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Overview

In this talk, we

(i) explain the connection between boundary control

systems (as defined below) and operator/system

nodes;
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Overview

In this talk, we

(i) explain the connection between boundary control

systems (as defined below) and operator/system

nodes;

(ii) give sufficient and necessary conditions for such a

boundary control system to define a (scattering) con-

servative system node (notion that has been defined

in earlier literature); and

(iii) present a PDE example involving the wave equation

in R
n for n ≥ 2.
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Boundary nodes (1)

Boundary control systems are described by the follow-

ing equations















ż(t) = Lz(t) (state dynamics),

Gz(t) = u(t) (input),

y(t) = Kz(t) (output),

for t ≥ 0 where the operators

L ∈ L(Z;X ), G ∈ L(Z;U) and K ∈ L(Z;Y)

and the Hilbert spaces U , X , Y, and Z satisfy...
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Boundary nodes (2)

(i) Z ⊂ X with a dense, continuous inclusion;
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Boundary nodes (2)

(i) Z ⊂ X with a dense, continuous inclusion;

(ii) U = Ran G, and Ker G is dense in X ;

Seville, 14th of December 2005 3



Boundary nodes (2)

(i) Z ⊂ X with a dense, continuous inclusion;

(ii) U = Ran G, and Ker G is dense in X ;

(iii) (α−L)Ker G = X , and Ker (α−L)∩Ker G = {0}
for some α ∈ C+.
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Boundary nodes (2)

(i) Z ⊂ X with a dense, continuous inclusion;

(ii) U = Ran G, and Ker G is dense in X ;

(iii) (α−L)Ker G = X , and Ker (α−L)∩Ker G = {0}
for some α ∈ C+.

The triple Ξ = (G,L,K) is called a boundary node.
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Boundary nodes (2)

(i) Z ⊂ X with a dense, continuous inclusion;

(ii) U = Ran G, and Ker G is dense in X ;

(iii) (α−L)Ker G = X , and Ker (α−L)∩Ker G = {0}
for some α ∈ C+.

The triple Ξ = (G,L,K) is called a boundary node.

If L|Ker G generates a C0-semigroup, we say that Ξ is

internally well-posed.
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Boundary nodes (2)

(i) Z ⊂ X with a dense, continuous inclusion;

(ii) U = Ran G, and Ker G is dense in X ;

(iii) (α−L)Ker G = X , and Ker (α−L)∩Ker G = {0}
for some α ∈ C+.

The triple Ξ = (G,L,K) is called a boundary node.

If L|Ker G generates a C0-semigroup, we say that Ξ is

internally well-posed.

There are many (essentially) equivalent definitions.
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Connection to system nodes

Internally well-posed boundary nodes Ξ = (G,L,K)

are in one-to-one correspondence with system nodes

S =

[

A&B

C&D

]

on spaces (U ,X ,Y)

whose input operator B is injective and strictly

unbounded:

Ker G = {0} and BU ∩ X = {0}.
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Connection to system nodes

Internally well-posed boundary nodes Ξ = (G,L,K)

are in one-to-one correspondence with system nodes

S =

[

A&B

C&D

]

on spaces (U ,X ,Y)

whose input operator B is injective and strictly

unbounded:

Ker G = {0} and BU ∩ X = {0}.

Such system nodes S are said to be of boundary

control type.
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Given Ξ = (G, L,K)...

...you get the corresponding S = [ A&B
C&D ] from equations

A&B [ x
u ] := A−1x + Bu and C&D [ x

u ] := Kx where

(i) dom (A) := Ker G and A := L|dom (A) ;

(ii) X−1 := dom (A∗)
d

using X as the pivot space, and

the usual Yoshida extension A−1 : X → X−1;

(iii) BGz := Lz − A−1z for all z ∈ Z;

(iv) and dom (S) := [ I
G ]Z.
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Given Ξ = (G, L,K)...

...you get the corresponding S = [ A&B
C&D ] from equations

A&B [ x
u ] := A−1x + Bu and C&D [ x

u ] := Kx where

(i) dom (A) := Ker G and A := L|dom (A) ;

(ii) X−1 := dom (A∗)
d

using X as the pivot space, and

the usual Yoshida extension A−1 : X → X−1;

(iii) BGz := Lz − A−1z for all z ∈ Z;

(iv) and dom (S) := [ I
G ]Z.

(Don’t worry. You need not memorize them right now.)
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The Cauchy problem (1)

Assume: Boundary node Ξ = (G,L,K) is internally

well-posed; u ∈ C2([0,∞);U) and z0 ∈ Z satisfy the

compatibility condition Gz0 = u(0).

Seville, 14th of December 2005 6



The Cauchy problem (1)

Assume: Boundary node Ξ = (G,L,K) is internally

well-posed; u ∈ C2([0,∞);U) and z0 ∈ Z satisfy the

compatibility condition Gz0 = u(0).

Then: the equations for t ≥ 0

ż(t) = Lz(t), Gz(t) = u(t), y(t) = Kz(t),

have a unique solution z(·) ∈ C([0,∞);Z) ∩
C1([0,∞);X ), such that z(0) = z0 and y(·) ∈
C([0,∞);Y);
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The Cauchy problem (2)

And also: the same functions u(·), z(·) and y(·) satisfy

ż(t) = A−1z(t) + Bu(t), y(t) = C&D
[

z(t)
u(t)

]

,

for t ≥ 0. Here the system node

S =

[

A&B

C&D

]

corresponds to the boundary node Ξ = (G,L,K) in

the way described above.
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Conservativity of system nodes

The system node S = [ A&B
C&D ] is (scattering) energy

preserving if for any u(·) ∈ C2(R+;U) and any (com-

patible) initial state z(0) = z0, the solution of

ż(t) = A−1z(t) + Bu(t), y(t) = C&D
[

z(t)
u(t)

]

satisfies the energy balance equation

d

dt
‖x(t)‖2

X = ‖u(t)‖2
U − ‖y(t)‖2

Y .
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Conservativity of system nodes

The system node S = [ A&B
C&D ] is (scattering) energy

preserving if for any u(·) ∈ C2(R+;U) and any (com-

patible) initial state z(0) = z0, the solution of

ż(t) = A−1z(t) + Bu(t), y(t) = C&D
[

z(t)
u(t)

]

satisfies the energy balance equation

d

dt
‖x(t)‖2

X = ‖u(t)‖2
U − ‖y(t)‖2

Y .

S is conservative, if both S and the dual node Sd are

energy preserving.
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Why is this definition “the right one”?

This definition of conservativity can be defended from

several directions:

(i) It is a generalization from the finite dimensions;
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discrete time definition;
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Why is this definition “the right one”?

This definition of conservativity can be defended from

several directions:

(i) It is a generalization from the finite dimensions;

(ii) By the Cayley transform, it is equivalent to the usual

discrete time definition;

(iii) It is equivalent to the old definition of the operator

colligation by Brodskĭı, Livšic, Sz.-Nagy &al. in the

theory of Hilbert space contractions;
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Why is this definition... (cont’d)

(iv) System theoretically, it is a very “happy class” –

e.g. a strong form of the state space isomorphism

theorem holds.
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Why is this definition... (cont’d)

(iv) System theoretically, it is a very “happy class” –

e.g. a strong form of the state space isomorphism

theorem holds.

(v) As this work shows, it relates in the right way to

the time-flow invertibility – an important property

of hyperbolic linear PDEs.
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Why is this definition... (cont’d)

(iv) System theoretically, it is a very “happy class” –

e.g. a strong form of the state space isomorphism

theorem holds.

(v) As this work shows, it relates in the right way to

the time-flow invertibility – an important property

of hyperbolic linear PDEs.

(vi) As our newer work shows, it relates (after a trans-

lation to “impedance setting”) in the right way to

the abstract boundary spaces, used for extensions of

symmetric operators in Russian literature.

Seville, 14th of December 2005 10



How about conservative boundary nodes?

Question: How to characterize those conservative

boundary nodes Ξ = (G,L,K) that correspond to

conservative system nodes as described above?
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How about conservative boundary nodes?

Question: How to characterize those conservative

boundary nodes Ξ = (G,L,K) that correspond to

conservative system nodes as described above?

Practical problems:

(i) The translation of the data Ξ = (G,L,K) to an

operator node S is cumbersome (especially if Ξ com-

prises partial differential operators!)
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How about conservative boundary nodes?

Question: How to characterize those conservative

boundary nodes Ξ = (G,L,K) that correspond to

conservative system nodes as described above?

Practical problems:

(i) The translation of the data Ξ = (G,L,K) to an

operator node S is cumbersome (especially if Ξ com-

prises partial differential operators!)

(ii) The dual system Sd need not be of boundary control

type, even if S is; ⇒ the direct, pure translation of

the definition to boundary nodes is impossible!
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Characterization of conservative

Ξ = (G,L,K)

The triple Ξ = (G,L,K) is a doubly boundary node,

if both Ξ and Ξ← := (K,−L,G) are boundary nodes.
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Characterization of conservative

Ξ = (G,L,K)

The triple Ξ = (G,L,K) is a doubly boundary node,

if both Ξ and Ξ← := (K,−L,G) are boundary nodes.

Theorem 1: Let Ξ = (G,L,K) be a doubly bound-

ary node, and by S = [ A&B
C&D ] denote the associated

operator node. Then S is conservative if and only if

(i) 2ℜ〈x,Lx〉
X

= −‖Kx‖2
Y for all x ∈ Ker G,

(ii) 〈z, Lx〉
X

+ 〈Lz, x〉
X

= 〈Gz,Gx〉
U

for all z ∈ Z
and x ∈ Ker K.
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“Childrens version”

There is another variant whose formulation is more

beautiful.
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“Childrens version”

There is another variant whose formulation is more

beautiful.

Theorem 2: Let Ξ = (G,L,K) be a doubly bound-

ary node, and by S = [ A&B
C&D ] denote the associated

operator node.

Then S is conservative if and only if the Green–

Lagrange identity

2ℜ〈z0, Lz0〉X = ‖Gz0‖2
U − ‖Kz0‖2

Y

holds for all z0 ∈ Z.
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References to the proofs

The proof of Theorem 1. is based on the charac-

terization of conservative system nodes among time-

flow invertible system nodes [Malinen; (2004, 2005)],

in combination with the main theorem of [Malinen,

Staffans, Weiss; (2003, 2005)] on “tory” systems.
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References to the proofs

The proof of Theorem 1. is based on the charac-

terization of conservative system nodes among time-

flow invertible system nodes [Malinen; (2004, 2005)],

in combination with the main theorem of [Malinen,

Staffans, Weiss; (2003, 2005)] on “tory” systems.

The proof of the slightly weaker Theorem 2. can

be carried out alternatively by a direct argument, see

[Malinen, Staffans; (2005)].

Theorem 1. can be also concluded from Theorem 2. by

using the main theorem of [Malinen, Staffans, Weiss;

(2003, 2005)].
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The scattering conservative

wave equation (1)

Suppose Ω ⊂ R
n, n ≥ 2, is an open bounded set with

C2-boundary ∂Ω.

We assume that ∂Ω is the union of two sets Γ0 and Γ1

with Γ0 ∩ Γ1 = ∅.
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The scattering conservative

wave equation (1)

Suppose Ω ⊂ R
n, n ≥ 2, is an open bounded set with

C2-boundary ∂Ω.

We assume that ∂Ω is the union of two sets Γ0 and Γ1

with Γ0 ∩ Γ1 = ∅.

In the same PDE example, the sets Γ1 and Γ0 are

allowed to have zero distance in [Weiss, Tucsnak;

(2003)]. This is possible because stronger “background

results” from [Rodrigues-Bernal, Zuazua; (1995)] are

used there.
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The scattering conservative

wave equation (2)

We are interested in the system node S that (hopefully)

is described by the exterior problem



































ztt(t, ξ) = ∆z(t, ξ) for ξ ∈ Ω and t ≥ 0,

−zt(t, ξ) − ∂z
∂ν(t, ξ) =

√
2u(t, ξ) for ξ ∈ Γ1 and t ≥ 0,√

2 y(t, ξ) = −zt(t, ξ) + ∂z
∂ν(t, ξ) for ξ ∈ Γ1 and t ≥ 0,

z(t, ξ) = 0 for ξ ∈ Γ0 and t ≥ 0, and

z(0, ξ) = z0(ξ), zt(0, ξ) = w0(ξ) for ξ ∈ Ω.

Note that Γ0 is the reflecting part of ∂Ω.
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The scattering conservative

wave equation (3)

We discover the boundary node Ξ = (G,L,K) by

ztt = ∆z =̂
d

dt

[

z

w

]

=

[

0 −1

−∆ 0

] [

z

w

]

.
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The scattering conservative

wave equation (3)

We discover the boundary node Ξ = (G,L,K) by

ztt = ∆z =̂
d

dt

[

z

w

]

=

[

0 −1

−∆ 0

] [

z

w

]

.

The spaces Z, X and and operator L are defined by

L :=
[

0 −1
−∆ 0

]

: Z → X with

Z := Z0 × H1
Γ0

(Ω) and X := H1
Γ0

(Ω) × L2(Ω)

where Z0 :=
{

z ∈ H1
Γ0

(Ω) ∩ H3/2(Ω) : ∆z ∈ L2(Ω)
}

.
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The scattering conservative

wave equation (4)

The norm of Z0 is given by

‖z0‖2
Z0

:= ‖z0‖2
H1(Ω) + ‖z0‖2

H3/2(Ω)
+ ‖∆z0‖2

L2(Ω).
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The scattering conservative

wave equation (4)

The norm of Z0 is given by

‖z0‖2
Z0

:= ‖z0‖2
H1(Ω) + ‖z0‖2

H3/2(Ω)
+ ‖∆z0‖2

L2(Ω).

For the state space X , we use the energy norm

‖ [ z0
w0 ] ‖2

X := ‖|∇z0|‖2
L2(Ω) + ‖w0‖2

L2(Ω).

Seville, 14th of December 2005 18



The scattering conservative

wave equation (5)

Define the input and output spaces by setting

U = Y := L2(Γ1), together with

G [ z0
w0 ] :=

1√
2

(

−∂z0

∂ν
|Γ1 + w0|Γ1

)

and

K [ z0
w0 ] :=

1√
2

(

∂z0

∂ν
|Γ1 + w0|Γ1

)

.
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The scattering conservative

wave equation (5)

Define the input and output spaces by setting

U = Y := L2(Γ1), together with

G [ z0
w0 ] :=

1√
2

(

−∂z0

∂ν
|Γ1 + w0|Γ1

)

and

K [ z0
w0 ] :=

1√
2

(

∂z0

∂ν
|Γ1 + w0|Γ1

)

.

We have now the triple of operators Ξ = (G,L,K),

together with the Hilbert spaces U , X , Y and Z.
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The scattering conservative

wave equation (6)

Proposition 3: The triple of operators Ξ = (G,L,K)

defined above is a doubly boundary node on spaces U ,

X , Y and Z.
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The scattering conservative

wave equation (6)

Proposition 3: The triple of operators Ξ = (G,L,K)

defined above is a doubly boundary node on spaces U ,

X , Y and Z.

The proof requires well-known properties of the Sobolev

spaces (like the Poincaré inequality), standard results

on Dirichlet and Neumann traces, and elliptic regularity

theory.
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The scattering conservative

wave equation (6)

Proposition 3: The triple of operators Ξ = (G,L,K)

defined above is a doubly boundary node on spaces U ,

X , Y and Z.

The proof requires well-known properties of the Sobolev

spaces (like the Poincaré inequality), standard results

on Dirichlet and Neumann traces, and elliptic regularity

theory.

We now know that there exists a unique system node

S = [ A&B
C&D ] associated to Ξ.
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The scattering conservative

wave equation (7)

Proposition 4: Let the boundary node Ξ = (G,L,K)

be defined as above. Use the energy norm

‖ [ z0
w0 ] ‖2

X := ‖|∇z0|‖2
L2(Ω) + ‖w0‖2

L2(Ω).

for the state space X . Then the system node S

associated to Ξ is conservative.
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The scattering conservative

wave equation (7)

Proposition 4: Let the boundary node Ξ = (G,L,K)

be defined as above. Use the energy norm

‖ [ z0
w0 ] ‖2

X := ‖|∇z0|‖2
L2(Ω) + ‖w0‖2

L2(Ω).

for the state space X . Then the system node S

associated to Ξ is conservative.

Indeed, the conditions of Theorem 2. can be checked

by using a generalized Greens formula.
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The scattering conservative

wave equation (7)

Proposition 4: Let the boundary node Ξ = (G,L,K)

be defined as above. Use the energy norm

‖ [ z0
w0 ] ‖2

X := ‖|∇z0|‖2
L2(Ω) + ‖w0‖2

L2(Ω).

for the state space X . Then the system node S

associated to Ξ is conservative.

Indeed, the conditions of Theorem 2. can be checked

by using a generalized Greens formula.

A numerical example will be given later by V. Havu.
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M. S. Brodskĭı. Triangular and Jordan representations

of linear operators, volume 32. AMS, 1971.

D. Salamon. Infinite dimensional linear systems with

unbounded control and observation: a functional ana-

lytic approach. Trans. AMS, 300:383–431, 1987.

D. Salamon. Realization theory in Hilbert spaces.

Math. Systems Theory, 21:147–164, 1989.

Seville, 14th of December 2005 22



O. J. Staffans. Well-Posed Linear Systems. Cambridge

University Press, 2004.

B. Sz.-Nagy and C. Foias. Harmonic Analysis of Op-

erators on Hilbert space. North-Holland Publishing

Company, 1970.

Seville, 14th of December 2005 23



Related to conservative systems:

D. Z. Arov and M. A. Nudelman. Passive linear sta-

tionary dynamical scattering systems with continuous

time. Int. Eq. Oper. Th., 24:1–45, 1996.
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That’s all of it, folks!

Have a nice day.
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