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Abstract— In this paper, a robust nonlinear controller for
a nonlinear system subject to model uncertainties is proposed.
This controller consists in the association of a “robust feedback
linearization” with a robust linear H∞ controller. The robust
feedback linearization yields a linear system equal to the
linear approximation of the original nonlinear system around a
nominal operating point. The robustness of the resulting overall
nonlinear controller is proved by theoretical arguments and
illustrated through an application example. The advantage of
the robust feedback linearization with respect to the classical
one is emphasized.

I. INTRODUCTION

Feedback linearizing laws are applied to nonlinear systems
to obtain a system that can be regulated using a linear con-
troller. This is the main advantage of the feedback lineariza-
tion, because for linear systems the choice of techniques is
wider and the design is easier.

However, the classical feedback linearization [1] has the
disadvantage of simplifying the nonlinearities of the system,
which might result in a closed-loop that is not robust in the
presence of uncertainties. This simplification also causes the
loss of the physical meaning for the linearized system, which
is in the Brunovsky form.

A new form of feedback linearization, called robust feed-
back linearization, was proposed in [2]. This method gives a
linearizing control law that transforms the nonlinear system
in its linear approximation around a nominal operating point.
Thus, it causes only a small transformation in the natural
behavior of the original system, which is desired in order to
obtain robustness.

In this paper, the robustness properties of the robust feed-
back linearization when associated with a Glover-McFarlane
H∞ controller [3] are demonstrated by theory and illustrated
through an application example. Furthermore, by the defin-
ition of a nonlinear robustness gain, it became possible to
measure how robust the resulting closed-loop system is, thus
giving mathematical substantiation to what was, until now,
an intuitive result.

This work was cofinanced by the program CAPES/COFECUB, contract
489/05.

The paper is organized as follows. In Section II, both
the classical and the robust feedback linearizing methods
are recalled. In Section III, the dual case (normalized right
coprime factorization) of the Glover-McFarlane method for
the design of an H∞ controller is presented. The robust-
ness properties of the association of the robust feedback
linearization with a Glover-McFarlane H∞ controller are
demonstrated in Section IV. Finally, the theory is illustrated
by the application of the two feedback linearizing methods
to a magnetic bearing system, in Section V, where the design
of both controllers is presented and results of simulations are
given.

II. FEEDBACK LINEARIZATION

Consider the nonlinear system with n states and m inputs
described by the state-space equation

ẋ = f(x) + g(x)u = f(x) +
m∑

i=1

gi(x)ui (1)

where x ∈ R
n denotes the state, u ∈ R

m is the control input
and f(x), g1(x), · · · , gm(x) are smooth vector fields defined
on an open subset of R

n. Suppose that this system satisfies
the well-known conditions for feedback linearization [1]. A
vector λ(x) =

[
λ1(x) · · · λm(x)

]T
, formed by functions

λi(x) with relative degree ri (such that r1 + · · ·+ rm = n),
is chosen as the output of the system (1), that is,

y(x) = λ(x) (2)

Thus, the system composed by (1) and (2) is square.
The objective here is to linearize this system by feedback

in a neighborhood of an operating point x0 chosen, with no
loss of generality, as x0 = 0. Two different forms of feedback
linearization are presented next. It is assumed that the state
is available for control purposes.

A. Classical Feedback Linearization

The classical feedback linearization [1] is accomplished
by using a linearizing control law of the form

uc(x, w) = αc(x) + βc(x)w (3)
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where w is a linear control, and the change of coordinates
(diffeomorphism)

xc = φc(x) (4)

The linearized system is

ẋc = Acxc + Bcw (5)

where Ac and Bc are the matrices in the Brunovsky canonical
form [1]. The expressions for αc(x), βc(x) and φc(x) are
recalled in Appendix I-A.

B. Robust Feedback Linearization

The main difference between the robust feedback lin-
earization [2] and the classical one is that the linearized
system has the form

ẋr = Arxr + Brv (6)

with

Ar =
∂f(x)

∂x

∣∣∣∣
x=0

and Br = g(0)

which corresponds to the linear approximation of the non-
linear system (1).

The robust feedback linearization is accomplished by
using a linearizing control law of the form

u(x, v) = α(x) + β(x)v (7)

where v is a linear control, and the change of coordinates
(diffeomorphism)

xr = φ(x) (8)

The expressions for α(x), β(x) and φ(x) are recalled
in Appendix I-B. More details on how the robust feedback
linearization is derived are given in [2].

III. H∞ ROBUST STABILIZATION

In this section, it is presented the method used to calculate
the linear controllers for linearized systems (5) and (6). These
are the controllers applied, together with the corresponding
feedback linearization, to the nonlinear system (1).

The Glover-McFarlane method [3] deals with the H∞
robust stabilization problem of perturbed linear plants, given
by a normalized left coprime factorization. The case of
a normalized right coprime factorization (needed for the
nonlinear analysis in Section IV) is considered below.

Lemma 1: Consider a strictly proper1 linear system, con-
trollable and observable, with transfer matrix G(s), which
has a normalized right coprime factorization given by
G(s) = NR(s)M−1

R (s) and a family of perturbed plants,
also controllable and observable, with transfer matrices

GP(s) = (NR(s) + ∆NR(s))(MR(s) + ∆MR(s))−1

where ∆MR(s) and ∆NR(s) are stable unknown transfer
matrices which represent the uncertainty in the system. A
controller K that guarantees∥∥M−1

R (s)(I − K(s)G(s))−1
[
K(s) I

]∥∥
∞ ≤ γ

1Only the strictly proper case is of interest in this paper, since it deals
with systems whose output depends directly only on the state of the system,
not on its input.

for a given γ > γmin, that is, a controller K that guarantees
that the closed-loop system is stable for uncertainties such
that ∥∥∥∥

[
∆NR(s)
∆MR(s)

]∥∥∥∥
∞

<
1
γ

is given by

K =
[

A − ZCTC + γ2BBTXL−1 ZCT

γ2BTXL−1 0

]
(9)

with L = (1 − γ2)I + ZX , where (A,B,C) is a minimal
state-space realization of G(s) and Z and X are the unique
positive definite solutions to the algebraic Riccati equations

AZ + ZAT − ZCTCZ + BBT = 0

ATX + XA − XBBTX + CTC = 0

Proof: The proof is obtained by “dualizing” the one
given in [3] for the case of a left coprime factorization.

Remark: As shown in [4, Corollary 18.8], K is also an
H∞ controller for the normalized left coprime factorization
of G(s), but its above state space representation (9) is dual
to the one usually obtained in the latter case.

IV. ROBUSTNESS PROPERTIES

In this section, it is proved that the robustness properties of
the controller obtained by the method of Glover-McFarlane
for the linearized system are kept when this controller is
applied, together with the robust feedback linearization, to
the nonlinear system.

This demonstration uses the concept of local W-stability
[5], [6], which allows the analysis of the local input-output
stability of a nonlinear system by the means of a local version
of the Small Gain Theorem. The local W-gain of a nonlinear
system H is denoted by γWl(H). One of the main properties
of this gain is the following one:

Property 1: Let H be a nonlinear system with state x,
equilibrium x0 = 0, and linear approximation Hl around
x0 = 0. Assuming that Hl is detectable and stabilizable and
has a transfer matrix H , then the local W-gain of H around
x0 = 0 is such that γWl(H) = ‖H‖∞.

Consider the nonlinear system P described by the state-
space representation ẋ = f(x)+g(x)u, y = x. Suppose that
this system has a normalized right coprime factorization [7]
and that it is subject to uncertainties ∆NR

and ∆MR
as

shown in Fig. 1.

M−1
R NR

∆MR
∆NR

δu δx

RFL

K

P

φ

w

+
++

−

Fig. 1. Closed-loop system.
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The perturbed nonlinear system has a normalized right
coprime factorization given by [7]

NR : ẋ = f̃(x) + g(x)w
y = x + δx

M−1
R : ẋ = f(x) + g(x)(u − δu)

w = (u − δu) − h̃(x)

with

f̃ = f − ggT

(
∂V

∂x

)T

and h̃ = −gT

(
∂V

∂x

)T

where V (x) is a smooth proper positive definite solution of
the Hamilton-Jacobi-Bellman equation

2
∂V (x)

∂x
f(x)− ∂V (x)

∂x
g(x) (g(x))T

(
∂V (x)

∂x

)T

+xTx = 0

The nonlinear system P has a linear approximation
with transfer matrix G and with state-space representation
(A,B,C,D) where

A =
∂f(x)

∂x

∣∣∣∣
x=0

, B = g(0) , C = I and D = 0

Theorem 1: The linear controller K given by (9), com-
bined with the robust feedback linearization and applied to
the nonlinear system P (as shown in Fig. 1), ensures that
the closed-loop is locally W-stable for nonlinear uncertainties
∆NR

and ∆MR
such that

γWl

([
∆NR

∆MR

])
<

1
γ

Proof: As seen in section III, by using the Glover-
McFarlane method, it is possible to obtain, for the linearized
system G, a controller K that guarantees∥∥M−1

R (s)(I − K(s)G(s))−1
[
K(s) I

]∥∥
∞ ≤ γ (10)

where M−1
R (s) = I+BTX(sI−A)−1B and X is the unique

positive definite solution of

ATX + XA − XBBTX + I = 0 (11)

For this controller K, the nonlinear system T with output
w and inputs δx and δu is given by

T : ẋ = f(x) + g(x)(u − δu)

w = (u − δu) − h̃(x)
u = α(x + δx) + β(x + δx)v
v = Kφ(x + δx)

This system, linearized around the origin, (x = u = δx =
δu = 0), using the results in (22), gives

T : ẋ = Ax + B(u − δu)

w = (u − δu) − BTX̃x

u = v

v = K(x + δx)

where X̃ is the positive definite solution of the Hamilton-
Jacobi-Bellman equation for the linearized system

xT(ATX̃ + X̃A − X̃BBTX̃ + I)x = 0

which is equivalent to the Riccati equation (11). By unique-
ness of this solution, X̃ = X .

After some algebraic manipulation, and the use of the
Laplace transform, the transfer matrix of the linearized
system is obtained as

T (s) = M−1
R (s)(I − K(s)G(s))−1

[
K(s) I

]
From (10), it is known that ‖T (s)‖∞ ≤ γ. Therefore, by

Property 1,
γWl (T) = ‖T (s)‖∞ ≤ γ

Considering the closed-loop standard form in Fig. 2, the
local version of the Small Gain Theorem [5], [6] implies that
this closed-loop is locally-W-stable if

γWl

([
∆NR

∆MR

])
γWl (T) < 1

that is, the closed-loop system is locally-W-stable for uncer-
tainties ∆NR

and ∆MR
such that

γWl

([
∆NR

∆MR

])
<

1
γ

[
∆NR

∆MR

]

T
+

+

+

−

Fig. 2. Standard form for closed-loop system.

The statement of the above theorem is not valid with the
classical feedback linearization. Thus, there is no guarantee
that the robustness obtained by a controller K for the lin-
earized system in the Brunovsky form is kept when the same
controller is applied, together with the classical feedback
linearization, to the nonlinear system. This is illustrated
through the application example in the next section.

V. APPLICATION TO A MAGNETIC BEARING

Consider the magnetic bearing system [8] depicted in Fig.
3, which is composed by a planar rotor disk and two sets of
stator electromagnets, the first acting on the y-direction and
the second on the x-direction. This system may be decoupled
into two subsystems, one for each direction, with similar
equations. Here only the subsystem in the y-direction is
given.

The rotor is positioned by the magnetic forces F1 and F2

generated by the stator electromagnetic circuits. These forces
are produced by the currents i1 and i2 in each stator coil and
these currents depend on the voltages e1 and e2 applied to
each stator. The inputs to the magnetic bearing system are
the voltages e1 and e2. The measurable signals are the rotor
position y, the rotor velocity ẏ and the currents i1 and i2.
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Fig. 3. Top view of a planar rotor disk magnetic bearing system [8].

A. System Model

Along the y-direction, the system is denoted by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2y
dt2 = L0

m

((
i1

k−2y

)2

−
(

i2
k+2y

)2
)

di1
dt =

(
k−2y

L0

)
(e1 − R1i1) − 2

(
i1

k−2y

)
dy
dt

di2
dt =

(
k+2y

L0

)
(e2 − R2i2) + 2

(
i2

k+2y

)
dy
dt

with k = 2g0 + a, where g0 is the air gap when the rotor
is in the position y = 0, a is a positive constant introduced
to model the fact that the permeability of electromagnets is
finite, L0 is a positive constant depending on the system
construction, m represents the mass of the rotor and R1 and
R2 are the resistances in the first set of stator electromagnets.

Choosing the state variables x1 = y, x2 = ẏ, x3 = i1−I0

and x4 = i2 − I0 and the control inputs u1 = e1 −R1I0 and
u2 = e2 − R2I0, where I0 is a pre-magnetization current,
the system may be written in the state-space form

ẋ = f(x) + g(x)u (12)

with

f(x) =

⎡
⎢⎢⎢⎢⎣

x2

L0
m

(
(x3+I0)

2

(k−2x1)2
− (x4+I0)

2

(k+2x1)2

)
−R1(k−2x1)x3

L0
− 2x2(x3+I0)

k−2x1

−R2(k+2x1)x4
L0

+ 2x2(x4+I0)
k+2x1

⎤
⎥⎥⎥⎥⎦

g(x) =

⎡
⎢⎢⎣

0 0
0 0

k−2x1
L0

0
0 k+2x1

L0

⎤
⎥⎥⎦

whose only equilibrium point is x0 = 0.
The nominal values of the system parameters are m =

2 kg, g0 = 1e−3 m, a = 1.25e−5 m, L0 = 3e−4 Hm,
R1 = 1 Ω, R2 = 1 Ω and I0 = 6e−2 A.

B. Controller Design

Since the well-known conditions for the feedback lin-
earization [1] are satisfied, the nonlinear system (12) may be
linearized by feedback around its equilibrium point x0 = 0.
The output (2) is chosen as λ(x) =

[
x1 x3

]T
. Two different

controllers are designed: one that associates the classical
feedback linearization with a linear H∞ controller, and one
that associates the robust feedback linearization with a linear
H∞ controller.

The linear H∞ controllers are obtained using the Glover-
McFarlane method with loop-shaping [9], which consists in
applying the method to an augmented system Ga = WG,
where W is the weighting matrix that “shapes” the frequency
response of G to provide a better performance.

1) Classical Feedback Linearization + H∞: The classical
linearization of the nonlinear model (12) is obtained by using
the linearizing feedback control law (3) and the change of
coordinates (4) with

αc(x) =

[
R1x3 + 2L0x2(x3+I0)

(k−2x1)2

R2x4 + 2x2L0(k+2x1)(x3+I0)
2

(k−2x1)3(x4+I0)

]
(13)

βc(x) =

[
0 L0

k−2x1−m(k+2x1)
2(x4+I0)

L0(k+2x1)(x3+I0)
(k−2x1)2(x4+I0)

]
(14)

φc(x) =

⎡
⎢⎢⎢⎣

x1

x2

L0
m

(
(x3+I0)

2

(k−2x1)2
− (x4+I0)

2

(k+2x1)2

)
x3

⎤
⎥⎥⎥⎦ (15)

The linearized system is then

ẋc =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
Ac

xc +

⎡
⎢⎢⎣

0 0
0 0
1 0
0 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
Bc

w

For this system, the linear control law is w = Kcxc. In
order to calculate the linear controller Kc, the first step is
to determine the transfer matrix Gc(s), given by Gc(s) =
(sI − Ac)−1Bc. Then, it is possible to perform the loop-
shaping, in the form Gac = WcGc, where Wc is chosen as

Wc =

⎡
⎢⎢⎣

10000(s+1)(s+0.5)
s(s+10) 0 0 50(s+1.2)

s(s+10)

0 125 0 2
0 0 125 2
0 0 2 12

⎤
⎥⎥⎦

In Fig. 4, the singular value plots of Gc and WcGc are
shown. The weighting matrix Wc adds an integrator to the
first line of transfer matrix Gac, which is related to the rotor
position x1, to avoid steady-state errors, and zeros and poles
to better shape the position response. To the other lines
of transfer matrix Gac, related to the velocity x2 and the
currents x3 and x4, only gains are added. Wc is not diagonal
to avoid obtaining a decoupled controller that would result
in a poor performance.

The next step is to calculate the controller Kac for the
augmented system Gac using (9). For this a γc = 2.3 is
used, which gives a robustness index of 43%. The controller
Kc is given by Kc = KacWc. The singular value plot of
KcGc is also shown in Fig. 4.
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Fig. 4. Singular value plots of Gc, WcGc and KcGc.

2) Robust Feedback Linearization + H∞: The matrices
L, T and R for nonlinear system (12) are

L =
[
0 0 − 2I0R1

mk
2I0R2

mk

0 − 2I0
k −kR1

L0
0

]
(16)

T =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

8L0I2
0

mk3 0 2L0I0
mk2 − 2L0I0

mk2

0 0 1 0

⎤
⎥⎥⎦ (17)

R =
[

0 L0
k

−mk
2I0

L0
k

]
(18)

The results (13), (14), (15), (16), (17) and (18) substituted
in expressions (19), (20) and (21) allow to determine, re-
spectively, α(x), β(x) and φ(x). The robust linearization of
the nonlinear model (12) is obtained by using the linearizing
feedback control law (7) and the change of coordinates (8).
The linearized system is then

ẋr =

⎡
⎢⎢⎢⎣

0 1 0 0
8L0I2

0
mk3 0 2L0I0

mk2 − 2L0I0
mk2

0 − 2I0
k −kR1

L0
0

0 2I0
k 0 −kR2

L0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Ar

xr +

⎡
⎢⎢⎣

0 0
0 0
k

L0
0

0 k
L0

⎤
⎥⎥⎦

︸ ︷︷ ︸
Br

v

with a linear control law v = Krxr.
The transfer matrix for this system is Gr(s) = (sI −

Ar)−1Br. The loop-shaping Gar = WrGr is done with the
weighting matrix Wr chosen as

Wr = diag
(

1000
s(s + 10)

, 100, 20, 20
)

The singular value plots of Gr and WrGr are shown in Fig.
5. As in the classical case, the weighting matrix Wr adds an
integrator to the first line of Gar, to avoid steady-state errors
in the position, and gains to the other lines of Gar related
to the velocity and the currents. A γr = 4.34 is used to
calculate the controller Kar for the augmented system Gar.
This gives a robustness index of 23%. The controller Kr is
given by Kr = KarWr, where Kar is obtained from (9). The
singular value plot of KrGr is also shown in Fig. 5.
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Fig. 5. Singular value plots of Gr, WrGr and KrGr.

C. Controllers Analysis

For this analysis, the closed-loop formed when the con-
troller Kc is applied to the linearized system Gc (respec-
tively, to the nonlinear system together with the classical
linearizing control) is called Fc (respectively, Fc). In the
same form, the closed-loop formed when the controller Kr

is applied to the linearized system Gr (respectively, to the
nonlinear system together with the robust linearizing control)
is called Fr (respectively, Fr).

A similar loop-shaping is used in the design of the
two linear controllers, in order to provide a close nominal
performance for systems Fc and Fr, as shown in Fig. 6.
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Fig. 6. Comparison of nominal performance.

The robustness guaranteed by the Glover-McFarlane
method is of 23% for Fr and of 43% for Fc. Therefore, the
robustness of the closed-loop system Fc is better than that
of Fr. However, the only important point is to compare the
robustness of Fc and that of Fr. This comparison is made
in the next subsection.

D. Simulation with Parameter Variations

The simulations are carried out with Simulink/Matlab,
using the variable-step algorithm ode45 (Dormand-Prince)
with a max step size of 1 ms. For these simulations, it is
supposed that the parameters m, k, L0, R1 and R2 may
present variations of ±10%, which results in 32 different
combinations of their extreme values. All these combinations
are tested. The results for the classical linearization are given
in Fig. 7 and the results for the robust linearization are given
in Fig. 8.

These results show that with all the considered para-
meter variations the robustly linearized system Fr behaves
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Fig. 7. Position y and voltages e1 and e2 for the classical linearization.

as desired, with performance close to the nominal one.
Meanwhile, the classically linearized system Fc is unstable
for some combinations of parameters and presents a poor
performance for the other ones.

VI. CONCLUDING REMARKS

As shown by the theory in Section IV and illustrated by
the simulations in Section V-D, the use of the robust feed-
back linearization combined with a Glover-McFarlane H∞
controller yields a robust controller for nonlinear systems.
This is not true when the classical feedback linearization is
used. In addition, the choice of the weighting matrix of the
loop-shaping is much easier and intuitive when using the
robust linearization (see Section V-B).

In the near future, this method will be applied to other
control systems and experiments are planned.

APPENDIX I
EXPRESSIONS FOR THE FEEDBACK LINEARIZATION

A. Classical Feedback Linearization

The expressions used in this linearization are:

αc(x) = −M−1(x)

⎡
⎢⎣

Lr1
f λ1(x)

...
Lrm

f λm(x)

⎤
⎥⎦ , βc(x) = M−1(x)

M(x) =

⎡
⎢⎣

Lg1L
r1−1
f λ1(x) · · · Lgm

Lr1−1
f λ1(x)

...
. . .

...
Lg1L

rm−1
f λm(x) · · · Lgm

Lrm−1
f λm(x)

⎤
⎥⎦

φc(x) =
[
φc1(x) · · · φcm

(x)
]T

φci
(x) =

[
λi(x) Lfλi(x) · · · Lri−1

f λi(x)
]T
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Fig. 8. Position y and voltages e1 and e2 for the robust linearization.

B. Robust Feedback Linearization

The expressions used in this linearization are:

α(x) = αc(x) + βc(x)LT−1φc(x) (19)

β(x) = βc(x)R−1 (20)

φ(x) = T−1φc(x) (21)

L = −M(0)
∂αc

∂x

∣∣∣∣
x=0

, T =
∂φc

∂x

∣∣∣∣
x=0

and R = M−1(0)

∂α(x)
∂x

∣∣∣∣
x=0

= 0 ,
∂φ(x)

∂x

∣∣∣∣
x=0

= I and β(0) = I (22)
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