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Abstract— We interpret the Cayley transform of linear (finite- by
or infinite-dimensional) state space systems as a numerical

integration scheme of Crank—Nicolson type. If such a scheme 2P —z((G=1h)  gz(h)+z((j=1)h) + Bu(jh)

is applied to a conservative system, then the resulting discrete ] h w(ih)+2((j—1)h) 2 ) ’

time system is conservative in the discrete time sense. Weast y(jh) ~ O L2+ Du((j — 1)h), (2
that the convergence of this integration scheme is equivaié to z(0) = zo

an approximation of the Laplace transform.

for j > 1. This induces the discrete time dynamics
. INTRODUCTION

ztM "M Ax(h)+z<h>1 ul™
J J— — J J— —_J
In this paper, we consider convergence results for the . h 2 +B b’
time discretization scheme of type (2) for a linear (finite- y\,/ﬁ o4t pt 0 >, ()
or infinite-dimensional) state space dynamical systems. In (h)
finite-dimensional case, such systems are described by (1) 0

but it is necessary to use more general equations (7) and (8?1 (h) _ o .
in infinite dimensions. In the infinite-dimensional caseoal Whereu;" /v/h is an approximation tai(jh). The purpose
discretization (2) has to be generalized. of this paper is to show under rather general assumptions

hat y;h)/\/ﬁ converges toy(jh) ash — 0. After some
omputations, equations (3) take the form

= To,

We show below how discretization (2) is induced by thd
Cayley transform (in the sense of linear system theory¥’
Hence it has the the following important property: if the

- . . S X . B — A M g )
original continuous time dynamics is conservative (as eéeffin Tj = AReljy ally
in Subsection I-B), then the resulting discrete time dyreami Oo : y](.h) = C(,x;.ii)l + D(,u;h), j>1, (4)
satisfies a similar energy balance law. Since this is not x(()h) = 20,

a typical property of an arbitrary time discretization stige
it is well-motivated to study the generalization of schemgyheres := 2/h, and the operatord,,, B,, C, and D,

systems. The presented techniques can be used for sinmulatio

of conservative systems governed by PDEs arising from A, B,
applications in physics and engineering. s~ |c, D,
For approaches parallel to our work, see e.g. [4], [5]. (0 +A)(o— A" V2o(c—A)'B (5)
- [ V26C (0 — A)~1 G(o)

A. Finite Dimensional Motivation
. ! o _ _Here G(-) denotes the transfer function of systefin (1),
We consider first the finite-dimensional state space with,4 it is defined byG(s) = C(s — A)~'B + D for all

scalar _signals. Then the systes is described by the € p(A). Then the transfer functiob, (-) of ¢, satisfies
dynamical equations

D,(z) :=D, + 2C,(I — 2A0)71B0'

z'(t) = Az(t) + Bu(t), 11— 6)
S:Qy(t) = Cx(t) + Du(t), t>0, (1) =G (1 " ZU)
z(0) = zo,

for all z € p(A,). The mappingS — ¢, described above
whered € C™*™, B € C»*', C € C'*™, andD € C. Given is calledthe Cayley transfornof continuous time systems to
a discretization parameteh > 0, a slightly non-standard discrete time systems. As described abapg,can always
time discretization of (1) of Crank—Nicolson type is givenbe regarded as a time discretizationSf



B. Infinite Dimensional Systems is isometric on[X]. Then, and only then, the discrete time

Even though we have considered above only matrix Syg_alance equation

tems (1), the Cayley transform can be defined similarly to N N
(5) for any conservative system nodg Let us state first lenl® = llzoll* =Y lluj 1l =Y llyjall®
what we mean by such. j=1 j=1
Let S = [ALB] be a system node on the separablgs satisfied for allNV > 1, all initial valuesz, € X and all
Hilbert spaceqU, X,U) in the sense of [1, Definition 2.2] sequencegu;}, {z;} and{y;} satisfying
with domain denoted bygom (S). By A_; denote the usual
extension of the main operatet of S. Then, as it is well- Tjy1 = Azj + Buy,
known, the Cauchy problem associatedsto Yj+1 = Czxj+Du;, j>0.

2'(t) = A_12(t) + Bu(t), t>0 The DLS ¢ is conservativeif both ¢ and the dual DLS
2(0) = o T (7) ¢ := [A Cl] are energy preserving. Equivalentty, is
— L0

conservative if and only if & B] is unitary on[{].

is uniquely solvable for any input € C?(R.;U) and Propo_sition 1: The Caylgy transformgp, of an energy
any initial statex, € X for which the compatibility Preserving system nod§ is an energy preserving DLS.

condition [ugfg)] ¢ dom (S) holds. Moreover, x(:) c Morgover, suchﬁg_ is (discrete time) conservative if and only
u(:) if S is conservative.
C(Ry;dom (5)) and becaus€'&D € L(dom (S5);U), the Proof: See [1, Theorem 3.2(v) and Theorem 4.2(iii)].
output signal given by -
y(t) = C&D [258} (8) Il. APPROXIMATION OF THE INPUT/OUTPUT

MAPPING

In this section, we describe the discretization (4) of
dynamical system (7) and (8) in the language of operator
theory.

is well defined for allt > 0. These and many other facts can
be found in [1, Section 2].

The system nod§# is (scattering) energy preservirgfor
all T > 0 the energy balance

- - A. Spaces and transforms
lz(T)|1% +/ ly(®)|13-dt = [|zoll% +/ ||lu(t)||Zdt (9) The norm of the usual Hardy spaé#*(C, ) is given by
0 0 1 0o

holds, whereu, z, y and z, are as in (7) and (8). For 172 c, ) :igpog/ |B(z + yi)|” dy.
any energy preserving, the semigroup generatod is s _
maximally dissipative and; C p(A). If both § = [A¢B ] As usual, the Laplace transform is defined

C&D
; d _ [[A&B]? . 0
and its dual nodeS® = [[C&D]d] are scattering energy (Lf) (5) :/ e~Stf(t)dt foral seCp, (11)
preserving, ther] A¢B ] is called(scattering) conservative 0
see [1, Definitions 3.1 and 4.1]. and it mapsL?*(Ry) — H?(C;) unitarily. The norm of

As is discussed in [1], the Cayley transform can ber*(D) is given by [|4l[3zm = 250 1¢51° if é(2) =
extended to energy preserving system nofiesndeed, we  y~ i>0¢;2’, which makes theZ-transform unitary from
define for anys > 0 the Cayley transform of as the DLS (2(Zy) — H2(D). If, say, f € C.(R) in (11), then(Lf) (s)

given by is well defined for alls € iR, too. We then call the function
_ _ iw > (Lf) (iw) the Fourier transform of .
_[(e+A)(@—-A)7" V25— A4)"'B " il 2
s = V3500 — A)1 G(o) (10) From now on, denote by, : H*(D) — H*(D) the

multiplication operator defined b{D,@)(z) = D, (z)u(z)
When comparing to the matrix formula (5), we see tHat for all = € D and ¢ > 0. Similarly, denote byG :
has been replaced by its extensidn;. Also the definition H>(C;) — H?*(C,) the multiplication operator satisfying
of the transfer functiorG(-) must be generalized, and it is (Gt)(s) = G(s)i(s) for all s € C... It follows immediately
now given byG(s) = C&D [(s — A 1)"'B I]T for all that (6) takes the form of the similarity transformation

s € Cy4. The relation betweex(-) andD,(-) is described G =C;'D,C,, (12)

by (6) without change.
where thecomposition operatois defined by(C, F) (z) :=

C. Conservativity is preserved F(i=¢) forall z € Dand F : C, — C. Trivially

1—z
-1 —— S—o .
The motivation for the study of the discretization schemdCs ' f) (s) == f(557) forall s € C, andf : D — C

e ; i In addition, we have
3) lies in the fact that conservative characteristics @& th '
gy)stem are preserved Proposition 2: The mappingf — F' given by F(s) =
We say that the DLSp = [A B] on Hilbert spaces 1”+2s//(; (2:2) is unitary fromH?(DD) onto H*(Cy.). In par-
U,X,U) is energy preservingf the block matrix[A B] ticular, the operatom,,C; ! : H*(D) — H?(C, ) is unitary,
CD o




where M,, : H(Cy) — H(C, ) denotes the multiplication  Proposition 3: For anyu € C.(R;.) ands € C;., we have

operator by‘/z/” (Lu)(s) =limy— 00 (Lyu)(s) whereL, is defined as above.
14+s/o0" . .
Proof: This follows since for each > 0, the sequence Proof: Defining T, by (13) we get
{1V+2S//‘; (§+g)J} is an orthonormal basis fai?(C,.). (Lou)(s) = V2/o o
J=0 - 7 1+s/o
. . 1 [t o—s\’
B. Discretizing operators > ﬁ/ u(t) dt ( - ) (17)
i g S
By T, we denote a discretizing (or sampling) bounded i1 (G=1h
linear operatorT, : L?(R;) — H?(D). The adjointT* __ 1 %
of T, maps thenH?(D) — L*(R,), and it is typically an 1+s/o
interpolating operator. In this paper, we defifie by Z /oo ® (U _ S)j ® dt
. X[(G—1)h,j u
(Tyu)(2) :Zugh)zj where = HG=DmIn o+s
Jjz1 00
(13) - / Koo (ult) dt,
0

ug_h) 1 it

h (G=1)h whereo = 2/h. Now, if j is such thatt € [(j — 1)h, jh],
with h = 2/0; see (3) and (4). Then the adjoifit is given then we obtain from the previous
by ) 1 . e/t
(T70) (t) = 7h ;UjX[(j—l)h,jh] (t) (14) Kso(t) = 5 gy <1 o 0/2> e

1z

aso — oo. We conclude thatim,_,~, K;,(t) = e % for
all s € C; andt > 0. Moreover, for each fixed € C; and
o > 2|s| we have

whered(z) = 3,5 ,v;2/ € H?*(D) and x;(-) denotes the
characteristic function of the intervdl It should be noted
that the definition ofT, is not unique and other operators
can also be considered. |s|t
It is also worth noticing that the operat®} : L*(R, ) — (Koo (t)] < (e\/§) :

S @ h , :
H*(DD) is & coisometry. This can be seen as follows: The proposition now follows from the Lebesgue dominated

.12 1 [ 9 convergence theorem, as the integrand in (17) is has a
||T0'U||L2(R+) = E 0 |ZUJX[(]—1)h,]h]| dt Compact support ]
1 [ §21 (15) The purpose of this paper is to give stronger versions of
_ E/O Z 03 Xty = (152 - Proposition 3.
i>1

1. APOINTWISE CONVERGENCE ESTIMATE

Our main result will be given in this section. Theorem 1

Let us now use th_e discrgte time tra}jec_tories of (4) t?)rovides a uniform speed estimate for the convergence of
approximate the continuous time dynamics in (1). (Lou)(iw) — (Lu)(iw) for iw € K where K C iR is
Letu € L*(R, ) be arbitrary. In the operator notation, thecompact

output of the discretized dynamics (4) (after interpolatiy
T back to a continuous time signal) is given ByD,T,u. A. The main result

The output of_contmuo_us time dynamics (1) is given by Before stating the main theorem some new definitions and
L*GLu. Our first task is to show that at least for SOME, Jiations must be given: Ldg = ((j — 1)h, jh] = (t;_1, ;]
. - ) — \lj—-1,05

i 2
niceu € L*(Ry) andT > 0 we have convergence andt;_y;» = L(t; 1 +1;). Foru € L2(R, ), let I ,u be

C. Approximation of the Laplace transform.

Ty DeTou — L*GLu||2(j0,77) = 0 (16) the piecewise constant interpolating function, defined by
. . . h
\?vtesg;neeﬂr]aatte as — oo. By Proposition 2 and equation (12) (Tn.su)(t) = @0 + c](h, s) (t—t; 1), teI;, (18)
T;D,T, =T; (C,M;) G- (M,C;) T, where 4;;, = %J}]_ u(t)dt and the defining sequence

" 1 _ ¢i(h,s)};>1 (depending on two parametdrands) will be
=17 (MoC, ") G- (MoC ) T I{at]e(r ch?stn in a particular way. LB}, denote the orthogonal
= (M,C;'T,)" - G- (M,C;'T,) projection in L?(R, ) onto the subspace of functions that
are constant on each interva). Then clearly for allu €
f&(Ry), j > 1 andt € I; we have(Pyu)(t) = ;.
Theorem 1:Let h > 0, 0 = 2/h, T = Jh for some
JeN ueC.(R,)NH (R, ), and assume thatipp(u) :=
{t e R:u(t) #0} C[0,T].

since the multiplication operataM, commutes withG.
Hence by (16), we are led to inquire whether the operato
L, := M,C;'T, are close (on compact intervals) to the
Laplace transfornC wheno is large. This, indeed, appears
to be true to some extent.



1) Then the sequende;(h, s)};>1 can be chosen so that together with
(Le — L)(I, su)(s) =0 forall s € C;.
2) For any such choice of the sequereg(h, s)};>1, we

> _ J
have 10 (h, ) o= / <0_~9> B est] .
1+ s/a o+s
hT1/2
(Eow)(s) — (Cu)(s)] < Ll (2~ )h (7
T = (25)
h (19) o+s o+ s
(IIIh st = Puullpeo,m) + —lulm o, T])) L(h L et — emsti=te] 4 R —sti—1n
s 82 s
forall s € C,.
3) The sequencgr;(h, s)};>1 in claim (1) can be chosen |t is clear that (22) has a huge number of solutions

optimally so that {cj(h, s)}j:1 for any fixeds andh, and most of the functions

(h,s) — ¢;(h,s) need not even be continuous.

Iy su— P 2 . . .
1, nttllz2(go,my) Claim (2) is to be treated next. Recalling (17) and (18)

15

< 2_18 (h_1/2T_1/2 | |> ||Phu||L2([0 )

T
4 Lgus—ﬁus:/ K, - (t) —e *Hu(t) dt
for a givens € iR, T > 1 if 9h < T?/3e~5lsIT, (Lou)(s) = (Lu)(s) 0 (Koo ) Juld)
Furthermore, then r .
- / (Ko () = ) (ult) = (T su)(®)) dt
(Lou)(s) — (o)l < 2Ll (20 ;
o - > L2([0,T 7
100 (oD - Z Koo (t) — ™) (u(t) — ) dt (26)
ORT/?|s[? h2TV/2| - "
+ o0 Nellzzqo,my + =5 lulmiqo,m- P
Proof: Let us first make some general observations. By cj(h,s) [Y —st
_9 _27 (Kscr(t)_ )(t_t] 1/2)d
asimple argumenﬂ,PhuHLo =h} ;5 4], Clearly for h oy
alt e ; B

— (I) - (ID).

(In,su — Pyu)(t) = i(hs) (t—tji—1/2),

h Let us first give an estimate to the tefdV). By the Poincaré
and it follows that inequality (see e.g. [6, Theorem 1.7]) we obtain forjal
1,...,J
||Ih sU_PhUHLz (j0,T1) 1220] (h, s) (21)

. h L
(I = Pp) (Ko — e N2y < =[Kso — €Oy,

In claim (1) we want to determine the sequence
{¢j(h,s)};j>1 so as to satisfyL, — L£)(I4 su)(s) = 0 for
given h ands. After some computations, we see that this is . _ _
equivalent to requiring thafc; (h,s)};>: satisfies where the equality follows because the functiéfy , is

- constant on each intervdl;,. By the mean value theorem
we get fors € Cy and0 < a < b < o0,

N >a

™01y,

J J
S @nl” (hys) + > cj(h,s)Ji(hs) =0, (22)
=1 j=1

L _efst 2 dt
where fors € C \ {0} e i s /a | |
|8|2 —2aRes —2bRe s
oy — L (etames - o)
19, s) = / % (”—‘9) —eSt] dt  (23) 2&[35
I; +S/0’ o+ s S SRes '2R€S€72£Res(b—a) S(b_a)|8|2672aRes.

_ 2 <a - s>7 +1 [e_th B e_s(j—l)h] ’
oc+s\o+s 5 Hence|e‘s(')|H1(1].) < h'/?|s|e=li=DhRes gnd this estimate

and is seen to hold also for ai € C,. We now conclude that
|e*s(')|H1 o) < T1/2|S| and

n , © (f0.1)

Jj(h,s) = Ij (h,S) - (.7 - 1/2)hI] (has) (24)

17 . (i h 1 . (i 3/2
_ sjh _ s(j—1)h s sjh s(j—1)h s h S
==l ¢ [+ g5l g 1T = P (Ko — Dl < 2 @1)




for all s € C,. Using (27) we have

J t;
(H):Z/ (K —e~h)x
j=1 tj_1
ci(h,s
M(t_t] 1/2) dt (28)
-3 [ (=m0 (=) 0
ci(h,s
](h ) (t _ tj—l/?) dt
1/2
h3/2 (h,s
_Z || [ h2) / (t_tj—1/2)2dt]
tj_1
h3 Is| 712
STJ “NMn,su — Prullr2(o,m))
_hT1/2|s|

1 n,su = Prullrz(o,m)

where the Schwarz inequality has been used twice, and tBe
second to last step is by (21). It remains to estimate {@m
in (26). In this case, sinc&, maps on piecewise constant

1/2
since || Phul| 20,1 = (hE] L5 / . To estimate the
required two square sums in (23) and (24) long computations
are required. As a final result, we get by Propositions 4 and
5, see [3] for their proofs.

(ZJJ Nt (h oy )1/2

(EJ (8 )1/2

5
< ohe (3h—1/2T—1/2 i h1/2|8|2T1/2)

assuming thadh < T2/3¢ 5157 But then

5]

h1/2|s|2T1/2 < |i3| X |S|T€_%|S‘T < 2_,
e

sincemax;, > re” 5T = 3/(2e). Noting that the norm of the
orthogonal projectiorP, is 1, the proof of Theorem 1 is now
complete. ]
Some auxiliary results

In this section we give some auxiliary results that were

functions and each(t) —a;,, has zero mean on subintervalsused above. For the proofs of these results, see [3].
I;, we obtain by the inequalities of Schwarz and Poincaré, Proposition 4: Let J;(h, s) be defined through (24). Then

together with (27)
J

n<> /tt (7= P) (Koo —e0)) ()%

21/2
LM|U|H1([O 0.

Estimate (19) follows from combining (28) and (29) wit

(26).
To prove claim (3), we shall minimize i1 ¢ilh, 5)?

under the constraint (22), see (21) for mot|vat|on We obtai

the minimizing sequence
Syl (h, s)
> Jj(h,s)?

for all 1 < k < J, and then for the minimum value

2
J _ 0
BN = (S il (.9))
12 &V T T '
j=1 j=1

Jk(ha 5)7

e =c(h,s) = —

—1 Jj(h,s)?
Hence, choosing the operatfy ; in (21) optimally gives

15w — Prul| 20,77

( ) 1/2
- (Ea 1 I (hy5)? ) || Pr el 20, ))
1/2 2v/3
(2 7,k 9)?) V3

for any s € iR, T, h > 0 satisfyingT = Jh, J € N and
9h < T2/3¢= 31517 we have

5
J
T3 () H e > 155TH2s] (30)

Proposition 5: Let IJ(O)(h,s) be defined through (23).
Then for anys € iR, T > 1,h > 0 satisfyingT = Jh,
J € N and9h < T?/3¢=515IT we have

J
{r e} e <

1h5/2|s|3T3/2
2, (31)
+ §h3/2|8|T1/2.

IV. WEAK AND STRONG CONVERGENCE

h We first show that Theorem 1 implies thdt, — L

in weak operator topology. Using this, it is then shown in
Theorem 2 that the convergence is, in fact, strong.

It follows from Theorem 1 thatL,u)(iw) — (Lu)(iw)
uniformly in the compact subsets&y € K C iR for any
u € C.(Ry)NHY(R, ). Hence, for finite linear combinations
s (also called simple functions) of characteristic function
xx of compact intervaldC C iR we have(s, Lyu) 2 (;p) —
(57£U>L2(iR)‘ Since||L(,||L(L2(R+):H2((C+)) <1 and simple
functions are dense ih?(iR), it follows that

(v, Lott) gz gy = (v, L) g2y @S0 — 00 (32)
for all w € C.(R) N HY(R;) andv € L%(iR.). Another
density argument implies finally that (32) holds even for all
u € L?(Ry) andv € L2(iR,). We recall a result from
elementary functional analysis:

Proposition 6: Let H be a Hilbert space, and assume that
u; — u weakly in H. If ||uj||g — [|ul||#, thenu; — u in
the norm of H.



Theorem 2:We have||L,u — Lu||g2c,) — 0 for any V. CONCLUSIONS

u € L*(Ry.). Moreover,||L;v — L*]|12(=,) — 0 for any The operatord,, for o > 0 have been introduced just
veH*Cy). before Proposition 3 with the aid of the Cayley transform
~ Proof: Adjoining (32) shows thal;v — L*v weakly. (@) |t is shown in Theorem 2 that the operatdrs provide
SinceL, is a coisometry by Proposition 2 and (15), we havg,, anproximation to the Laplace transform for a wide class of
||LZU||%2(R+) = (LJL;v,vﬁp(Q) = ||U||%{2(<c+)- functions. In addition, Theorem 3 shows that for I/O-stable
linear systems, the convergence extends to the input/butpu
rrelation of the system. All this can be anticipated since
the Cayley transform actually corresponds to the slightly
“unorthodox”, conservativity-preserving discretizati@t) for
the dynamical equations (1) (or for their infinite-dimemsib
analogue in [1, Proposition 2.5] as well).
Theorem 3 gives no estimate on the speed of the conver-
gence with respect to the sampling paramétet 2/o. If

Jallise = 3 [ IO dt = Bl sl we had some decay

e G(s) = 0 as|s| - oo (34)
By the definition of the discretizing operat®},, we have

Now Proposition 6 implies the latter part of this Theorem.

To show the first part, we have to work a bit harde
to verify that || Loul[r2r) = [lullrz®,) = [[Lullrzir).
Suppose thatv = 2/0c > 0 andu € L?*(Ry) is such
thgtu(t) = Ujp = f((j_l)h,jh]u(t)_dt_for_all t el =
((j = 1)h,jh] — in other words, this is simplys = Pyu.
For suchu

N o N at some speed, then we could effectively restrict our anal-
1Toullfem) = h2|“f’h| = llullzo,)- ysis to compact subsets @R. Then the speed estimate
izl of Theorem 1 could possibly show up in (33) in some
Hence, we haveT, Pyul|p2m) = [|Paullrzr,) forallu €  form. Unfortunately, (34) is not a generic property Gf €
L*(Ry) whereo = 2/h. Also note thatl,u = T, Pyu for  greo(C, ) — hence it is not a generic property of the transfer
all u € L*(Ry) provided thatr = 2/h. We now have for functions of conservative systems either.
anyu € L*(Ry.) In the time domain, the same problem appears because the
sampling operatofl;, cannot detect above a certain cutoff
frequency: there are always high-frequency signals aagryi
substantial energy that a given discretized system cannot

N Towll 2y — llull2ey)|
< W Toull g2y — 1 ToPrul| g2 |

+ {17 Poull 2oy — |1 Prullcaes) | capture. To achieve a speed estimate in (33), one could
+ |||Phu||L2(R+) - ||U||L2(R+)| assume either
= [[|1Phull 2,y — llullL2@.y)| 1) that the high frequencies are damped by the linear

system itself (e.g. by a property like (34)), or

where againr = 2/h. Since the projections), — I'strongly 2) that the high frequencies have a small amplitude in the

in L?*(Ry) ash — 0, we conclude that|T,u||g2m) — _ _ .
| 7 signalu (e.g. an assumption such asc H' in
[ullz2(= ) and hence|Loullpzic,) = [lullrz@,) aso = gnalu (e.g P (Ry)

00, see Proposition 2. The first claim of this theorem follows .Theorem 1. L )
from this, Proposition 6 and (32). m We finally remark that the approxmatl}?n of the state trajec-

Using Theorem 2 we can now show that the output dory () by the discrete trajectorieézg- "}j20 solving (4)
integration scheme (4) converges to the output of contiauotias not been studied here. This will be carried out in a future
time dynamics (1) foinput/output stablesystemsS. These Paper on the state space approximation for conservative
are systems for whictG(-) € H>(C,) or, equivalently, Systems.
G € L(H?(C;)). To understand the formulation of the
following theorem, we refer back to Section II.
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