy-
namics, points out that thrust command is not intended for 
orbit control, but just for making the orbit drag-free. 
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Fig. 3 Block-diagram of the Embedded Model. 
 

3.3. Centre-of-mass dynamics 

1.1.1. Inertial dynamics for LORF quaternion prediction 
Centre-of-mass dynamics may be written either in iner-

tial or body frame. Inertial equations, written in the Earth-
centred equatorial frame { }, , ,J J JO i j k  (see Fig. 1), are 
employed to filter GPS range and rate measurements in 
view of the orbital quaternion prediction (Canuto, Massotti 
& Santos, 2007). To this end, the Earth’s gravity accelera-
tion ( )g r  is explicitly modelled so as to include the 
Earth's oblateness term J2, as follows 

 ( ) ( )( )2 1Oω Ω− −∂g r r r� , (8) 

where Oω  is the mean orbit rate and ( ) 0.02Ω∂ ≤r  ac-
counts for eccentricity and J2. Deviation from the rule, 
given in Section 3.1, of treating internal feedback as a 
known disturbance is justified by the narrow bandwidth of 
the LORF predictor close to Oω , and imposed by con-
servative GPS errors. Three weakly-coupled, time-varying 
oscillators are modelled, tuned on the discrete-time rate 

 ( ) ( )1c Oi Tα ω Ω= −∂ r , (9) 

and driven by drag-free residuals rd  which also account 
for gravity anomalies. No explicit command force is in-
cluded since the orbit is drag-free, but the orbit is corrupted 
by the accelerometer drift being part of rd . Orbit dynamics 
is written as follows  

 ( ) ( ) ( )r
r

v

z z z
⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

Pr
d

Pv
, (10) 

upon definition of the Z  transfer functions from accelera-
tion to position  

( ) ( )
( )( )2 2

sin
diag

cos sin
c

r rc

c c c

z z
z

α

α α α

⎧ ⎫
⎪ ⎪= =⎨ ⎬

− +⎪ ⎪⎩ ⎭

P P , (11) 

and from acceleration to rate  

 ( ) ( )
( )( )2 2

cos
diag

cos sin
c

v vc

c c

z
z z

z

α

α α

⎧ ⎫
−⎪ ⎪= =⎨ ⎬

− +⎪ ⎪⎩ ⎭

P P . (12) 

The unknown disturbance class includes first- and se-
cond-order random drift, to account for the spectral density 
of gravity anomalies rolling off at -40dB/dec in the band 

( ) 13 2 1 mHzOf ω π −> � , which is referred to as Kaula’s 
rule (Bertotti & Farinella, 1990). Restricting considerations 
to the generic component c , the transfer function from 
noise to disturbance reads 

 
( ) ( ) ( )
( ) ( ) ( )1 21 1 1

rc rc rc

rc

d z z z

z z z− −

=

⎡ ⎤= − −⎣ ⎦

D w

D
. (13) 

Equations (10) and (13) together with (2) and the GPS 
measurement equations  

 
( ) ( ) ( )
( ) ( ) ( )

r r

v v

z z z
z z z
= +
= +

y r v
y v v

, (14) 

are the Embedded Model for the LORF state predictor. 
Although GPS data are provided at a lower rate, namely 1 
Hz, and delayed, the LORF quaternion is extrapolated at 
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the DFAC rate 1 / 10 Hzcf T= =  though a predictor-
corrector algorithm (Canuto, Massotti & Santos, 2007). 
Properties of GPS measurement errors rv  and vv  are 
omitted (Kaplan, 1966), but they are stylized to be dis-
crete-time, white and Gaussian noise, and their compo-
nents to be statistically independent. 

1.1.2. Non-gravitational acceleration dynamics and 
drag-free control 

The drag-free control of the spacecraft centre-of-mass 
would in principle need body-frame equations relating the 
non-gravitational acceleration la , measured by the gradi-
ometer in body coordinates, to thruster commands. The 
complete equations, which are usually written in terms of 
the relative motion of the centre-of-mass with respect to an 
average circular orbit, are not reported here (Scheeres, 
1998, Canuto, 2010). Here we are only interested in the 
non-gravitational acceleration la  written as the sum of 
drag  and thruster forces df  and f , as follows 

 ( ) ( ) ( )( ), , , /l d st t t m= +a f r v q f . (15) 

 

Fig. 4 Time history of along-track (bottom) and out-of-
plane (top) drag.  

 

Fig. 5 Spectral density of along-track (top) and out-of-
plane (bottom) drag. 

At low altitudes, drag is dominated by aerodynamic 
forces; solar pressure and the Earth's radiation are much 
smaller. Although drag may be written as a known func-
tion of the spacecraft centre-of-mass and attitude (Wertz, 

1985) as in (15), at least with regard to components close 
to the orbital period 2 / 5370 sO OT π ω= �  (see Fig. 4), 
the relevant scale factors are highly uncertain, complex 
random processes establish over shorter time scales than 
the mission bandwidth 1F , and short-time drag variations 
may occur due to shadowing (Fritsche & Klinkrad, 2004). 
Being interested in time scales shorter than a second, 
standard thermosphere models limited to less than 0.1 Hz 
(Picone, Heidin, Drob & Aitken, 2002), were stochastically 
extrapolated to 10 Hz in agreement with high-frequency 
asymptotes of experimental spectral densities (Fig. 5). In 
addition, spectral analysis lead to a second-order disturb-
ance class as in (13), since, for 1 mHzf ≥ , spectral densi-
ties can be piecewise enveloped by ( )20 40  dB/dec− ÷  
slope, as confirmed by Fig. 5. The combination of white 
noise, first- and second-order random drift defines a very 
wide class of signals, compatible with the large gradiome-
ter bandwidth, thus removing the need for drag-explicit 
models in the control algorithms. 

The Embedded Model must be completed with gradi-
ometer/thruster dynamics and noise. Thruster dynamics 
and noise are briefly outlined in Section 3.5. Gradiometer 
dynamics is the cascade of servo-accelerometer dynamics 
(>20 Hz), anti-aliasing filter (close to maxf ) and data 
transmission delay (Canuto, Bona, Calafiore & Indri, 
2002). Thruster-to-gradiometer dynamics is stylized by 
time delay, thus treating residual dynamics - mainly thrust-
er and anti-aliasing filter - as neglected dynamics. Gradi-
ometer noise, typical of servo-accelerometers, shows a 
spectral density reaching a minimum inside the mission 
bandwidth 1F , while increasing at lower and higher fre-
quencies as in Fig. 6. The higher-frequency 40dB/dec 
slope justifies anti-aliasing. The low frequency slope, cor-
responding to accelerometer drift and bias lb , falls into the 
second order disturbance class (13) adopted for the drag. 
The same holds for thruster noise.  

 

Fig. 6 Spectral densities of the gradiometer noise for 
CoM (bottom) and angular measurements (mid-
dle) compared to drag-free target bound (top). 

The first step toward Embedded Model construction is 
the following Z -transform equation 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

lc lc lc lc

l l l l l

a z z z B z

z z z z z

= +

= + +

D w u

y P a b e
, (16) 
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where lc lc lcd = ⋅D w  and ( ) ( )lc rcz z=D D  (see equation 
(13)) account for non-gravitational accelerations and 
thruster noise, lcB u  is the commanded acceleration to be 
explained in Section 3.5, and ly  is the gradiometer meas-
urement which is affected by a delay denoted with   

 ( ) ( ){ }1diagl lcz z z−= =P P , (17) 

and is driven by the model error le  and the drift lb . Then, 
upon definition of the error-free model output 

( )ml l l l= ⋅ +y P a b , and inclusion of lb  into the unknown 
disturbance ld , the final EM follows 

 
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

ml l l l

l ml l l ml

z z z B z

z z z z z

= +

= + + ∂

y P d u

y y v P y
. (18) 

In (18), the model output mly  only accounts for the low-
frequency component ld  to be rejected by the command 
u  (drag-free control). The command necessarily includes 
the gradiometer drift, which in turn affects the spacecraft 
orbit outside the mission bandwidth but, being compatible 
with low-frequency requirements in Table 1, does not need 
to be rejected by a specific orbit control. On the contrary, 
the model error le  refers (i) to middle-to-high frequency 
components lv  of the gradiometer noise, playing the role 
of measurement noise, and (ii) to the neglected dynamics 

l ml∂ ⋅P y , written in fractional form, i.e. driven by the mod-
el output mly  (Canuto, 2007a). Neglected dynamics (some-
times referred to as unstructured uncertainty) is not part of 
the Embedded Model, but it is such as to constrain control 
performance (Section 1.1.8). The fractional form l∂P  of 
the neglected dynamics in (18) is assumed to be stable, lin-
ear and time-invariant. 

3.4. Attitude dynamics 

1.1.3. Linearized dynamics  

Restricting considerations to the Embedded Model, 
attitude kinematics is written in Euler angles, as coarse 
alignment is outside DFAC requirements (Canuto, Martella 
& Sechi, 2003). Then, linearizing around ( ) 0t =q  yields  

 0( ) ( ) = ( ),   (0)Ot t tω Δ= − =q ω j ω q q� , (19) 

where { }, ,x y zΔ Δω Δω Δω=ω  has been defined in (5), 
having assumed Oω  to be constant.  

Attitude dynamics follows by linearizing the classical 
Euler equation around ( ) ( )0,  0t tΔ = =ω q , which leads to 

 

( ) ( )
( )( )1

0

( )

( , , , ) ( , , )

(0)

q

d m

t A t A t

J t t t
ωΔ Δ

Δ Δ

−

= + +

+ + +

=

ω ω q

c q r v c q r c

ω ω

�

. (20) 

The magnetic torque  

 ( ) ( ) ( ), ,m Et= ×c q r m b q r , (21) 

follows upon defining the Earth’s magnetic field Eb  and 
the spacecraft magnetic dipole moment m , in body coor-

dinates. Gyro and gravity-gradient matrices in (20) are de-
fined as follows 

2 2

2

0 0 0
0 0 0 ,  0 0

0 0 0 0 0

x gx gxy

q gy

z

A Aω

Ω Ω Ω
Ω

Ω

⎡ ⎤− −⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦

. (22) 

The inertia tensor J  is quasi-diagonal: 

 2

153 23 6
23 2691 1  kgm
6 1 2653

J
− −⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

. (23) 

1) The first term in the right-hand side (RHS) of (20) is 
the linearized gyro acceleration, depending on the an-
gular frequencies z OΩ ω�  and / 4x OΩ ω� . It is 
treated as a known disturbance to be cancelled, less a 
slight uncertainty, accommodated by unknown disturb-
ance components.  

2) The second RHS term in (20) is the linearized gravity–
gradient acceleration, depending on the angular fre-
quencies 

 ,  ,  3gx O gxy O gy OΩ ω Ω ω Ω ω< < � . (24) 

The positive sign of 2
gyΩ  in (20) implies that the space-

craft pitch angle yq  is locally unstable, since the gravi-
ty gradient would tend to align the GOCE slender 
spacecraft to zenith/nadir. 'In the large', attitude has 
been made stable passively, i.e. by providing the space-
craft tail with suitable aerodynamic surfaces (see Fig. 
2). Thanks to gradiometer bandwidth, the gravity gra-
dient in (20) can be treated as a perturbation to be can-
celled, either known or unknown, thus leaving attitude 
dynamics parameter-free but unstable.   

3) The last terms in (20) correspond to the aerodynamic 
torque, dc , to the magnetic torque mc , and to the con-
trol torque c , all written in body coordinates. Aerody-
namic torques, although attitude-dependent, are treated 
as unknown perturbations as in (13) due to uncertain 
scale factors and short-time components. The same ap-
plies to the magnetic torque mc  because of the uncer-
tain and variable spacecraft magnetic dipole moment 

( ) 25 10 Amt ÷m � .  

1.1.4. Discrete-time dynamics 
Similarly to the dynamics of the satellite centre-of-mass 

in Section 3.3, the Embedded Model is divided into atti-
tude dynamics driven by residual angular acceleration aa  
and acceleration dynamics. The latter includes the thruster-
to-gradiometer dynamics approximated by a delay as in 
(17). Taking advantage of (19) and (20), attitude dynamics 
is simplified as follows.  
1) Coordinate decomposition is exploited, leading to three 

independent and equal dynamics from residual acceler-
ation aa  to attitude q . Cross-coupling accelerations, 
namely gyro and gravity-gradient, are confined within 
acceleration dynamics. 

2) The RHS in (20) is written as the sum of the residual 
acceleration aa , ideally zero, and the opposite of the 
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gradiometer bias q a= −d b . The latter is modelled by a 
second order random class as in (13), i.e. 

qc qc qcd = ⋅D w  and ( ) ( ),  qc rcz z=D D . 
The resulting attitude dynamics is 

 
( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ){ }2 2diag 1

q a q q q

q qc

z z z z z z

z z z T−

= + =

= = −

q P a d P a

P P
, (25) 

showing itself to be unstable because of a double integrator 
cascade. The following acceleration dynamics  

 
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

,ma a a a

a ma a a ma

z z z B z

z z z z z

Δ= + +

= + + ∂

y P d k q ω u

y y v P y
, (26) 

is similar to (18) except for ( ),Δk q ω , which accounts for 
the first and second term in (20). In (26), the unknown dis-
turbance ad  accounts for the non-gravitational spacecraft 
torques, namely magnetic and aerodynamic, and for the 
gradiometer bias ab . All other variables and Z -
transforms in (26) have similar meaning and expression as 
in (18). Note that ( ),Δk q ω  does not need to be explicitly 
separated from ad  when gradiometer measurements are 
employed, because of their wide frequency-band as already 
noted in Section 1.1.2. For this reason, ( ),Δk q ω  is repre-
sented with dashed lines in Fig. 3 and Fig. 8. Since ignor-
ing ( ),Δk q ω  either in (25) or in (26) corresponds to per-
turb the Embedded Model with a structured uncertainty, 
closed-loop stability must be proved as it will be done in 
Section 1.1.7. 

1.1.5. Attitude measurements 

The attitude q  is measured as the error between the 
predicted LORF quaternion lOQ  - the reference - and the 
inertial attitude quaternion SQ , the latter being provided by 
a pair of star trackers in cold redundancy.Denoting 
quaternion product and conjugate with ⊗  and ∗ , and the 
attitude measurement vector with qy , wyields 

 
l

( ) ( )
1 ( ) / 2 ( ) ( )

( ) ( ) ,  ( ) ( )

TT
Oq S

q q q q q

i i i

i i i i i i

∗
⎡ ⎤ = ⊗⎣ ⎦

= + = + ∂ ⋅

y

y q e e v P q

Q Q
, (27) 

upon definition of the attitude measurement error qv  as 
follows 

 
( ) ( ) ( )

l

ˆ

ˆ1 / 2

q s O

TT
OO O

i i i
∗

= −

⎡ ⎤ = ⊗⎣ ⎦

v v e

e Q Q
. (28) 

In (27), qe  is the model error and q∂P  the neglected dy-
namics, mainly due to thrusters. In (28), sv  is the instru-
ment noise and bias, while ˆOe  is the LORF prediction er-
ror. In principle, angular drag-free and attitude control may 
be achieved through attitude measurements alone. In prac-
tice, star-tracker noise prevents a wider bandwidth for dis-
turbance estimation, and makes impossible to achieve the 
drag-free requirements of Table 1. That is especially true 
in the mission bandwidth 1F , where gradiometer contribu-
tion is compulsory. On the contrary, gradiometer drift, en-

tering drag-free commands, would force the long-term atti-
tude to become unbounded with respect to the orbital 
frame, in the absence of attitude control. Gradiometer and 
star-tracker data fusion is therefore a key issue in attitude 
control design (Canuto, 2010). 

3.5. Perturbing torques and aerodynamic stability 

A deeper analysis of the perturbing torques, showing the 
degree of aerodynamic stability in the absence of attitude 
control, may be of interest. GOCE aerodynamic torques 
may be approximated 'in the small' (Bak & Wisniewski, 
1996), i.e. for small perturbations around 0=q , as  

( ) ( ) ( ) ( )( )d y y x x z z z x x yp h A a A a q A a A a q− − + −c q k j� ,(29) 

where ( ) ( ) 20.5 Dp h h V Cρ=  is the thermosphere pressure, 
( ) 9 30.1 10  kg/mhρ −≈ ×  is the thermosphere density de-

pending on solar activity and geodetic height h , and 
2DC �  is the drag coefficient mainly established by sur-

face properties. ,  , ,cA c x y z= , denotes the front, lateral 
and top surface areas of the main cylindrical body, while 

0ca >  denotes a pressure centre coordinate in the body 
frame. Aerodynamic stability 'in the small' occurs if 

0y y x xA a A a− >  and 0z z x xA a A a− > . GOCE cylindrical 
shape and mass distribution lead to weak stability 'in the 
small', incapable of balancing the destabilizing gravity 
gradient in (20). Stability is recovered 'in the large' by tail 
fins. Consider the nonlinear version of (29), not reported 
here, and drop cross and first-order trigonometric terms, 
which are negligible because of the spacecraft shape. The 
aerodynamic torque 'in the large' is written as 

( ) ( )( )d t tx y y s sx z zt p h A a s s A a s s− +c j k� , (30) 

where sinc cs q= , and sA  and tA  denote areas of solar 
panels and tail fins, respectively, whereas ,  0sx sxa a− >  
and ,  0tx txa a− >  are the pressure-centre coordinates, cor-
responding to a pressure centre located behind the space-
craft CoM. The pitch component can now balance the 
gravity gradient due to a large pitch angle yq , namely  

 ( ) ( ) ( )2 2sin 2 sin 2
2 2

yx
g gx x gy y

JJ
t q qΩ Ω− +c i j� , (31) 

and prevent excessive increase of the drag cross-section, 
thus allowing a margin of a few days to orbit decline. Fig. 
7 shows the composition of significant aerodynamic and 
gravity gradient torques ‘in the large’ ( / 2cq π≤ ). The 
mere aerodynamic pitch component is shown for compari-
son. As Fig. 7 shows, equality of pitch components in (30) 
and (31) establishes a pair of stable equilibria, left and 
right of the unstable 0yq = , defined by 

 ( )( )11 2 2tan 3y y O d t txq J C V A aω ρ
−−±� . (32) 

By setting / 4yq π≤  and / 2 2.5 mtx xa L≤ � , the tail-
fin area becomes bounded from below as 20.7 mtA ≥ , 
which is very close to actual value. Here we are only inter-
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ested in the zero-pitch unstable equilibrium, to be stabi-
lized by attitude control.  

-2 -1 0 1 2
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 Attitude  [rad]

To
rq
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m
]

 

 

Pitch:  aero and gravity
Pitch: aerodynamic
Yaw: aero and gravity

 

Fig. 7 Aerodynamic and gravity-gradient torques ver-
sus attitude. 

3.6. Actuator dynamics and noise 

The DFAC requirements in Table 1 can only be met by 
employing electric or low-noise gas propulsion. 
1) A pair of ion thrusters (Edwards, Wallace, Tato & van 

Put, 2004), in cold redundancy, counteracts the along-
track drag in a frequency band from DC to mission 
bandwidth. 

2) An ensemble of m  micro-thrusters, either electrical or 
cold-gas, counteracts the cross-axis drag components 
and tracks the reference attitude. Due to criticalities in 
micro-thruster technology, they were abandoned in fa-
vour of magnetic attitude control, implying acceptable 
degradation of angular requirements, but uncontrolled 
lateral motion (Sechi, Andrè, Andreis & Saponara, 
2006). Here reference is made to micro-thrusters as 
they are essential for future drag-free missions 
(Silvestrin, 2005). 

Let us split the thrust command vector  

 T T
t mu⎡ ⎤= ⎣ ⎦u u  (33) 

into the command tu  of the active ion thruster and the 
command vector mu  of the micro-thrusters. By neglecting 
their dynamic response to be part of l∂P  and a∂P  in (18) 
and (26), because of settling times T< , a static thrust-to-
acceleration relation may be written, depending on thruster 
geometry, scale factor and noise: 

 1
1

//
/

x s
s x t t

yz s
m m m

f mm a u w
m BJ

J
−

−

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎛ ⎞⎢ ⎥ ⎡ ⎤ ⎡ ⎤

= = = +⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦ ⎣ ⎦⎢ ⎥

⎣ ⎦

f
fc a u w

c
. (34) 

In (34) the thruster force f  defined in (15) has been split 
into along-track and lateral components xf  and yzf  Pro-
pulsion noise is accounted for by tw  and mw . Matrix B  in 
(34) may be rearranged for future use as follows: 

 
x m

x ml
yz myz

ma
a ma

b B b BB
B B BB

B

Δ Δ
⎡ ⎤

⎡ ⎤⎢ ⎥⎡ ⎤
= = = ⎢ ⎥⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎣ ⎦

b b
b

, (35) 

where lB  and aB  refer to CoM drag-free and attitude con-
trol, as defined in (18) and (26), respectively, and 

( )dim 2 1mB n m= − . The entries of matrix B  in (35) de-
pend on mass, inertia and thruster geometry. Some entries 
are negligible, especially mBΔ  coupling mu  to along-track 
acceleration xa . On the contrary, entries coupling ion 
thrusters to lateral and angular accelerations are not negli-
gible, because of their slanted orientation with respect to 
i .  

Equation (34) must be accompanied by thrust and 
thrust-rate bounds, not reported here. Since thruster noise 
adds to drag and torques, it must be compatible with con-
trol requirements in Table 1. Adequate bounds on the spec-
tral density of the thruster noise have been derived and 
partly demonstrated by actual technology. Among these 
bounds, a stringent requirement concerns micro-thruster 
noise: the relevant spectral density should stay below the 
micro-Newton in the mission bandwidth and above.  

4. Drag-free and attitude control design 

4.1. Guidelines and block-diagram 

Digital control is designed and implemented around the 
Embedded Model in the form of Control Laws, implement-
ing state-to-command feedback, and Noise Estimators, im-
plementing output-to-state feedback. The underlying theo-
ry may be found in Canuto (2007a). Control Laws are es-
sentially model-based in their structure and tuning. Noise 
Estimators are model-based in their structure but plant-
based in their tuning. The block-diagram is shown in Fig. 
8. 

Drag-free and attitude control parallels the Embedded 
Model decomposition. 
1) Coordinate decomposition derives from decoupled 

CoM and attitude dynamics (12) and (25), and requires 
the 2n  entries of the commanded accelerations xa  and 

ma  in (34) to be independently computed. Interaction 
only occurs when dispatching ma  to micro-thruster 
command mu . That amounts to finding a pseudo-
inverse of B , which is obtained by solving the propel-
lant saving problem (7) as explained in Section 5.2. 

2) Hierarchical decomposition is permitted by gradiome-
ter measurements capable of ensuring wideband dis-
turbance cancellation. Residual accelerations due to ac-
celerometer drift are either free-acting on the spacecraft 
centre-of-mass or contrasted by the attitude loop. This 
implies two pairs of Noise Estimators as in Fig. 8: one 
pair, rL  and lL , refers to position dynamics, the other 
pair, qL  and aL , refers to attitude. In both cases, the 
former estimator, having narrower bandwidth, retrieves 
the noise of the residual accelerations, whereas the lat-
ter one, having wider bandwidth, retrieves the noise of 
the rejected disturbance. 
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Fig. 8 Block-diagram of the Embedded Model surrounded by Control Law and Noise Estimators. 

 

4.2. Control Law  

Hierarchical decomposition entails three different sets 
of Control Laws, two of them actuating CoM and angular 
drag-free control, and a third one actuating attitude control. 
Drag-free control follows from (18), (26) and (35), by ex-
pressing residual accelerations as the following com-
mand/disturbance combinations  

 
0

( ) ( ) ( )
lx x lx

t
lyz yz myz lyz

m
a a ma a

a b d
u

z B z z
B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

a b d
u

a b d
, (36) 

and by forcing them to zero according to (6). Note that 
( ),Δk ω q  has been hidden in ad , as anticipated in Section 

1.1.4. Then, by denoting the one-step predicted disturbance 
with the mark ^, CoM and angular drag-free Control Law 
follows: 

 ˆ( ) ( ) /t lx txu z d z b= − , (37) 

 
( )

( )

ˆ 00
( ) ( ) ( )

ˆ0

myz
m

ma

yz lyzyz
t

qa a

B
z

B

z
u z z z

I

⎡ ⎤
=⎢ ⎥

⎣ ⎦
⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎜ ⎟= − − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠

u

b dF
cb d

. (38) 

The dynamic operator yzF  in (38) is a high-pass filter can-
celling lateral low-frequency components, so as to bound 

micro propulsion (Section 5.2). Equation (38) is a set of 
2 1n −  linear equations with m  unknowns, the components 
of ( )m iu , which can be solved through a pseudo-inverse 

1
mB−  which is solution of (7). It should be noted that the 

variables in (37) and in (38) are one-step predictions in 
view of delayed command actuation, which implies that 
disturbance prediction excludes noise components and on-
ly includes state variables, so as to respect the causality 
constraint. 

The task of the attitude command qc  in (38) is to can-
cel, with the help of star tracker data, the gradiometer drift 

ab  from gradiometer prediction ˆ
ad , and therefore to keep 

the attitude bounded.  To this end, the following Control 
Law, which is the composition of attitude and rate tracking 
errors, ˆ−q  and ˆΔ− ω , respectively, and of the drift predic-
tion ˆ

qd , can be shown to be adequate: 

 
( )

( )

2
1 2

2

ˆˆ ˆ( ) ( ) ( ) ( )
ˆˆ ( ) ( )

q q

q

z K z K z T z

z T z z

Δ −

−

= − + − =

= − −

c q ω d

C q d
, (39) 

where 

 
( ) ( )

{ }
1 2 1

diag , , ,  1, 2j jx jy jz

z K K z

K k k k j

= + −

= =

C
. (40) 

In (39), coordinate decomposition simplifies the feedback 
matrices 1K  and 2K  to be diagonal. Moreover, since atti-
tude requirements in Table 1 are coordinate-independent, 
the values of 1K  and 2K  ensue from tuning n  sets 

{ }1 ,1c c cΛ γ γ= − −  of equal closed-loop eigenvalues.  
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4.3. Noise Estimators 

Four noise vectors hw , driving the actual realizations of 
each disturbance class, must be estimated from sensor 
measures. According to hierarchical decomposition, the 
available 5n  sensor measures may be decoupled as fol-
lows. 
1) Drag Noise Estimator: lw  and aw  are estimated from 

the linear and angular gradiometer measurements ly  
and ay . 

2) Drift Noise Estimator: qw  is estimated from attitude 
measurement qy . 

3) Gravity Noise Estimator: rw  is estimated from the 
CoM position and velocity measurements ry  and vy . 
Orbit dynamics in (12), together with the gravity Noise 
Estimator, provides the LORF prediction ˆ

OQ  and plays 
the role of the attitude Reference Generator. 

Consider the drag Noise Estimator and restrict attention 
to a single axis, either linear or angular, keeping the sub-
script h  and dropping c . The estimator is obtained by 
considering the thruster-to-gradiometer model comprising 
the series h h⋅P D , which includes the second-order dis-
turbance dynamics hD  from (13) and the controllable dy-
namics ( ) 1

h z z−=P  from (16). The series is observable 
from hy  and the relevant Z  transform holds: 

 ( ) ( )1 21( ) ( ) 1 1 1h hz z z z z− −− ⎡ ⎤= − −⎣ ⎦P D . (41) 

The Noise Estimator is a static feedback from the model 
error ˆh h mhe y y= −  as in the steady-state Kalman filter, 
since dim 3hc =w  is the same as the order of the series in 
(41). This implies 

 [ ]0 1 2( ) ( ),  T
h h h h h h hz L e z L l l l= =w . (42) 

The gains in hL  ensue from tuning the closed-loop eigen-
value set { }1 ,1 ,1h h h hΛ β γ γ= − − − , where the second pair 
has been set equal for simplicity’s sake.  

In the following, closed-loop and sensitivity Z -
transforms will be employed, namely 

( ) ( ) ( )ˆ /h mh hz y z y z=V  and ( ) ( )1h hz z= −S V . More 
specifically, low- and high-frequency asymptotes are used, 
namely 

 
( ) ( )
( ) ( ) ( )

0 1 0

2 2

lim 1

1 2
h z h

h h h h

z z

z z γ β γ

− →

−
∞

= =

= − +

V V

V
, (43) 

and 

 

( ) ( )

( ) ( ) ( )
( )

1

2
2

0 2 2
0

lim 1

11 2 /
1

2

h z h

h h
h

h h

z z

z
z z

f T
γ β
γ π

∞ − →∞= =

−+
= − =

S S

S
, (44) 

where 0hf  approximates the sensitivity bandwidth. In (43), 
care must be taken concerning 1z − → ∞ ; this implies that 
an asymptote of ( )2j fT

h e πV  exists in the frequency do-
main maxf f< , but progressively folds as maxf f→ .  

Unlike the drag estimator (42), the drift estimator can-
not be a static feedback, since the series  

 ( ) ( ) ( )2 1 22( ) ( ) 1 1 1 1q qz z T z z z− − −⎡ ⎤= − − −⎣ ⎦P D , (45) 

has order 4qn =  greater than dim 3q =w . The simplest 
dynamic feedback can be shown to be first-order and equal 
to 

 

( ) ( )

( ) ( ) 1

0 1 2

( )

1

0 0 ,  

q q q

q q q qq

T T
q q qq q q q

z z e z

z L z L

L l L l l l

β
−

=

= + − +

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

w L

L , (46) 

having denoted the attitude model error with ˆq q mqe y y= −  
(Canuto 2007a). In (46), only qn  nonzero gains in qL  and 

qqL  are necessary, in addition to pole qβ , to freely tune 
the 1qn +  closed-loop eigenvalues of the set 

{ }1 ,...q qΛ γ= − , in which, for simplicity’s sake, all entries 
are equal. Coming to the asymptotes of the closed-loop 
transfer functions, as in (43), the following holds  

 
( ) ( ) ( )
( ) ( ) ( )( )

3 3

24 4
0

20 1 /

4 1 1 2 /

q q c q

q q q c

z z

z z

γ γ γ

γ γ γ

−
∞

−

= −

= − +

V

S
, (47) 

where, because of causality, the Control Law pole cγ  en-
ters equation (47). The same condition does not occur in 
(43) because drag-free laws (37) and (38) are restricted to 
disturbance rejection. 

Finally, because the series r r⋅P D  has order 4rn =  
greater than dim 3r =w , the gravity estimator should be in 
principle a dynamic feedback, as the drift estimator. In-
stead, a static feedback can be designed by exploiting GPS 
range and rate measurements ry  and vy .  

4.4. Robust stability and performance  

1.1.6. Introduction 
Let us restrict considerations to attitude stability and 

performance. Denote the generic attitude with q  and the 
generic acceleration with qa , which according to (25) are 
related by qc qq a= ⋅P . Combining (25) and (26) with (38) 
and (39) leads to  

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )( )
ˆ

ˆ ˆ ˆ

y q c

qc a a q q q

q z e z z

z d z d z d z d z e z

= + ×

× − + − −

S

P
, (48) 

where ˆ ˆqe q q= −  is the attitude prediction error and 
( ) ( )( ) 121c c qcz z T

−−= +S C P  is the Control Law sensitivi-
ty. Now since ˆqe  depends on the disturbances ad  and qd , 
and on the model error qe  defined in (27),  the expression 
converts to 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ
q q q q q a aq z z e z z z d d d z= − + + −V S P , (49) 

where qS  is the attitude sensitivity reported in (47) and 
1q q= −V S  the complementary function. The drag-free re-

sidual ˆ
a ad d−  depends on the drag sensitivity hS  in (44)

,for h a= , through the following relation 
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 ( ) ( ) ( )( )( )ˆ
a a a a qd z d z z d d z− = −S . (50) 

Combining (49) and (50) yields the final expression  

 
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )

q q

q q a q a a

q z z e z

z z z d z z d z

= − +

+ +

V

S P V S
. (51) 

1.1.7. Closed-loop stability versus structured uncertain-
ty 

The closed-loop system comprising the Embedded 
Model, free of modelling errors, Control Laws and Noise 
Estimators can be shown to be internally stable if and only 
if the 2n  predictor eigenvalue sets hcΛ  and the n  Control 
Law sets cΛ  lie inside the unit disk. Since part of the 
model in (26), namely the destabilizing term ( ),Δk ω q , 
has been hidden in the unknown disturbance ad , closed-
loop stability should be proved. Consider the pitch angle 

yq , and separate ad  from ( ) 2,y gy yk qΔ Ω=ω q  in (51), thus 
obtaining  

 
( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

21 q q a gy y q q

q q a q a a

z z z q z z e z

z z z d z z d z

Ω− = − +

+ +

S P S V

S P V S
. (52) 

Then, assuming that the RHS in (52) is bounded and atti-
tude-independent, in other words that is free of neglected 
dynamics, the sufficient stability condition ensues:  

 ( ) ( ) ( )
max

2max 1q q a gyf f jf jf jf Ω≤ <S P S . (53) 

To be rather conservative, assume 1q =S  and, exploiting 
the low-frequency approximation (44), write 

( )2
0/a af f=S . Then, by expressing qP  with the help of 

(25) as ( ) 22q fπ −=P , inequality (53) converts to  

 02 a gy Ofπ Ω ω> � , (54) 

which places a loose lower limit on the drag predictor ei-
genvalues. The above inequality fully justifies dropping 
( ),Δk ω q  from (26), at least when gradiometer measure-

ments are available. 

1.1.8. Plant stability recovery and performance 

When the generic measure ( )h iy  comes from spacecraft 
sensors, assumptions guaranteeing model-based stability 
cease to be valid because of modelling errors h∂P . Their 
effect spills through sensor measurements, making the 
performance variables a , ω�  and q  self-dependent 
through the uncertain dynamics h∂P . By restricting 
considerations to a single axis and approximating 
neglected dynamics to being linear and time-invariant, the 
generic attitude q  can be written, partly omitting z  and 
the subscript c , as  

 
( ) ( )

( ) ( ) ( )( )
1 q q q a a

q q q q a q a a

q z

v z d z d z

+ ⋅∂ + ⋅ ⋅∂ =

= − + ⋅ ⋅ +

V P S V P

V S P V S
. (55) 

Equation (55) descends from (51) by correcting the unit 
factor in the left-hand side (LHS) with a combination of 
the neglected dynamics and by replacing the model error 

qe  with the measurement noise qv , in the RHS. In (55), 
q∂P  accounts for neglected thruster dynamics and a∂P  for 

thruster-to-gradiometer dynamics. The LHS in (55) is re-
sponsible for closed-loop stability. The RHS, only depend-
ent on the driving and measurement noise hw  and hv , is 
responsible for performance.  

Stability, performance assessment and design may start 
from (55) and develop either in the time or in the frequen-
cy domain. The latter domain is pursued here as being 
more suitable to robust stability and DFAC requirements 
shown in Table 1. To this end, several inequalities are de-
rived from (55) and simplified according to their frequency 
region of validity.  
1) The robust stability inequality which descends from the 

RHS of (55) corresponds to small gain theorem 
(Canuto, 2007a). By neglecting q q∞∂V P  in (55) be-
cause of the narrower bandwidth of the attitude state-
predictor, and by assuming the peak of ( )a f∂P  to oc-
cur at f f∂= , above the bandwidth ( ) 12a af Tπ γ−�  of 

aV , the inequality simplifies to  

 ( ) ( ) 1a af f η∞ ∂ ∂∂ ≤ <V P . (56) 

2) Making explicit the high-frequency asymptote 

 ( ) ( ) ( )2 22 2a a a a af f Tπ γ β γ−
∞ ∂ +V �  (57) 

computed in (43), converts (56) into an inequality, in 
which the discrete-time poles aβ  and aγ  related to the 
bandwidth of aV  explicitly enter as follows 

 
( )

( ) ( )

2

2

1 0.5 / 1

2 0.2

a a a a

af T f

η

η

α β γ γ β η

α π −
∂ ∂

+ ≤ <

= ∂ ≤P
. (58) 

3) A drag-free inequality for the mission bandwidth 1F  
can be derived by applying (55) to the acceleration qa  
defined in (25). To this end, (56) is assumed to reach a 
feasible degree of robustness 1η <  and af  to lie above 

1F . Then, replacing each disturbance in (55) with the 
relevant spectral density, and assuming the second-
order spectral density  ( ) 2

0( ) 2d dS f S fTπ −=  of drag 
forces (see Section 1.1.2) to dominate accelerometer 
and star-tracker errors yields 

 ( ) ( ) ( ) ( )0 1 11 1a d af S f Sη σ≤ + +S . (59) 

where 1aS  is the acceleration bound in the mission 
bandwidth 1F  reported in Table 1 and 1 1σ <  residu-
als due neglected spectral densities. 

4) Moreover, by replacing ( )0a fS  in (59) with the low-
frequency asymptote  

 ( ) ( ) ( )2 2
0 2 1 2 /a a a af fTπ γ γ β− +S �  (60) 

as computed in (44), a second inequality, which is ex-
plicit in the closed-loop poles, is obtained  
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 ( ) ( )( )2 2
1 1 11 2 / 1 ,  0.035a a aγ α γ β ϕ η α≥ + + � , (61) 

where ( )1ϕ η  must satisfy ( )1 1ϕ η <  in view of feasi-
bility. 

5) By proceeding thus, other inequalities can be obtained 
which are explicit in the poles of the attitude state-
predictor, namely qγ  in (47), and in the Control-Law 
pole cγ . They are written as  

 
( )( ) ( )( )

( ) ( )( )

24 4
2 2 2

3 3
3 3 3

1 2 / 1 ,  0.0005

/ 1 , ,  0.0015

q q c

q q c a

γ α γ γ ϕ η α

γ α γ γ ϕ η γ α

≥ + +

≤ +

�

�
, (62) 

where the former derives from attitude requirements at 
lower frequencies and the latter from the mission-
bandwidth requirements. The terms  ,  2,3k kϕ =  must 
be sufficiently less than unit as in (61). 
Inequalities (58) to (62) can be solved by treating 1η < , 

1aβ ≤  and /q cγ γ  as tuneable parameters. That leads them 
to provide upper and lower bounds ,minhγ  and ,maxhγ  to 

state-predictor poles ,  ,h h a qγ = . Inequalities become fea-
sible as soon as 

 ( ) ( ),min ,max,... ,...h hγ η γ η≤ . (63) 

Interestingly, feasibility requires two key conditions. 
1) The attitude Control Law must have a wider bandwidth 

than the attitude state-predictor, which corresponds to 
/ 0.05q cγ γ <  in agreement with Canuto (2007a). 

2) The drag-free bandwidth af  must be close to maxf , 
which ensures ( )3 , 1aϕ η γ <  in (62) and supersedes 
(61) with a tighter inequality in agreement with the hi-
erarchical decomposition in Section 4.1. The condition 
in turn requires drag-free Noise Estimator and Control 
Law to be an internal loop of the attitude control. 

The CoM drag-free control is only concerned with ine-
qualities (58) and (61). Table 2 shows designed and simu-
lated eigenvalues for the different laws.  

 

Table 2. Designed and simulated eigenvalues and relevant bandwidths 
Dynamics Law Discrete-time poles hγ BW [Hz] Degree of 

robustness η  Size Design Simulation
Nyquist frequency  5  
CoM, x  Noise Estimator 2 0.24÷0.4 0.3 0.5 < 0.1

1 1 0.7
CoM, ,y z  
each axis 

Noise Estimator 2 0.18÷0.4 0.2 0.3 < 0.1
1 1 0.6

Attitude – 
each axis 

Control Law 2 0.01 0.01 0.016 < 0.1
Drag-free Noise Estimator 2 0.18÷0.4 0.2 0.3 

1 1 0.6
Attitude Noise Estimator 3 (0.4÷0.5)×10-3 0.0005 <0.001 

2 0.001
 
5. Simulated results and discussion 

5.1. Drag-free and attitude control performance 

Fig. 9 shows the spectral densities of the residual CoM 
accelerations under conservative spacecraft/environment 
conditions. They are compared to the target bound defined 
in Table 1. The target bound is met with a margin from the 
mission bandwidth 1F  to maxf . The along-track margin 
appears to accommodate drag doubling to cope with in-
creased solar activity. The low-frequency jump is due to 
gradiometer bias. Only lateral accelerations (out-of-plane 
and radial, dotted in Fig. 9) look slightly across the bound 
at low frequencies, which is the cost to be paid for thrust 
restraining, though acceptable to science. As a matter of 
fact, lateral acceleration of the actual GOCE will be free 
running, owing to micro-propulsion forsaking (Sechi, An-
drè, Andreis & Saponara, 2006). 

10-6 10-4 10-2 10010-4

10-2

100

102

104

Frequency [Hz]

 [ μ
m

/s
2 / √

H
z]

 

 

Target bound
Out-of-plane (y)
Radial (z)
Along-track (x)

 

Fig. 9 Spectral densities of the residual CoM accelera-
tions compared to target bound.  
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Fig. 10 compares attitude, angular rate and acceleration 
to target bounds. The results refer to roll xq . Target 
bounds are respected with a margin, despite the conserva-
tive star-tracker noise and bias, manifesting itself in the flat 
spectral profile in the low-frequency region. 
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Fig. 10 Spectral densities (top to bottom) of attitude 
(roll), rate and angular acceleration compared to 

target bounds.  
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Fig. 11 Attitude angles from fine pointing to science 
mode. 

Fig. 11 shows the time history of roll, pitch and yaw 
during a pair of control modes and compares them to 1 σ  
target bound, centered on zero attitude. Note the [ks] time 
unit has been employed. Attitude is controlled without gra-
diometer measurements up to 80 ks, but from star-tracker 
data alone (the so-called fine-pointing mode). From 80 ks 
onwards, the so-called DFAC or science mode, gradiome-
ter data are employed. The difference is immediate, since 
the fine-pointing attitude appears noisier than the science 
mode, as expected. Note, however, that the overall RMS is 
not very different, as the gradiometer only helps filtering 
star-tracker noise from the mission bandwidth 1F . All atti-
tude angles are clearly biased, as the worst-case star-
tracker misalignment has been simulated. The smaller 
range of the pitch angle yq  is due to a weaker star-tracker 
noise along that axis. Random fluctuations are tuned to the 

orbital frequency (0.2 mHz) because of the narrow band-
width (< 1 mHz) of the attitude state-predictor. During fine 
pointing, gradiometer may be either ON or OFF. Whether 
ON, the significant offset of the angular acceleration may 
be estimated, thus providing the initial state of qd  in (25).  

5.2. Propellant saving and thrust peak restraining 

As mentioned in Section 1, cold gas thrusters require 
propellant saving, electric thrusters require peak restrain-
ing. Although these strategies are alternative, both of them 
have been implemented so as to add their benefits. To this 
end, peak restraining is not implemented as a linear pro-
gramming, but by filtering out the low-frequency compo-
nents of the lateral command forces. Propellant saving is 
more complex, as linear programming must be solved at 
each control step i , in order to provide the optimal basic 
solution, or in other words, the optimal quintuple ( )p i  of 
thrusters to be fired. It is well known linear programming 
provides a solution within a finite number of steps, close to 
2n  in the average, but since only fixed times shorter than 
T  are admitted in control units, invariant algorithms and 
constant iteration size are preferable. The solution, briefly 
mentioned in the Appendix, takes advantage of the duality 
properties of the basic solutions of (7), which in turn is fa-
voured by micro-thruster layout.  
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Fig. 12 Case 1. Time history of lateral accelerations.  

Three cases are treated, from the worse to the better. 
1) No filter is applied to lateral forces and commands are 

allocated to all thrusters (Fig. 12 and Fig. 14).  
2) Linear programming is applied, corresponding to firing 

only five thrusters at a time. 
1) Both the improving strategies, low-frequency filter and 

linear programming, are applied (Fig. 13 and Fig. 14). 
Performance is shown in Fig. 12 to Fig. 14, and in Table 

3. The figures show the time history of the lateral accelera-
tions from fine pointing to science modes, as well as total 
and average thrust. In case 1, lateral accelerations are 
brought to zero during the science mode, from 80 ks on-
wards, at the cost of higher thrust peaks and higher con-
sumption. In case 3, only the lateral components in the 
mission bandwidth are brought to zero (which cannot be 
seen from Fig. 13) with the benefit of reducing thrust peak 
and average to below 40 %. Note in Fig. 13 radial accelera-
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tion increases from fine-pointing to science mode because 
of the slant ion-thruster orientation. Table 3 shows that a 
decisive contribution to average and peak reduction comes 
from avoiding low-frequency drag-free control of lateral 
forces, but that real-time linear programming saves about 
25 % of propellant from case 1 to case 2. 
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Fig. 13 Case 3. Time history of lateral accelerations. 
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Fig. 14 Cases 1 and 3. Total and average micro-
propulsion thrust. 

Table 3. Performance of thrust allocation strategies 
Case Strategy Ion thruster [mN] Micro-thrusters [mN] 

Peak restraint Propellant saving Average Peak Total average Single thruster peak
1 None Constant 9.85 19.1 2.32 1.01 
2 None Linear programming 9.85 19.1 1.77 0.92 
3 Filter Linear programming 9.85 19.1 0.77 0.39 

 

6. Conclusions 

Six-axis spacecraft control with multivariate sensors and 
actuators has been solved and performance demonstrated 
through fine simulation. The control code, written in C 
language, was included in the end-to-end simulator of the 
GOCE prime contractor and was the maquette for final 
code development. Control algorithms have been 
developed around the Embedded Model, discrete-time state 
equations including detailed disturbance dynamics for a 
total of more than fifty state variables. Control laws play 
the role of sensor-to-EM and EM-to-actuator interfaces, to 
be designed either as static or dynamic feedback channels. 
Sensor-to-EM feedback channels - the Noise Estimators - 
are univocally defined by the driving noise, and must be  
be carefully designed as the sole way to update the 
disturbance state in real time. Feedback gains, especially 
those of the Noise Estimators, are computed to guarantee 
performance and, at the same time, robust stability in the 
presence of neglected dynamics. A simplified yet effective 
procedure is reported leading to values that need to be 
refined through simulation and commissioning, but that are 
neatly related to requirements and expected perturbations. 
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Appendix A. Real-time linear programming 

Consider a basis 5,  0,..., 2 1 1kB k M= − = −  of the ma-
trix mB  in (35), corresponding to selecting a quintuple kp  
of thrusters, such that rank 5kB = . The linear-
programming tableau (Luenberger, 1973) can be shown to 
be of the following sort for any k  

 [ ]

1 1 1
0 1 0

,  0 4 4 ,  1 0 00
1 1 1
0 0 1

k k
k k

k k

I C
Cc

− −⎡ ⎤
⎢ ⎥−⎢ ⎥⎡ ⎤
⎢ ⎥= = −⎢ ⎥− ⎢ ⎥⎢ ⎥⎣ ⎦ − −⎢ ⎥
⎢ ⎥−⎣ ⎦

u
rr , (64) 

where 0k ≥r  is the relative cost, ku  is the basic solution, 
kc  is the dual cost and kC  lists the non-basic columns. 

Since only the column order in kC  and kr  may change, 
the dual solution [ ]1 1 1 1 1k =e , which is always the 
same for any k , is dually feasible for any k . Given a pri-
mal non-feasible solution ku , i.e. one having negative 
rows, it is then possible to find a new basis hB  and a new 
quintuple hp , still dually feasible, which increases the dual 
cost k k kc = e u . The key point of the algorithm is that the 
basis-updating mechanism is made a priori and saved. In 
other words, any basic quintuple kp  univocally corre-
sponds to an ordered set { }1 5,...,k k kp p=P  of quintuples, 
each for any column to be replaced. The algorithm starts at 
any step i  from the previous quintuple ( )1kp i −  and basis 

( 1)kB i − , and computes, according to (7) the candidate 
thrust ( ) ( ) 1

0 1 ( )k mi B i i−= −u a . When the latter is 
nonnegative, i.e. primal and feasible, the procedure stops; 
otherwise, the most negative component is detected in 

( )0 iu  and a new quintuple is selected from kP . The pro-
cedure continues for a fixed number of steps, 4ν ≤ , to 
guarantee fixed computing time. In the rare occurrence of 
the last iteration 1( )iν −u  not being feasible, the negative 
components, of the amplitude of thrust noise, may be allo-
cated among all thrusters. 
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