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Abstract— Many control systems have large, infinite state
space that can not be easily abstracted. One method to analyse
and verify these systems is reachability analysis. It is frequently
used for air traffic control and power plants. Because of lack
of complete information about the environment or unpredicted
changes, the stochastic approach is a viable alternative. In this
paper, different ways of introducing rechability under uncer-
tainty are presented. A new concept of stochastic bisimulation is
introduced and its connection with the reachability analysis is
established. The work is mainly motivated by safety critical
situations in air traffic control (like collision detection and
avoidance) and formal tools are based on stochastic analysis.

Keywords: stochastic hybrid systems, bisimulation, reacha-
bility analysis, Markov processes.

I. INTRODUCTION

Safety-critical embedded systems like those arising from
air traffic control have, in general, infinite continuous state
space. Verification of safety properties is crucial, but very
difficult or almost impossible for these systems. In this
paper we propose a probabilistic approach such that safety
properties can be checked with some degree of ‘accuracy’.
When the probability of a critical situation is very small,
this situation could happen in extremely rare cases. When
the previous probability has a significant value (let say over
a prescribed threshold) then the system behaviour could
be considered dangerous. One can get more confidence in
the system reliability when probabilities are calculated to
be small enough. This approach is getting more important
especially when formal verification is not available or is not
made available in reasonable time.

There is no uniform way stochastic aspects are considered
in control engineering. In this paper, we distinguish between
probabilistic approaches and stochastic approaches. In the
probabilistic approach, probabilities are introduced as dis-
crete distributions of
• the possible initial system states;
• the possible transitions from an arbitrary state [21].
These precise functions of probabilities (basically, to re-
alize quantification of non-determinism) make verification
tractable: Markov chain models can be constructed and
model checking is possible.
In the stochastic approach, probabilities measure only
• sets of all paths between two arbitrary states, or
• sets of paths, all starting from the same state and ending
in a specified set of states (stochastic kernels).
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Formal verification in the stochastic case is hard (very
often Markov chains are not available), usually engineering
methods like Monte Carlo simulation [15] being used. But
the increased amount of stochastic models in distributed
systems applications, like computer networks and air traffic
control, put pressure on finding more verification techniques.

In this paper we define a new stochastic bisimulation
concept for a class of Markov processes based on the
notions of capacity and measurable relation. A measurable
relation between two processes is a relation on the product
of their state spaces, which induces two hoemeomorphic
quotient measurable spaces. A capacity is non-additive set-
function used to represent uncertainty. The mathematical
theory of non-additive set-functions got its first contribution
with Gustave Choquet’s “Theory of Capacities” [6] in 1953.
Choquet’s interest was applications to statistical mechanics
and potential theory. Later this theory found applications in
decision theory [8], [23], robust Bayesian inference [14],
artificial intelligence and automated reasoning [9], finance
and asset pricing [10], etc.

Each process can have associated, in a canonical way,
a Choquet capacity (see subsection II-C). A bisimulation
relation between two processes is defined as a measurable
relation that “preserves” the capacity. Further, we have
employed this bisimulation to define bisimulation between
stochastic hybrid systems whose realizations (all possible
executions) are Markov processes as above. Moreover, we
figure out connections between stochastic bisimulation and
stochastic reachability. This approach on bisimulation is
complementary to the one presented in [5] based on category
theory.

Moreover, using the concept integrale with respect to a
capacity (see subsection II.A) we introduce a pseudometric
between processes. The distance between two processes is
measured in terms of probabilities of the set of trajectories
which ever visit the sets that can be “identified” through the
homeomorphism induced by a measurable relation.

The basic ingredients we use are Markov processes and
the associated semigroups and capacities.

The paper is structured as follows. In the next section
we present a short background on capacities and Markov
processes. After, these notions will be employed to define a
new concept of stochastic bisimulation (section III). Then,
in section IV we make the connection between this bisim-
ulation and stochastic reachability. The paper ends with a
quick overview of related work and a final remark on the
dependability of our approach.

II. BACKGROUND
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In this section we present some results about Markov
processes and capacities.

A. Stochastic analysis of Markov processes

We fix (Ω,F) a measurable space. Let Mt, t ∈ [0,∞] be
sub-σ-algebras of F . (Mt) := (Mt)t∈[0,∞] is called a fil-
tration on (Ω,F) if Mt is increasing in t and M∞ = ∨

t∈[0,∞)

Mt, i.e. M∞ is the smallest σ-algebra containing all Mt,
t ∈ [0,∞). A filtration {Mt} is right continuous if Mt =
Mt+ = ∩{Mt′ |t′ > t}. Let X be a topological Hausdorff
space and assume that B is the Borel σ-algebra of X . We
adjoin an extra point ∆ (the cemetery) to X as an isolated
point, X∆ = X ∪ {∆}. Let B(X∆) be the Borel σ-algebra
of X∆.

Let M = (Ω,F , (xt)t≥0, (Px)x∈X∆) be a Markov process
with the state space (X,B), life time ζ(ω) (when the process
M escapes to and is trapped at ∆) and corresponding
filtration (Mt). The elements F0

t , Ft, Px are defined as
follows.
• F0

t is the natural filtration, i.e. F0
t = σ{xt, s ≤ t} for

t ∈ [0,∞]. Then F0
t is the minimum admissible filtration

(i.e., ∀t ∈ [0,∞], (xt)t≥0 is adapted w.r.t. (F0
t )).

• Px : (Ω,F) → [0, 1] is a probability measure (called
Wiener probability) such that Px(xt ∈ E) is B-measurable
in x ∈ X for each t ≥ 0 and E ∈ B.
• If µ ∈ P(X∆), i.e. µ is a probability measure on
(X∆,B(X∆)) then we can define

Pµ(Λ) =
∫

X∆

Px(Λ)µ(dx), Λ ∈ F .

The completion of F0
t , for t ∈ [0,∞], w.r.t. all Pµ, µ ∈

P(X∆), is denoted by Ft.
Given an admissible filtration {Mt}, a [0,∞]-valued

function τ on Ω is called an {Mt}-stopping time if {τ ≤
t} ∈ Mt, ∀t ≥ 0.

For an admissible filtration {Mt}, we say that M is strong
Markov w.r.t. {Mt} if {Mt} is right continuous and for any
{Mt}-stopping time τ

Pµ(xτ+t ∈ E|Mτ ) = Pxτ (xt ∈ E); Pµ − a.s.

µ ∈ P(X∆), E ∈ B, t ≥ 0.
M has the càdlàg property if for each ω ∈ Ω, the sample

path t 
→ xt(ω) is right continuous on [0,∞) and has left
limits on (0,∞) (inside X∆).

Let (Pt) denote the operator semigroup associated to
M which maps Bb(X) (the set of all bounded measurable
functions on X) into itself given by

Ptf(x) = Exf(xt),

where Ex is the expectation w.r.t. Px.

B. Capacities

The information input into different real-world models
may be imprecise for several reasons. For example, for
computer models, imprecision is often a consequence of
measurement processes (e.g. using digital sensors). Prior

information is sometime recorded in the literature as intervals
without any information about probability distributions [8].

The extension of probabilistic analysis to include impre-
cise information is now well established in the theory of
imprecise probabilities [28], robust Bayesian analysis [16]
and fuzzy statistics [27].

The imprecise probabilities are modelled by sets of proba-
bility measures which might generate upper/lower probabil-
ities [8], [11], Choquet capacities [6], [14], etc.

In the following, first, we shortly present the concept of
Choquet capacity and then we give the construction of the
capacity associated to a Borel right Markov process. This
later concept is used in the next section to give a new
definition for stochastic bisimulation.

Intuitively, a capacity is a set function which extend the
concept of measure. The additivity property is not longer
true for a capacity.

For every space X and algebra A of subsets of X a set-
function c : A → [0, 1] is called a normalized capacity if it
satisfies the following:
(i) c(∅) = 0, c(X) = 1,
(ii) ∀A, B ∈ A: A ⊂ B ⇒ c(A) ≤ c(B).

A capacity is called convex (or supermodular) if in addi-
tion to (i)-(ii) it satisfies the additional property
(iii) ∀A, B ∈ A: c(A ∪ B) ≥ c(A) + c(B) − c(A ∩ B).

A special type of convex capacities are the belief functions
presented and discussed by Dempster [8] and Shafer [22]. A
capacity is called a probability if (iii) holds everywhere with
equality, i.e. it is additive. If a capacity satisfies the inverse
inequality in (iii) then it is called submodular or strongly
subadditive.

Since we allow the possibility that c is not additive, we can
not use the integral in the Lebesgue sense to integrate w.r.t.
c. The notion of integral we use is due originally to Choquet
[6] and it was independently rediscovered and extended by
Schmeidler [23]. If f : X → R is bounded A-measurable
function and c is any capacity on X we define the Choquet
integral of f w.r.t. c to be the number

∫
X

f(x)dc(x) =
∫ ∞

0

c({x ∈ X |f(x) ≥ α})dα +

+
∫ 0

−∞
[c({x ∈ X |f(x) ≥ α}) − 1]dα

where the integrals are taken in the sense of Riemann.

C. Markov Process Capacity

Throughout this paper M = (Ω,F ,Ft, xt, Px) will be a
Borel right Markov process on (X,B). This means that (see,
for example, [7] and the references therein):
• Its state space (X,B) is a Lusin state space (i.e. X is a
separable metric space homeomorphic to a Borel subset of
some compact metric space, with Borel σ-algebra B(X) or
shortly B). It will be equipped with a σ-finite measure m.
• M is a strong Markov process and the sample paths t →
xt(ω) are almost surely right continuous.
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• the transition operator semigroup (Pt)t≥0 of M maps Bb

(the lattice of bounded real measurable functions defined on
X) into itself.
In addition, in this paper we suppose that M has the cadlag
property. We assume also that M is transient. This means
that there exists a strictly positive Borel function q such
that Uq is bounded (where Uf =

∫ ∞
0 Ptfdt is the kernel

operator). More, we suppose that supx∈X U1(x) < ∞. For
each x ∈ X , the kernel U will provide a measure Ux defined
by Ux(A) = UIA(x), ∀A ∈ B and for any measurable
positive function f on X we have Uf(x) =

∫
fdUx. More,

we have

Ux(A) = (m ⊗ Px)({(t, ω)|xt(ω) ∈ A}).
Therefore, Ux(A) ‘measures’ two aspect: (i) the length of
time spent by the process in A and (ii) the probability of
the trajectories which start in x and reach A at some times
t ∈ [0,∞).

One can take the sample space Ω for M to be the set of
all paths (0,∞) � t 
→ ω(t) ∈ X∆ such that (i) t 
→ ω(t) is
X-valued and cadlag on (0, ζ(ω)) where ζ(ω) := inf{s >
0|ω(s) = ∆}, (ii) ω(t) = ∆ for all t ≥ ζ(ω), and (iii)
ζ(ω) < ∞. In this way, M is realized as the coordinate
process on Ω: xt(ω) = ω(t), t > 0. We complete the
definition of M by declaring x0(ω) =lim

t↘0
ω(t), t > 0.

Because of transience condition, the measure m is purely
excessive [13]:

lim
t→∞(m < Pt >)(A) = 0, ∀A ∈ B with m(A) < ∞,

where (m < Pt >)(A) =
∫

pt(x, A)m(dx) and pt(x, A) =
Pt(IA)(x) = Px(xt ∈ A).
Consequently there is a unique entrance law (µt)t>0 (a
family of σ-finite measures on (X,B) with µt < Ps >=
µt+s for all t, s > 0) such that m(A) =

∫ ∞
0

µt(A)dt,
∀A ∈ B. See, for example, [13] for more details. Then there
is a σ-finite measure P on (Ω,F0

t ) (see [12]) under which
the coordinate process (xt)t>0 is Markovian with transition
semigroup (Pt)t≥0 and one-dimensional distributions P(xt ∈
A) = µt(A), ∀A ∈ B, t > 0.

The capacity associated to M is defined as follows (see
[12] and the references therein): for all B ∈ B

CapM (B) = P(TB < ∞) = P(TB < ζ), (1)

where TB is the first hitting time of B, i.e. TB = inf{t >
0|xt ∈ B}.
This capacity can be written as a non-additive set function
CapM : (X,B) → [0, 1], which is finer than a measure.
The capacity of a measurable set B can be thought of as a
‘measure’ of all process trajectories that ever visit B over
an infinite horizon time. It can be shown that CapM is
monotone increasing, submodular, and countably subadditive
[12]. The initial definition (see the references therein [12]) of
this notion gives the capacity CapM as an upper envelope
of a non-empty class of probability measures on B. Then
its conjugate Cap∗M [23], defined by Cap∗M (B) = 1 −
CapM (X − B) is a belief function in sense of [22].

III. BISIMULATION

Let (X,B(X)) and (Y,B(Y )) be Lusin spaces1 and let
R ⊂ X × Y be a relation such that Π1(R) = X and
Π2(R) = Y . We define the equivalence relation on X that is
induced by the relation R ⊂ X×Y , as the transitive closure
of {(x, x′)|∃y s.t. (x, y) ∈ R and (x′, y) ∈ R}. Analogously,
the induced (by R) equivalence relation on Y is defined. We
write X/R and Y/R for the sets of equivalence classes of
X and Y induced by R. We denote the equivalence class
of x ∈ X by [x]. We define now the notion of measurable
relation. Let B∗(X) = B(X) ∩ {A ⊂ X | if x ∈ A and

[x] = [x′] then x′ ∈ A} be the collection of all Borel sets in
which any equivalence class of X is either totally contained
or totally not contained. It can be checked that B∗(X) is a
σ-algebra. Let πX : X → X/R be the mapping that maps
each x ∈ X to its equivalence class and let

B(X/R) = {A ⊂ X/R|π−1
X (A) ∈ B∗(X)}.

Then (X/R,B(X/R)), which is a measurable space, is
called the quotient space of X w.r.t. R. The quotient space of
Y w.r.t. R is defined in a similar way. We define a bijective
mapping ψ : X/R → Y/R as ψ([x]) = [y] if (x, y) ∈ R for
some x ∈ [x] and some y ∈ [y]. We say that the relation
R is measurable if X and Y if for all A ∈ B(X/R)
we have ψ(A) ∈ B(Y/R) and vice versa, i.e. ψ is a
homeomorphism. Then the real measurable functions defined
on X/R can be identified with those defined on Y/R through

the homeomorphism ψ. We can write Bb(X/R)
ψ∼= Bb(Y/R).

Moreover, these functions can be thought of as real functions
defined on X or Y measurable w.r.t. B∗(X) or B∗(Y ).

In the following we introduce a new concept of equiva-
lence between two capacities with respect to a measurable
relation defined on the product of their underlying spaces.

Definition 1: Suppose we have the capacities cX and cY

on the Lusin spaces (X,B(X)) and (Y,B(Y )) respectively
and a measurable relation R ⊂ X × Y . The capacities cX

and cY are called equivalent w.r.t. R if they define the same
capacity on the quotient space of X and Y , i.e. if we have
cX(π−1

X (A)) = cY (π−1
Y [ψ(A)]) for all A ∈ B(X/R).

Suppose we have two Borel right Markov processes M
and W with the state spaces X and Y . The equivalence
between capacities will be employed in defining a new
‘equivalence’ between Markov processes, as follows.

Definition 2: A measurable relation R ⊂ X × Y is a
bisimulation between M and W if their associated capacities
CapM and CapW are equivalent w.r.t. R.

It is known that for symmetric processes (equal with their
time reversed processes) defined on the same state space, the
equality of their capacities implies that they are time changes
of one another [12].

We can define now a pseudometric with respect a mea-
surable relation R ⊂ X × Y between the processes M and

1The equivalence relation introduced in this section can be defi ned in a
more general setting of the analytic spaces.
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W as follows:

dR(M, W ) = sup
f∈B∗b(X)

|
∫

fdCapM −
∫

f ◦ ψdCapW |

where B∗b(X) is the set of bounded real B∗(X)-measurable
functions on X .

Remark 1: We can define a distance between two
processes if and only there exists a measurable relation on
the product of their state spaces X × Y . Or, equivalently, if
and only if there exists a third measurable space (Z,B(Z))
and two surjective measurable mappings φ1 : X → Z and
φ2 : Y → Z then

d(M, W ) = sup
f∈Bb(Z)

|
∫

f ◦ φ1dCapM −
∫

f ◦ φ2dCapW |

where Bb(Z) is the set of bounded real Bb(Z)-measurable
functions on Z .

Proposition 1: A measurable relation R ⊂ X × Y is a
bisimulation between M and W if and only if

dR(M, W ) = 0
In the classical theory of stochastic processes, one process

is a modification of another iff their transition probabilities
differ on set of times of measure zero.

Proposition 2: A Borel right Markov process is bisimilar
with any of its modifications.

We can refine further this result by considering another
way to define equivalence between stochastic processes. Two
Markov processes are equivalent if they possess a common
exceptional set (a set with zero capacity) outside which their
transition functions coincide.

Proposition 3: Two equivalent Markov processes are
bisimilar.

The way to define bisimulation between two Markov
processes is, in fact, a new approach to define coarser
versions of the concept of equivalence between stochastic
processes. In this approach, two processes are bisimilar
(weak equivalent) if one can define an equivalence relation
on the product of their state spaces such that the quotient
processes have associated equal capacities (i.e. this weak
equivalence preserves the probability to ‘reach’ certain state
spaces over infinite horizon time).

EXAMPLE
We consider now a simplified situation in air traffic con-

trol. A stochastic model of commercial flights from London’s
airports Stansted and Gatwick to Paris is constructed. This
model varies periodically, as there are constant changes in
weather influence (strong winds, storms, dark clouds, etc)
and local traffic (for example, domestic flights from Ashford
Airport or traffic between Europe and the States). This
influences are captured in the definition of various concepts
that characterise a Markov process. Often, in such models the
set of trajectories starting from Stansted and passing through
Kent county (the area marked II on the map from Fig. 1) has
the same probability with the set of trajectories starting from
Gatwick and passing through Sussex county (the area marked

Fig. 1.

I on the map from Fig. 1). This is because the weather in
the two counties is very similar and the local traffic presents
the same characteristics.

The Markov process illustrated in Fig. 1 is bisimilar
with the one illustrated in Fig. 2. The bisimilarity should
not be considered as a refinement game of partitions of a
geographical area. The Air Traffic Control system state space
is actually given by the Borel sets of the Euclidean space.
This is because, in the air traffic controller representation
of a plane position, not the actual, precise (like latitude and
longitude) position is consider, but a larger area, that can
be measured by a probability. In other words, it does not
really matter if the plane is actually 30 meters away from the
controller’s representation. In this example, the two counties
are bisimilar from the perspective of weather conditions and
the local traffic on some routes.

IV. STOCHASTIC REACHABILITY AND BISIMULATION

One of the most important goals of our work [3], [4],
[20] was to develop formal mathematical models for the
safety critical air traffic management situations. A central
problem in air traffic control is determining the conflict
probability, i.e. the probability that two aircraft come closer
than a minimum allowed distance. If this probability can be
computed, an alert can be issued when it exceeds a certain
threshold.

In the context of stochastic hybrid systems, the compu-
tation of the conflict probability reduces to a reachability

4715



Fig. 2.

problem: computing the probability that the stochastic hybrid
process modelling the aircraft motion reaches an unsafe part
of the state space (where two aircraft come closer than the
minimum allowed distance).

In a probabilistic framework, the reachability problem
consists of determining the probability that the system tra-
jectories enter some prespecified set starting from a certain
set of initial conditions with a given probability distribution.

Stochastic hybrid systems are ‘traditional’ hybrid systems
with some stochastic features. These systems typically con-
tain variables or signals that take values from a continuous
set and also variables that take values from a discrete
(finite or countable) set. Differential equations or stochastic
differential equations generally give the continuous dynamics
of such systems. A Markov chain generally governs the
discrete-variable dynamics of stochastic hybrid systems. The
stochastic features might be present in the continuous dynam-
ics or in the discrete dynamics, or in both. The continuous
and discrete dynamics coexist and interact with each other
and because of this it is important to use models that
accurately describe the dynamic behaviour of such hybrid
systems. The realizations of the different models of stochastic
hybrid systems (see [20] for an overview) can be thought
of as particular classes of strong Markov processes with
the continuous evolution disturbed by forced or spontneous
transitions.

Let us consider M = (Ω,F ,Ft, xt, Px) a Borel right
Markov process, as the realization of a stochastic hybrid
system H . To address the reachability problem assume that

we have a given set E ∈ B(X) and a horizon time T > 0.
Let us to define:

ReachT (E) = {ω ∈ Ω | ∃t ∈ [0, T ] : xt(ω) ∈ E}
Reach∞(E) = {ω ∈ Ω | ∃t ≥ 0 : xt(ω) ∈ E}. (2)

These two sets are the sets of trajectories of M , which reach
the set E (the flow that enters E) in the interval of time [0, T ]
or [0,∞). The reachability problem consists of determing the
probability of such sets. That means we have to determine
P(TE < T∞) or P(TE < ∞). In this way, the reachability
problem is related with the computation of the capacities
associated to the processes MT and M , where MT is the
process M “killed” after the time T (see [7] for the details
about the killed process).
On the other hand, we want to characterise the sets

Reachinit
T (E) =

= {x ∈ X |∃ω ∈ Ω, ∃t ∈ [0, T ] : φ(t, ω, x) ∈ E}
Reachinit

∞ (E) =
= {x ∈ X |∃ω ∈ Ω, ∃t ∈ [0,∞) : φ(t, ω, x) ∈ E}

where φ(t, ω, x) is a trajectory of M starting with x ∈ X .
These are sets of initial points, which give trajectories of M
with nonempty intersection with E.

Lemma 4: For any T > 0 and E ∈ B, we have

Reachinit
T (E) = {x ∈ X | sup

t∈[0,T ]

PtIE(x) > 0}.
Proposition 5: If M has the càdlàg property and G is an

open set of X then

Reachinit
∞ (G) = {x ∈ X |Ux(G) > 0}.

Remark 2: The measure Ux does not have enough ability
for our purposes: a trajectory ω that reaches the set E is
accounted for every ‘visit’ in E. This weakness is eliminated
when considering the measure P(TE < ∞).

Suppose we have given two stochastic hybrid systems H
and H ′ with the realizations M and W (with the state spaces
X and Y ). Two stochastic hybrid systems are bisimilar iff
their realizations are bisimilar. Formally, this bisimulation
can be defined as follows.

Definition 3: H and H ′ are bisimular if there exists a
measurable relation R ⊂ X×Y such that R is a bisimulation
between M and W .

Proposition 6: R ⊂ X × Y is a bisimulation relation
between H and H ′ with the realizations M and W (whose
state spaces are X and Y ) iff the probabilities of reachable
events (2) associated to “saturated” (w.r.t. R) Borel sets are
equal, i.e.

PM (TE < ∞) = PW (Tψ(E) < ∞), ∀E ∈ B∗(X). (3)
Proof. Since H and H ′ are bisimilar w.r.t. R ⊂ X ×Y then
the processes M and W are bisimilar, i.e. their capacities
are equivalent: CapM (π−1

X (A)) = CapW (π−1
Y [ψ(A)]) (for

all A ∈ B(X/R)), where ψ is the homeomorphism induced
by the measurable relation R. If E ∈ B∗(X) (saturated w.r.t.
R), then it can be seen as an element of B(X/R) and we
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have E = π−1
X (E); ψ(E) = π−1

Y [ψ(E). This implies the
following equality

CapM (E) = CapW ([ψ(E)]). (4)

From (4) and the formula of a Markov process capacity
(1) we get the equality (3) of the reach set probabilities
corresponding to the saturated target set E.�

The Prop.6 shows that our definition of bisimulation
between stochastic hybrid systems is natural since the proba-
bilities of the reachable events are preserved. Then naturally,
the reachability analysis of a stochastic hybrid system can
be performed using much simpler stochastic hybrid systems
bisimilar with the given one.

V. FINAL REMARKS

Bisimulation of hybrid systems is a recent research subject
actively investigated. The pioneering work of Tabuada, Pap-
pas e.a. (see references from [25]) was used to investigate
model checking of control and hybrid systems [26]. For
stochastic hybrid systems, Van der Schaft and coworkers
[24] investigated bisimulation for the first time. The later
approach is based on weight function and piecewise deter-
ministic Markov processes. Reachability analysis is a tradi-
tional problem for timed systems. It has been investigated for
hybrid systems since the time of their birth. The stochastic
case has been investigated very recently [18], [1], [3], [4].
Bisimulations were applied to reachability analysis, in the
context of hybrid systems, for the first time in [17]. An
inductive continuation of this trend is to use bisimulations
to reachability analysis for stochastic hybrid systems. This
is the subject of this paper.

The approach we have presented is dependable, in the
sense that the probabilities can be recalculated as the sys-
tem evolves, offering assistance for decision making in a
dynamic, configurable change prone environment. Moreover,
we could consider a probabilistic version of model checking,
meaning that one could get a system abstraction (hopefully
simpler or even finite state) that preserves the probabilities.
This technique requires a suitable concept of bisimulation.
In this paper we have presented a stochastic bisimulation
concept and proved that two bisimilar processes have the
same probabilities of reach a safety critical (hazardous)
situation - called reach set probabilities. The bisimulation
concept is very robust because it is not based on the
equality of transition probabilities. In practice probabilities
are approximated by various statistical methods and therefore
equality of transition probabilities is difficult to be checked.
In this context, the preservation of reach set probabilities is
major breakthrough result towards applying model checking
to reachability analyisis. Then, a model-checking algorithm
might be further developed in a future work. In this paper we
focus only on the theoretical foundations that make possible
the probabilistic model checking.
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