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Abstract— We consider a wireless system with multiple chan-
nels when each channel has several different transmission states
associated with different probabilities of successful transmis-
sions. Hardware limitations and MAC protocols dictate that
the channel be switched only after certain intervals, and the
channel needs to be selected based on the channel states
at the beginning of the interval. We demonstrate that the
fundamental relations between QoS metrics like throughput
and stability significantly change owing to the lack of complete
information. We obtain a randomized channel selection and
threshold-type transmission rule that maximizes throughput
while using imperfect information. Using this optimal strategy,
we numerically quantify the penalty associated with different
amounts of imperfections in the available information.

I. INTRODUCTION

A. Motivation

Wireless networks are being rapidly deployed all over the
world. Cellular networks already exist in several parts of the
world. In the U.S. several companies like Boingo, Cometa
and T-mobile are deploying nationwide IEEE 802.11b based
wireless local area networks (Wi-Fi networks) for data and
voice communications. Ad hoc networks provide the only
means of communication in remote terrains, battle-fields,
disaster recovery operations. The success of this proliferation
is however contingent upon providing the desired quality
of service (QoS) to the users. The following are the main
challenges towards this goal.

1) Bandwidth limitations: Wireless channels can support
low data rates as compared to wireline networks owing to
the limitations in the radio spectrum. For example, due to in-
terference, the same channel can not be used simultaneously
in multiple transmissions in a vicinity. Also, the available
channels suffer from fading due to obstructions in signal
path, mobility of terminals and interference, which in turn
leads to variable transmission quality.

2) Imperfect Information: The link schedulers often
have access to limited prior information about transmission
quality in the available channels. This is sometimes due
to fundamental limitations such as random fluctuations in
the channels which can not be known apriori. For example,
the scheduler can measure the average ratio between the
signal and the noise power (SNR) prior to each transmis-
sion, and can thereby learn the probability of successful
transmission but not the exact outcome. Sometimes, the
scheduler deliberately acquires limited information since the
cost of acquiring the complete information is prohibitive. For
example, a scheduler can measure the SNR in each available
channel prior to a transmission, but this introduces significant
control overhead.

3) Software limitations: Many of the current day wireless
devices have simple and inexpensive hardware. This in turn
imposes limitations on the software complexity and thereby
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Fig. 1. A node generating traffic at rate λ with access to n channels.

the resource allocation strategies that can be executed in
these devices. For example, due to the execution complexity
of the channel switching protocol, oftentimes a device can
switch channels only after a certain minimum delay. This in
turn degrades the performance.

Several existing wireless technologies, e.g., IEEE
802.11a [1], IEEE802.11b [4], IEEE802.11h [2] propose to
use multiple channels so as to mitigate the first challenge.
A channel can for example be a frequency in a frequency
division multiple access network or a code in a code
division multiple access network. When multiple channels
are available then multiple transmissions can proceed
simultaneously in a vicinity if each transmission uses a
different channel. Also, at any given time the probability
that there exists at least one channel with acceptable
transmission quality increases with increase in the number
of channels. But, the availability of multiple channels
does not mitigate, and sometimes aggravates the other two
challenges. This is because the control overhead required
for acquiring complete information on all available channels
increases linearly with increase in the number of channels.
Channel switching also incurs additional software overhead.

The above observations motivate the investigation of the
impact of imperfect information and hardware limitations
on optimal spectrum utilization in wireless networks with
multiple channels. Towards this end, we investigate a par-
tial information based stochastic control problem which is
fundamental to a broad range of communication scenarios
in multi-channel wireless networks. We demonstrate that
imperfect information drastically alters the relations between
fundamental QoS metrics like throughput and stability. We
thereafter quantify the optimal performance in such a system
as a function of the amount of available information and the
switching delay.

B. Problem Definition

We consider a node that has access to n different channels
(Figure 1). The node generates packets at the rate of λ
per unit time and needs to transmit the packets in the
available channels. It can transmit in only one channel in
a time slot and can transmit at most one packet in each
slot. At the beginning of each interval of size L slots,
it can obtain information on the transmission conditions
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which are the probabilities of successful transmissions in
the channels. During the interval, the node transmits packets
only in the selected channel. In each slot, it knows the
probability of successful transmission in only the selected
channel, and based on this information decides whether to
transmit. The interval size L is a system parameter whose
value is determined by the restrictions on control overhead
and the minimum switching delay imposed by limitations on
software complexity. The goal is to select the channel and
the transmission times so as to maximize the throughput (i.e.,
the rate of successful packet transmissions).

This problem forms the basis of wireless link scheduling
in several different wireless networks. We now present some
examples. (a) The node can be a terminal communicating
with another terminal in an ad hoc network, or (b) a terminal
communicating with an access point in a Wi-Fi network or
(c) a mobile station communicating with a base station in
a cellular network. The channel can be a frequency in each
of these cases. In the first two cases the node can use the
IEEE 802.11a [1] or IEEE 802.11b [4] protocols for medium
access. IEEE 802.11a protocol has 8 channels for indoor use
and 4 channels for outdoor use in the 5GHz band, while the
IEEE 802.11b protocol has 3 channels in the 2.4GHz band.
In a cellular network, a mobile station in a GSM system is
assigned a 200 KHz channel which it shares with 7 other
MS’s in a TDMA frame. It is possible to envision a GSM-
like scheme assigning a specific sequence of channels in the
200-KHz frequency channels to some mobile station. In all
three cases, a node can transmit in only one channel at a
time if it has a single network interface card (NIC).

Now, mobile terminals can also have multiple antennas,
e.g., mobile laptops with multiple antennas (antenna arrays)
incorporated in the front lid have been developed. Thus, in
(a), (b), (c), a channel can also be (i) an antenna or (ii) a
polarization state (vertical or horizontal) of an antenna or
a (iii) pointing direction of a small transmit array (used to
broadly direct power in, say, one of two slightly different
directions). If a node has multiple antennas and the antennas
represent the channels, the node can simultaneously transmit
in all the channels. But, this requires compatible transmission
circuits to appropriately distribute the power across the an-
tennas, which may not always be present. However, antenna
selection and transmission using one antenna in a slot can
be accomplished through software modifications.

The last example where this optimization applies consists
of a node in the transmission range of multiple access points.
Then the different channels represent links with different
access points, and the selection among the channels is
equivalent to selection of the appropriate access point. The
node can use the IEEE 802.11h [2] MAC protocol that
provides 8 channels in the 5GHz band. Note that IEEE
802.11h standard allows the receiver to communicate the
received signal strength (RSSRI) which can in turn be used
for estimating the probability of successful transmission. A
node needs to “associate” with an access point before it
can transmit a packet, and typically the association delay
is significant leading to a large value of L. But, future
association protocols and strategies may allow a node to
simultaneously associate with two or more access points. In
this case a node may switch access points after moderate
values of L.

C. Our Contribution

The throughput needs to be maximized by appropriately
selecting the transmission time and the channel based only
on partial information. The information is partial in the
following sense. (a) The node selects a channel for an entire
interval based only on the previous and current transmission
conditions in the channels. Thus a node needs to select the
channel for future transmissions without knowing the future
states. (b) Before deciding whether to transmit at the current
time, the node only knows the probability of successful
transmission, and not the outcome of the transmission. In
Section II we present the channel model and describe some
system assumptions. In Section III we demonstrate that this
limited information changes fundamental system dynamics
and also significantly complicates the computation of the
optimal strategy. For example, in many systems a selection
strategy maximizes throughput if and only if it stabilizes
the system for the maximum possible set of arrival rates1,
e.g., [10], [11]. But, this equivalence does not hold in the
system we consider. Thus, the standard technique for proving
throughput optimality of a policy via proving that it stabilizes
the system for the maximum possible set of arrival rates does
not apply.

We now describe some key challenges in designing a
policy that maximizes the throughput. First, consider the
challenges in determining the optimum transmission times.
If a sender transmits only when the probability of successful
transmission in the selected channel is at the highest possible
value (which may still be less than 1 as the probability of
successful transmission is 1 only when the signal to noise
ratio is infinite for gaussian noise processes for example),
then it may only transmit packets infrequently which leads
to low throughput. On the other hand, if a sender transmits
irrespective of the probability of successful transmission in
the selected channel, then it will transmit packets frequently
but many of these packets will be received with error. This
also leads to low throughput. Thus, the optimum decision is
likely to be somewhere between these extremes.

The next challenge is to select the channel at the beginning
of each interval. Consider a system with two channels for this
discussion. Intuitively, the channel which is likely to have
better transmission condition throughout the interval based
on the measurements at the beginning of the interval and
the channel statistics must be selected. The challenge here
is that the decision is closely coupled with the transmission
decision. For example, the transmission strategy may allow
the system to transmit only when the selected channel is
in certain states (“acceptable states”). Also, the transmission
conditions of the channels in the slots in which the sender
does not have a packet to transmit does not affect the
throughput. Thus, the channel that has better transmission
conditions in the slots in which (a) it is in an acceptable state
and (b) the sender has a packet to transmit must be selected.
These conditions depend upon the transmission policy, the
sender’s queue length at the beginning of the interval, future
arrivals and future transmission states. The bottom-line is
that the transmission and channel selection decisions depend
on each other and must be jointly optimized using channel
and arrival statistics.

In Section IV we have shown that the optimal channel
selection and the transmission decisions can be obtained as
a solution of a linear program which also quantifies the

1A system is stable if the expected queue length at the sender is bounded.
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optimum throughput. The optimal transmission decision is
to transmit whenever the sender has a packet to transmit and
the probability of success in the selected channel exceeds
a certain threshold that is selected randomly. The choice of
the threshold depends on the channel statistics, L and λ but
not on the instantaneous state of any channel. The channel
selection is also random and is based on the statistics, L, λ
and the channel states in the beginning of each interval.

In Section V, we discuss some salient features of the com-
putation framework we propose and identify some directions
for future research.

II. SYSTEM MODEL AND DEFINITIONS

We describe our assumptions about the system. We assume
that time is slotted. The sender has infinite buffer. The packet
arrival process at a sender evolves as per an irreducible, ape-
riodic markov chain with K states and stationary distribution
{ai}. Now, λi packets are generated in a slot in which the
process is in state i. Also,

∑
i aiλi = λ.

In any slot, the transmission condition in the n channels
can be described by a n−dimensional joint channel state
vector �u = (u1, . . . , un) where ui represents the state of
channel i, ui ∈ {1, . . . , G}, ∀i, 1 ≤ i ≤ n. When channel i
is in state u, a packet is successfully transmitted in it with
probability αi(u), 0 ≤ αi(1) < αi(2) . . . < αi(G) ≤ 1,
∀i. Thus, the transmission condition in a channel improves
as its state u increases. Let S be the set of all possible
joint channel state vectors. Now, �u evolves according to a
finite dimensional irreducible aperiodic markov chain with
a transition matrix denoted by A and unique stationary
distribution �π = {π(�u) : �u ∈ S}. The states of different
channels may be correlated. This model has been motivated
by multi-state markov models used for modeling fading
channels [6], [12], [13]. The arrival process and the channel
states are independent.

The slots are divided in intervals of size L. At the begin-
ning of each interval the sender knows the current channel
state vector �u and hence the probabilities of successful
transmission in each channel. In any slot, the sender knows
the state and hence the probability of successful transmission
in the selected channel.

Definition 1: Let b�u,i,j be the probability that channel i
is in state j in an arbitrary slot in an interval given that the
channel state vector at the beginning of the interval is �u.
Let I(ui = j) be an indicator which is 1 when ui = j. Then,

b�u,i,j =
I(ui = j) +

∑L−1
k=1

∑
�v∈S:I(vi=j) Ak

�u,�v

L
. (1)

We now present some definitions that will be used
throughout the paper.

Definition 2: A transmission policy is an algorithm that
decides in each slot t whether to transmit a packet in the
slot.

Definition 3: A channel selection policy is an algorithm
that selects a channel in the beginning of each interval.

The transmission and channel selection policies determine
whether to transmit and which channel to select based on
the sender’s queue lengths and the observed channel states
in the current and all previous slots.

We assume that a transmission policy does not transmit a
packet in a slot in which the selected channel i is in a state
u such that αi(u) = 0.

Definition 4: Throughput is the expected number of pack-
ets received successfully per unit time.

Definition 5: A system is stable if the mean queue length
at the sender is bounded. A stable transmission policy is one
that stabilizes the system.

Definition 6: The stability region of a policy is the set of
arrival rates λ for which the sender has finite expected queue
lengths when it executes the policy.

Definition 7: The stability region of the system is the
union of the stability regions of all policies.
Clearly, the stability region of the system is a subset of [0, 1].

Definition 8: A policy attains the stability region of the
system if its stability region equals that of the system.

Definition 9: A transmission policy is ε-throughput op-
timal if its throughput differs from the maximum possible
throughput by at most ε.

III. RELATION BETWEEN PERFORMANCE METRICS IN
PRESENCE OF IMPERFECT INFORMATION

In many stochastic control systems a strategy maximizes
throughput if and only if it attains the stability region of the
system [8], [11]. The latter happens if there exists a lyapunov
function that has a negative drift for the policy for all arrival
rates for which there exists at least one policy that stabilizes
the system. Many policies have been proved to be throughput
optimal by showing that such a lyapunov function exists.
We next demonstrate through an example that in presence
of imperfect information about transmission conditions, a
policy that attains the stability region of the system need
not maximize the throughput. Thus, the existing framework
for proving throughput optimality does not apply.

Example 1: Consider a system with a single channel
which can be in one of two possible transmission states
with probabilities of successful transmission 0.2 (state 1)
and 0.8 (state 2) respectively. Assume that the states of the
channel in different slots are independent. Here the question
of channel selection does not arise. The sender generates
a packet with probability λ in each slot. The number of
packets generated in different slots are independent. Consider
two transmission policies ∆1 and ∆2. Under ∆1, the sender
transmits whenever it has a packet. Under ∆2, the sender
transmits whenever it has a packet and the channel is in
state 2. Let the probability that the channel is in state 1 be
β and in state 2 be 1− β. Thus, the system is stable for all
λ < 1 under ∆1 and only when λ < 1− β under ∆2. Thus,
∆1 stabilizes the system whenever some policy stabilizes the
system, and if β > 0, ∆2 does not satisfy the above property.
We now show that depending on λ and β, ∆1 can have lower
throughput than ∆2. Let β > 0. For λ �= 1, ∆1’s throughput
is min(λ, 1) (0.2β + 0.8(1 − β)) = min(λ, 1)(0.8 − 0.6β).
For λ �= 1− β, ∆2’s throughput is 0.8min(λ, 1− β). Thus,
∆1 can have lower throughput than ∆2 when (i) λ < 1− β
(i.e., when both policies stabilize the system) and (ii) when
1 − β < λ < min(1, 1−β

1−2/3β ) e.g., λ = 0.202, β = 0.8. In
(ii), ∆2 does not stabilize the system, but still its throughput
is higher than that of a stable policy, ∆1.

We now demonstrate that for some arrival rates the
throughputs of all the stable policies may be significantly
lower than the maximum throughput.

Example 2: Consider a system with two channels. Chan-
nel 1 has a probability of successful transmission ν in each
slot. Channel 2 has a probability of successful transmission
of 0 (state 1) with probability β and probability of successful
transmission γ > 0 (state 2) with probability 1 − β. Thus,
α1(1) = ν, α2(1) = 0, α2(2) = γ. Assume that the states
of the two channels are mutually independent in each slot.
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Also, the states of the same channel in different slots are
independent. The arrival process is the same as that in the
previous example. Let 1−β < λ < 1 and L > 1. Consider a
policy ∆1 in which the sender always selects channel 2 and
transmits whenever it has a packet and channel 2 is in state
2. Thus the sender transmits in at most 1 − β fraction of
slots. Since 1−β < λ the system is unstable and the sender
always has packets to transmit. The sender’s throughput is
γ(1 − β). Thus, the maximum throughput is greater than
or equal to γ(1 − β). If however the sender always selects
channel 1 it can transmit in all slots in which it has a packet
to transmit, and therefore the system is stable for all λ < 1.
Now, if λ is close to (but less than) 1, then under a stable
policy the sender must select channel 1 most of the times.
Thus, the throughput of a stable policy is close to νλ which
is significantly less than γ(1−β) when ν/γ << (1−β)/λ.
For example, let λ = .9, β = .4, γ = .9, ν = .1. Now,
γ(1 − β) = 0.54. For L ≥ 2, the maximum throughput of
any stable policy is 0.09 which is 1/6th of the lower bound
γ(1 − β) for the maximum possible throughput.

Now, consider a system in which the sender can select
a channel in each slot (L = 1), knows the state of each
channel in each slot, and a channel can be in one of two
possible transmission states with probabilities of successful
transmission 0 and 1 respectively. Thus, the sender knows
which channels will have successful transmission in each
slot. Hence, the sender has perfect information in such a
system. Now, a policy maximizes the throughput if and only
if it attains the stability region of the system. This is because
the system stability region will be attained only when the
sender selects in each slot a channel that has probability 1
of successful transmission in the slot and transmits a packet
in the selected channel if it has a packet to transmit2. If no
channel has probability 1 of successful transmission in a slot,
the sender does not transmit in the slot. Any such policy
maximizes the throughput for all arrival rates. It therefore
appears that the equivalence between maximizing throughput
and attaining the stability region is lost in the system we
consider due to availability of imperfect information about
transmission conditions.

IV. THROUGHPUT OPTIMAL CHANNEL SELECTION AND
TRANSMISSION STRATEGY

We present a channel selection and transmission strategy
that maximizes the throughput. We initially consider systems
where every channel has a strictly positive probability of
successful transmission in each state, i.e., αi(u) > 0 for
each i, u. We demonstrated in Example 1 that any policy that
attains the stability region of the system need not maximize
the throughput in these systems. We now demonstrate that
there however exists at least one policy that both maximizes3

the throughput for all arrival rates and also attains the
stability region of the system. We present such a policy. We
next present a policy that maximizes the throughput when
αi(u) = 0 for some i, u.

We first examine why when αi(u) > 0 for each i, u we
expect to obtain a policy that maximizes both the throughput
and attains the stability region of the system. The claim is
somewhat counter-intuitive as we just showed in Example 2

2Note that in any slot the sender can not transmit a packet in a channel
whose probability of successful transmission is 0 in the slot

3For simplicity of exposition, we consider maximization of throughput
equivalent to ε-throughput optimality

that for several values of λ, throughputs of all stable poli-
cies can be significantly less than the maximum possible
throughput. But, α2(1) = 0 in Example 2. Now, when
αi(u) > 0 for each i, u, the stability region of the system
is {λ : λ < 1}4. This follows as when the sender always
selects channel 1 and transmits packets whenever it has a
packet to transmit, the system is stable for all λ ∈ [0, 1).
The claim can therefore be restated as there exists a policy
that maximizes the throughput and stabilizes the system for
all λ ∈ [0, 1). In other words, for all λ ∈ [0, 1) a stable
policy maximizes the throughput. We now explain why this
is the case. If not, then for some λ ∈ [0, 1) an unstable policy
maximizes the throughput. Since the policy is unstable, the
sender always has packets to transmit. The sender transmits
at a rate µ, where µ < λ < 1. Thus the sender does not
transmit in all slots. If the sender increases its transmission
rate to µ+(λ−µ)/2, its transmission rate is still less than λ.
Hence, it continues to be infinitely backlogged. Since every
channel has a positive probability of successful transmission
in each slot, the sender’s throughput increases by at least
λ−µ

2 mini,u αi(u) > 0. Thus, the throughput can always be
increased by increasing the transmission rate if the policy
is unstable. Thus, unstable policies can not maximize the
throughput.

We now provide the intuition we use to design a through-
put optimal policy when αi(u) > 0 for each i, u. It is
worthwhile to note that in practice αi(u) > 0 for each i, u, as
probability of successful transmission is 0 only when noise
power is infinite. It follows from the previous discussion that
a stable policy maximizes the throughput in this case. We
therefore need to design a policy that maximizes throughput
among all stable policies.

For simplicity, we assume that αi(u) = αj(u) for all
channels i, j without loss of generality5. Note that the
individual channels may still be statistically different. For ex-
ample, if individual channel states are markovian they could
have different stationary probabilities because of different
transition probabilities.

First consider how to maximize throughput by appro-
priately selecting a transmission strategy given a channel
selection strategy. Since we consider only stable policies, the
sender transmits at the rate λ. Now, the sender’s throughput
is the product of λ and the probability of successful trans-
mission of a packet. The latter is low if the sender transmits
irrespective of the probability of successful transmission
in the selected channel. On the other hand, the system
becomes unstable if the sender transmits only when the
selected channel has a very high probability of success-
ful transmission. Thus, intuitively the optimal transmission
strategy is threshold-type, i.e., the sender should transmit
only when the selected channel has a certain minimum
probability of successful transmission. We now define a class
of transmission policies known as two-threshold policies.

4We could prove that the stability region is a superset of {λ : λ < 1}
and subset of {λ : λ ≤ 1}. For simplicity we consider the stability region
as {λ : λ < 1}.

5If αi(u) �= αj(u) for two channels i, j augment the state space of each
channel by introducing states v, w such that αi(v) = αj(u) and αj(w) =
αi(u), and renumber the states so as to make the probabilities of success
increase with increase in state. The state space of the joint chain is the cross
product of the individual state spaces. The transition probability into the
additional states in the joint chain is 0. The transition probabilities among
the other states remain the same as before. For the states in the original
markov chain, the new markov chain has the same stationary distribution.
Thus, the two chains are equivalent for our purpose.
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Definition 10: A two-threshold (T, q) transmission policy
selects threshold T at the beginning of an interval with
probability q and Threshold T + 1 with probability 1 − q.
If the selected threshold is u, then during the interval the
sender transmits a packet in a slot if and only if it has a
packet to transmit and the selected channel is in a state u or
higher.

We prove that given any channel selection strategy the
transmission strategy that maximizes the throughput among
all transmission strategies that stabilize the system is a two-
threshold (T, q) transmission policy. We therefore need to
consider only two-threshold transmission strategies for max-
imizing the throughput. We now describe how to compute
T, q given the channel selection strategy.

Definition 11: The average threshold of a two-
threshold(T, q) transmission policy is T + (1 − q).

Note that the probability of successful transmission of
each packet increases as the average threshold increases. The
throughput increases if the average threshold is increased
while maintaining system stability.

Definition 12: Let zu be the probability that the selected
channel is in state u.
{zu} is determined by the channel selection strategy.

Under a two-threshold (T, q) transmission policy and a
channel selection strategy {zu}, the selected channel is in a
state which is either greater than or equal to the threshold in
f(q, T, {zu}) = qzT +

∑G
u=T+1 zu fraction of slots. Since

the system is stable and the sender can transmit only in
f(q, T, {zu}) fraction of slots, f(q, T, {zu}) > λ. Now, if
the average threshold increases then either q decreases or T
increases and f(q, T, {zu}) decreases. Since the throughput
of a two-threshold (T, q) transmission policy and a channel
selection strategy {zu} increases if the average threshold
is increased while maintaining stability, and f(q, T, {zu})
decreases with increase in the average threshold, the optimal
parameters T, q are such that f(q, T, {zu}) ∈ (λ, λ + ε] for
some suitably small ε > 0.

Summarizing, the optimal channel selection and the trans-
mission strategy must then be such that (i) the trans-
mission strategy is a two-threshold(T, q) policy and (ii)
f(q, T, {zu}) ∈ (λ, λ + ε] for some suitably small ε > 0.
We can compute the channel selection strategy and T, q in
the following two steps.

1) For each T, we compute the q and the channel selec-
tion strategy that maximizes the throughput subject to
satisfying f(q, T, {zu}) ∈ (λ, λ + ε] for some suitably
small ε > 0.

2) We then select the T that attains the maximum
throughput in the previous step.

The resulting T, q and the channel selection strategy clearly
maximizes throughput and also attains the system stability
region as it stabilizes the system for each λ < 1 since
f(q, T, {zu}) > λ.

We now describe the computation in step (1). Since the
arrival and the channel states are markovian, the channel
and the threshold-parameter q must be selected as a function
of the channel states at the beginning of an interval [3]. In
other words, these selections do not depend on the previous
states and decisions. The channel selection is randomized,
i.e., given that �u describes the channel states at the beginning
of an interval, channel i is selected with probability ci(�u),
where

∑
i ci(�u) = 1, for each �u. Furthermore, the selected

q is used to determine whether the threshold for the interval
will be T or T + 1. Equivalently, channel i and threshold T

(T + 1) are selected at the beginning of each interval with
probability xi,T (�u) (xi,T+1(�u)), where

∑

i

xi,T (�u) +
∑

i

xi,T+1(�u) = 1, ∀ �u. (2)

Definition 13: Let yj,k be the probability that the selected
channel is in state j and the threshold is k.
Now, yj,k is related to zj as follows: yj,T = qzj , yj,T+1 =
(1 − q)zj and yj,k = 0 if k �∈ {T, T + 1}. Here,

yj,k =
∑

�u∈S

π(�u)
∑

i

xi,k(�u)b�u,i,j , ∀ j ∈ {1, . . . G},

k = T, T + 1. (3)

(Note that b�u,i,j has been defined in (1).) Also, yT,T +∑G
j=T+1(yj,T + yj,T+1) is the fraction of slots in which

the selected channel is in a state that is greater than or equal
to the selected threshold. The sender transmits in these slots
if it has packets. This fraction is the same as f(q, T, {zu}).
Thus,

yT,T +
G∑

j=T+1

(yj,T + yj,T+1) ∈ (λ, λ + ε]. (4)

If a packet is transmitted in a slot in which the selected
channel is in state u, the packet is successfully transmit-
ted with probability α(u). Thus, if the sender always has
packets to transmit, it has a throughput of α(T )yT,T +∑

j≥T+1 α(j)(yj,T + yj,T+1). From (4), with a high prob-
ability the sender has a packet to send in at least 1 − ε
fraction of slots, where ε can be selected as an arbitrarily
small positive number. Thus, the throughput is approximately
α(T )yT,T +

∑G
j=T+1 α(j)(yj,T + yj,T+1). It follows that

the maximum throughput in step (1) can be obtained by
maximizing α(T )yT,T +

∑G
j=T+1 α(j)(yj,T +yj,T+1) subject

to satisfying constraints (2), (3), (4), which can be attained
by solving the following linear program (LP).
Maximize: α(T )yT,T +

∑G
j=T+1 α(j)(yj,T + yj,T+1)

Subject To:

yj,k =
∑

�u∈S

π(�u)
∑

i

xi,k(�u)b�u,i,j , ∀ j ∈ {1, . . . G},

k = T, T + 1,∑

i

xi,T (�u) +
∑

i

xi,T+1(�u) = 1, ∀ �u ∈ S,

yT,T +
G∑

j=T+1

(yj,T + yj,T+1) = λ + ε. (5)

Definition 14: Let Ψ(T ) denote the optimum value of the
objective function of LP, if LP has a feasible solution. Let
Ψ(T ) = 0, if LP does not have a feasible solution. Let
x∗(i, T ), x∗

i,T+1(�u) denote the optimum solution of LP, if
LP has a feasible solution.
Let T ∗ = max1≤T≤G Ψ(T ). Note that the LP is feasible at
T ∗ and x∗(i, T ∗ + 1)(�u) exists.

We describe the Optimum Channel selection and Trans-
mission strategy (“OCT”) in Figure 2. The intuition used in
designing “OCT” motivates the following optimality result.

Theorem 1: For any λ < 1 and 0 < ε < 1−λ, the channel
selection and transmission strategy (“OCT”) described in
Figure 2 is ε−throughput optimal. Also OCT attains the
stability region of the system.
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The Throughput Maximizing Strategy OCT
begin

1)Let ε > 0 be a parameter.
2) Let the channel state vector at the beginning of an in-
terval be �u. The sender selects channel i and threshold T ∗
with probability x∗(i, T ∗)(�u), and channel i and threshold
T ∗ + 1 with probability x∗(i, T ∗ + 1)(�u).
3) The sender transmits packets in any slot in which it has
a packet to transmit and the selected channel is in a state
that is greater than or equal to the selected threshold.

end

Fig. 2. Algorithm for the optimum channel selection and transmission
strategy

Refer to [5] for a formal proof.
We now relax the assumption that α(u) > 0 for all u.

Consider a linear program LP1 which can be obtained by a
modification of LP. The modification is that the equality in
constraint (5) in LP is replaced by a ” ≤ ” in LP1. Now,
consider a Generalized channel selection and transmission
strategy (“GOCT”) which can be obtained by substituting
LP by LP1 in Figure 2.

Theorem 2: For any λ < 1 and 0 < ε < 1 − λ, GOCT is
ε−throughput optimal.

As Example 2 demonstrated, when α(u) = 0 for some
u, all stable policies may attain significantly lower through-
put than the maximum possible throughput. Thus, for all
sufficiently small ε, no ε−throughput optimal strategy (e.g.,
GOCT) may attain the stability region of the system.

V. DISCUSSION AND CONCLUSION

We develop a framework for optimally selecting chan-
nels and deciding transmission times in multi-channel wire-
less systems with imperfect information. Several interesting
medium access control protocols [7], [9] have been proposed
for selecting channels in context of specific wireless tech-
nologies, e.g., IEEE 802.11, which do not however guarantee
any performance bound. Our approach is complementary as
we identify strategies for optimal spectrum utilization and
characterize the optimal performance as a function of system
parameters. We now discuss some salient features of the
computational framework.

First, the framework computes the optimal strategy for
any number of jointly markovian channels with arbitrary
number of states and arbitrary correlations, and any value
of L. This is clearly advantageous as different channels
may have different correlations (e.g., transmission conditions
using antennas in the same mobile unit may be strongly
correlated but transmission conditions in orthogonal frequen-
cies may be independent), and different number of states
depending on the fading and interference conditions. Also,
different switching delays will require different values of
L in different systems. Furthermore, the number of vari-
ables and constraints in the linear programs are polynomial
(O(Gn)) in the number of states G. Thus, the complexity
of computing the optimal strategy is also polynomial in G.
Thus, the model can easily accommodate large G which
is necessary for slow fading channels [13]. The number of
variables and constraints in the linear program is however
exponential in the number of channels n. This does not
however significantly increase the computation complexity

as the number of channels is usually few, e.g., IEEE 802.11b
has 3 frequencies, a sender usually has no more than 2
antennas, etc. Furthermore, our linear programs can be solved
in a short time using computionally efficient softwares even
when the number of variables and constraints is large (e.g.,
using CPLEX software on a 2-GHz processor 1GB RAM,
we computed the optimal strategy for G = 8, n = 10 in 3
seconds). Nevertheless, determining polynomial complexity
computable suboptimal strategies with guaranteeable approx-
imation bounds constitutes an intellectually challenging area
of future research.

The policy needs to be computed offline and subsequently
executed using a lookup table. Since the number of states of
the channels is O(Gn), the storage is again polynomial in
G and exponential in n. Again, the storage is not significant
as n is usually small. The execution complexity is however
O(1) (if arrays are used to store the decisions). The compu-
tation of the policy requires knowledge of channel statistics
since prediction of the future states is required. The statistics
can be obtained by estimation techniques.

When the throughput is Z, the system incurs a loss rate
of λ − Z. Thus, a policy that maximizes throughput also
minimizes the loss. Thus, the ε−throughput optimal policies
presented in this paper are also ε−loss optimal. Now, the lost
packets can be recovered through retransmissions at different
layers or by forward error coding (FEC) provided the loss
rate is below a certain acceptable value that depends on the
retransmission protocol and the code rate. Thus, minimizing
the loss rate certainly augments the efficacy of these recovery
schemes. Detailed investigation of loss recovery schemes is
beyond the scope of this paper. An interesting topic for
future research will be to jointly maximize the throughput
and specific loss recovery schemes.
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