
 
 

 

  

Abstract— In order to display the main characteristics of a 

well-known flat system, an interactive 3D simulation of 

SpiderCrane has been developed using Ejs (Easy Java 

Simulations) and Matlab/Simulink. The application allows 

users to set up different trajectories and introduce disturbances 

in a very visual and attractive way. 

I. INTRODUCTION 

The control and stability problem of overhead cranes has 
recently received great attention [1]-[3]. It is worth 
mentioning that this problem is quite different from other 
nonlinear mechanical systems such as robot manipulators. 
For example, length variations during crane operation can 
produce a negative damping effect in the dynamics. 
Moreover, the number of degrees of freedom in cranes is 
larger than the number of actuators contrary to robots. 
Hence, the problem of designing automatic controllers for 
cranes described by highly nonlinear models is quite 
relevant and merits a certain degree of attention. 

SpiderCrane is a new crane design. It was imagined in 
order to reduce, in a significant way, the time involved in 
carrying loads. The problem of classical cranes is the large 
inertia of the boom, which limits the crane dynamics. Hence, 
to improve the work rate, it is necessary to minimize the 
inertia of the system. In order to solve this problem, 
SpiderCrane is devoid of heavy mobile components. 

The main contribution of this paper is to develop a 
complete virtual laboratory for the SpiderCrane system. A 
virtual laboratory is a distributed environment of software 
and estimation tools, intended to perform the interactive 
simulation of a mathematical model. Interactivity provides a 
flexible and user-friendly method to define the experiments 
performed on the model. During a simulation run, the user 
can modify the value of the model inputs and parameters and 
instantly view their influence on the overall dynamics. This 

 
Manuscript received March 1, 2005. 
D. Buccieri is with the Laboratoire d’Automatique, École Polytechnique 

Fédérale de Lausanne, Switzerland  (e-mail: davide.buccieri@epfl.ch). 
J. Sánchez is with the Department of Computer Science and Automatic 

Control, Universidad Nacional de Educación a Distancia, Madrid, Spain (e-
mail: jsanchez@ dia.uned.es).  

S. Dormido is with the Department of Computer Science and Automatic 
Control, Universidad Nacional de Educación a Distancia, Madrid, Spain (e-
mail: sdormido@ dia.uned.es).  

Ph. Mullhaupt is with the Laboratoire d’Automatique, École 
Polytechnique Fédérale de Lausanne, Switzerland (e-mail: 
philipe.muellhaupt@epfl.ch). 

D. Bonvin is with the Laboratoire d’Automatique, École Polytechnique 
Fédérale de Lausanne, Switzerland  (e-mail: dominique.bonvin@epfl.ch).  

strategy allows the user to design and conduct the 
experiments easily and, as a consequence, remain an active 
actor throughout the learning process. 

The control choices made for the virtual laboratory 
controller have two parts. The first part is a feedforward 
controller that computes the open-loop input to the system so 
that it follows a trajectory specified by the user in the 
absence of perturbation and model mismatch. The trajectory 
is given in the virtual laboratory environment by choosing 
among a class of available trajectories (e.g. circular, 
polynomial, Lissajous curves and so forth). The second part 
of the control structure is a simple PD controller that takes 
care of eventual discrepancies both in the model and in the 
form of external disturbances. These disturbances are 
specified in the virtual laboratory environment in real-time 
by simple mouse clicks. 

As mentioned above, the system is highly nonlinear. 
Hence, it is of no surprise that the most difficult part in the 
controller design lies in the computation of the open-loop 
input. To this effect, the full spectrum of nonlinear couplings 
are taken into account by exploiting the flatness property, 
which stipulates a one-to-one correspondence between the 
system variables (states and inputs) and the trajectory of a 
particular choice of system variables called the flat outputs. 
The importance of the dynamic possibilities offered by the 
use of this property is not always obvious by algebraic 
manipulations alone. Hence, the virtual laboratory is of great 
help in underlining the importance and simplicity of the 
results through interactively playing with different 
parameters of the system and the feedforward, and feedback 
controllers. 

The paper is organized as follows. In Section II, the 
structure of SpiderCrane is presented together with some of 
its properties such as flatness, which is illustrated 
graphically. The foundation of Easy Java Simulations (Ejs), 
a software package that supports the creation of interactive 
dynamic simulation, is introduced in Section III. Section IV 
describes how Ejs can be employed in a very easy way in 
order to provide existing Simulink models with the level of 
interactivity required in a virtual control laboratory. The 
design and implementation of a SpiderCrane virtual 
laboratory is discussed in Section V, showing the suitability 
of Ejs in the development of complex 3D interactive 
interfaces. Finally, Section VI provides concluding remarks.   
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II. THE SPIDERCRANE DESIGN AND ITS PROPERTIES 

SpiderCrane is made of three fixed pylons and a fixed 
gibbet. A pulley is mounted at the top of each pylon, 
allowing the sliding of a cable. These three cables are 
attached to a ring and, by varying their length, the ring can 
be moved in the surrounding space. The end of the gibbet is 
above the plane formed by the three pulleys and at the centre 
of the triangle formed by the pylons. At the end of the 
gibbet, another pulley is mounted, allowing the passage of 
the main cable. This cable goes through the centre of the 
ring and is attached to the load. The position of the load in 
space is done by adjusting both the position of the ring and 
the length of the main cable. All the cables are controlled by 
means of motors equipped with encoders, making it possible 
to measure the length as well as the speed of the cables.  

 

                     
Fig.1 SpiderCrane. 

 
The system has four inputs, namely three voltages applied 

to the motors for pulling the cables attached to the ring and 
the voltage applied to the motor for winching the main cable. 

The dynamic equations of SpiderCrane are obtained using 
a Lagrange formalism with constraints [4]. The derivation of 
the dynamical model is given in [5]. 

SpiderCrane is a member of the class of cranes defined in 
[6]. According to this general formulation for 3D cranes, 
SpiderCrane has the following properties. 

- The dimension of the working space is p = 3. 
- There is no rigid articulated actuated system. 
- The number of motors is s+1 = 4. 
- The main pulley (the ring) moves in a manifolds of 

dimension n=3. 
Naturally, SpiderCrane has the same property as its class; 

in particular, it is a flat system [6]. The flat outputs are given 
by the load positions (x,y,z) and the height of the ring. 
Notice that, for some mechanical systems, it is not always 
the case that the outputs to be steered are among the flat 
outputs (for instance, in the vertical take-off and landing 
aircraft (VTOL), the flat output is not at the position of the 
pilot, but lies below him [7]). Here, however, it is the case, 

which greatly simplifies motion planning for crane 
displacements (for example in obstacle avoidance problems). 

 This flatness property indicates a correspondence 
between the flat outputs and their derivatives on the one 
hand and the state of the system and the inputs on the other. 
Consequently, if the flat output describes a specific 
trajectory, the states and inputs will automatically follow 
corresponding trajectories. This is extremely useful for 
designing a feedforward controller. First, a trajectory with 
sufficient differentiability with respect to time is specified, 
which corresponds to the task at hand (lifting the load, 
changing the load from the current position to another pre-
specified position, performing fancy trajectories, i.e. 
circular, Lissajous or polynomial, avoiding obstacles, etc.). 
Then, by the mere definition of flatness, there corresponds 
an input expression of only the flat outputs and their time 
derivatives up to a fixed determined order. Hence, a fixed set 
of closed-form formula exists (one for each input) that 
express the inputs necessary to follow exactly the 
trajectories specified, without integrating the system’s 
differential equations, and independent of the type of 
trajectories chosen as long as they are known to have a 
sufficiently high (but fixed) level of differentiability.  

Flatness is essentially a differential algebraic property [8] 
with a clear geometric meaning at least in the differential 
geometric sense [9]. However, flatness is not always easy to 
perceive and understand from a mechanical and physical 
point of view. The purpose of the forthcoming discussion is 
to illustrate with simple sketches how the algebra and 
geometry translate into tractable quantities such as positions, 
velocities, acceleration and forces of the constitutive 
elements of SpiderCrane. For a complete analytical 
treatment, the reader is invited to consult [5]. 

As mentioned previously, a choice of flat outputs for 
SpiderCrane is the load position (x,y,z) and the height of the 
ring position. Therefore, when trajectories for the flat 
outputs are chosen, their values at time t specify the position 
of the load in an unambiguous way. However, the position 
of the ring is still partly undefined, and only its height is 
given by one of the flat outputs (Figure 2.i). 

In order to obtain the other coordinates of the ring, it is 
necessary to consider the second derivatives of the load 
position, i.e. its acceleration. Knowing the gravity direction 
and intensity, it is then possible to compute the resulting 
force acting on the load (Figure 2.ii). This force lies 
necessarily along the direction of the cable and thus, after 
intersection with the plane corresponding to the constant 
height of the ring, the ring position can be deduced (Figure 
2.iii). 

Pursuing this unraveling mechanism one step further by 
differentiating the ring position again twice (whence 
increasing the order of differentiability of the flat outputs), 
the ring acceleration is obtained. Together with its position 
and the direction and intensity of the gravity, it is then 
possible to deduce the forces to be applied to the cables. 
From this, the inputs of the system, which are forces, can be 



 
 

 

obtained (Figure 2.iiii). The correspondence is then complete 
and the feedforward inputs to be applied can be obtained. 

 

 
Fig. 2. Sketches illustrating the feedforward inputs computation based on   
flatness. 

III. EASY JAVA SIMULATIONS FUNDAMENTALS  

Easy Java Simulations (Ejs) is a freeware, open source, 
Java-based tool intended to create interactive dynamic 
simulations [10]. Ejs was originally designed to be used by 
students for interactive learning, under the supervision of 
educators with a low programming level. As a consequence, 
simplicity was a requirement. Ejs guides the user in the 
process of creating interactive simulations. This process 
includes the definition of the model and the view. Ejs 
implements its own procedure to define the model: a simple 
structure that the user needs to complete in order to specify 
the model variables and equations. In addition, Ejs version 
3.4 supports the option of describing and simulating the 
model using Matlab/Simulink: (1) Matlab code and calls to 
any Matlab function (either built-in or defined in an M-file) 
can be used at any point in the Ejs model; and (2) the Ejs 
model can be partially or completely developed using 
Simulink block diagrams. 

The view is the user-to-model interface of Ejs interactive 
simulations. It is intended to: (1) provide a visual 
representation of the relevant properties and dynamic 
behavior of the model; and (2) facilitate the user’s 
interactive actions on the model. Ejs includes a set of ready-
to-use visual elements that the modeler can use to compose a 
sophisticated view in a simple, drag-and-drop way. The 
properties of the view elements can be linked to the model 

variables, producing a bi-directional flow of information 
between the view and the model. Any change of a model 
variable value is automatically displayed by the view. 
Reciprocally, any user interaction with the view 
automatically modifies the value of the corresponding model 
variable. 

Once the modeler has defined the model and the view of 
the interactive simulation, Ejs generates the Java source code 
of the simulation program, compiles the program, packs the 
resulting object files into a compressed file, and generates 
HTML pages containing the narrative and the simulation as 
an applet and an application. 

IV. COMBINED USED OF EJS AND MATLAB/SIMULINK 

Ejs 3.4 supports the option of describing and simulating 
the model (or just some parts) using Matlab/Simulink. In 
order to simulate the Ejs part of the model, Ejs implements a 
set of built-in ODE solvers, and it allows the modeler to 
program and use his own numerical algorithms. The 
Simulink part of the model is simulated by Matlab/Simulink, 
using Simulink numerical algorithms. 

Let’s focus our attention in the combined use of Ejs to 
create the interactive user interface and Simulink and 
develop the complete model. The procedure consists of three 
main steps: (1) adapt the Simulink model in order to be ruled 
by the Ejs interface, (2) develop the Ejs interface taking into 
account the inherent interactivity of the model, and (3) 
connect both parts by establishing the link between the Ejs 
variables and the Matlab/Simulink variables. 

The first step, i.e. the adaptation of a Simulink model to 
be controlled by an Ejs view, consists essentially in the 
connection in the original Simulink diagram of specific 
blocks to produce the exchange of information with the 
Matlab workspace. At every integration step, the Simulink 
model must read the input variables and parameters from the 
Matlab workspace, simulate the system using this 
information, and write the resulting state model to the 
workspace (Figure 3). This cyclical operation is due to the 
fact that Matlab workspace is really the buffer that Ejs and 
Simulink use to exchange data. Every change in the Ejs 
views is sent to the Matlab workspace and read by Simulink 
blocks. At the same time, the outputs of Simulink are written 
in the workspace, read by Ejs and used to refresh the 
different simulation views.  

Furthermore, Ejs operates in a similar cyclical way as 
Simulink: at every cycle, it reads the Simulink outputs from 
the Matlab workspace and refresh the Ejs view. At the same 
time, any change in an Ejs variable linked to a Simulink 
variable is sent to the Matlab workspace. Synchronization 
between the two worlds is guaranteed: a particular block 
must be included in the Simulink diagram, and the final Ejs 
application contains the necessary built-in Java methods. 

 



 
 

 

 
Fig. 3. Exchange of data between the Ejs views, the Matlab workspace, and 
the Simulink model. The “From workspace” and “To workspace” boxes 
represent the new blocks included in the Simulink block diagram to 
read/write the variables from/to the workspace. 

 
The second step, i.e. the construction of the Ejs view, is 

performed to take advantage of the inherent interactivity of 
the simulation system. The idea is that the designer creates 
the view to illustrate the relationships among the state 
variables and the parameters of the model [11]. During the 
interactive simulation run, the user can change the values of 
the system inputs and parameters and instantly see how these 
changes affect system behavior. Interacting with an 
instructional simulation can help learners gain a better 
understanding of a real process or a phenomenon through 
exploring, testing hypotheses, and discovering explanations 
for the mechanisms and relationships. This interactivity may 
provide opportunities for students to modify their mental 
models, by comparing the outputs of the simulated system 
with their expectations, and to explore and associate actions 
with effects, which will lead to better understanding. 

Hence, the creation of an interactive Ejs view consists of 
establishing the connections needed for: 

a) The correct visualization of the state of the 
phenomenon being simulated, and  
b) the appropriate interaction of the user with the view 
(either to modify this state or to perform the actions 
defined by the model). 

For this, Ejs provides a broad range of elements that let 
designers build sophisticated interactive interfaces without 
deep knowledge of programming: 2D and 3D objects, 
buttons, sliders, scopes, labels, etc. If we want this 
interaction to have certain relevance on the program, the 
gestures on the interface need to trigger actions that affect 
the model variables. By doing some gestures (such as 
clicking or dragging the mouse, hitting the keyboard, or 
moving a joystick) with the computer peripherals on the 
program interface (or view), the view itself can be used to 
control the simulation. In order to do that, every element has 
a panel of properties to allow users to interact with them by 
writing Java code or using built-in Ejs methods.  

The third and last step to complete the interactive 
simulation is to set up the bi-directional link between the Ejs 
view and the Simulink model. In short, this step consists of 

writing a plain file with the list of Simulink variables to be 
linked and, finally, importing this file in Ejs (Figure 4). The 
linking process is done by explicitly defining pairs of Ejs 
and Simulink variables. When the final application is 
compiled, the Java code contents the built-in methods to do 
the link among the pairs of variables in a way transparent to 
the user. 
 

model='Simulgrue.mdl';                    %EJS Model 
t;                                                    %EJS Variable 
ChoixTrajectoire;                          %EJS Variable 
g;                                                    %Ejs Variable 
m;                                                   %Ejs Variable 
…………………………………………… 
…………………………………………… 
KP;                                                 %Ejs Variable 
KD;                                                 %Ejs Variable 

Fig. 4. Excerpt of the text file showing some of the Simulink variables used 
in the model of the crane. The first line lets Ejs application know the name 
of the Simulink block diagram corresponding to the spider crane model. 
The text file must content all the Simulink variables to be linked with Ejs 
variables. 

V. CASE STUDY: INTERACTIVE SIMULATION OF 

SPIDERCRANE 

To demonstrate the suitability of Ejs in the development 
of 3D interactive views of simulated systems, SpiderCrane 
has been selected as the case study. The reasons for such a 
selection are: 

 a) The mathematical model has been developed in 
Matlab/Simulink. So, the Ejs is just used to develop the 
interactive view, and  

b) the system is visually very interesting since it is 
composed of elements with mobile components. It allows 
one to use a 3D representation of the mechanical system in 
the view using some of the Ejs graphical objects and to draw 
the trajectories of the load and the effect of the disturbances. 
 

 
Fig. 5. Simulink diagram of SpiderCrane with the blocks to exchange data 
with the Ejs views. 
 

As was described in the previous section, the first step is 
to modify the original Simulink block diagram in order to 
exchange information with the Ejs views. Figure 5 shows the 
diagram with the inclusion of these new blocks. It is noticed 
that there are two groups of blocks: source blocks to read 
Matlab variables from the workspace, and sink blocks to 
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write the model state to the workspace. In this case study, 
some of the variables to be read are general parameters 
(gravity, mass), control parameters (KD, KD), trajectories 
configurations (type, destination point, time, velocity), and 
load disturbances. The values to be written at every 
integration step are position and velocity of the load and 
ring, cable lengths, and motor forces.  

 

 
Fig. 6. Main window of the SpiderCrane application. The frame shows the 
load being moved to reach the equilibrium point. The two vectors represent 
the composition of the velocity and disturbance in every simulation step. 

 
Figure 6 presents the main window of the 3D graphical 

user interface developed by Ejs using the previous Simulink 
diagram as the model. This window is composed of two 
elements to get a complete control of the flat system: the 
view panel and the control panel. The view panel presents a 
3D representation of SpiderCrane in agreement with the 
existing physical set-up (positions of the pylons, pulleys, 
gibbet, ring, and load). This view lets us visualize in a very 
realistic fashion the movement of the cables, the ring and the 
load in accordance with the trajectory and the control 
parameters specified by the user; also, the view shows two 
vectors corresponding to the instant velocity of the load, and 
the magnitude of the applied disturbance. At the bottom of 
the view panel, there are seven text fields showing the time, 
and the load position and velocity. 

The control panel is located at the lower part of the main 
window. It gathers all the elements necessary for control of 
the flat system. The left part of the panel has three buttons to 
run the crane: once the reference trajectory is specified (type 
of displacement, initial and final positions, duration, etc.), 
the user has to press the Play button to start the simulation; 
if the Pause is pressed, the simulation is stopped and a new 
trajectory can be specified; the Reset button reinitializes both 
Ejs interface and Matlab/Simulink environment. 

The four check buttons on the right-hand side of the 
control panel are to open/close new windows. These 
windows let change various parameters (Figure 7) and 
visualize scopes with the states of the crane (Figure 8). 

 

  
Fig. 7. The parameters of the PD controllers of the pulleys can be modified 
with the window on the left. Also, the mass of the load and the gravitational 
acceleration can be changed to simulate different situations. 
 

    
Fig. 8. The same window is used to present two groups of scopes with the 
states of the crane. The scopes on the left give the reference (red) and the 
real (blue) trajectory. The scopes on the right present the motor forces. 

 
Figures 9.i-iii present different views of the window to set 

up the reference trajectory of the load. The set of parameters 
changes according to the type of displacement chosen. The 
application has four types of trajectories: equilibrium point, 
linear, circular and Lissajous.  
 

 
(i) 

 
(ii) 

 
(iii) 

Fig. 9. Different views of the same 
window to specify different types 
of displacements. The circular and 
Lissajous windows let the user to 
prescribe a trajectory, for example 
even changing the z-coordinate, i.e. 
not only planar trajectories are 
considered. 

 
 

 
The first two are used for transporting the load from an 

initial to a destination point but with different conditions. 
When linear trajectory is chosen, the displacement of the 
load is done in limited time, taking into account the fact that 



 
 

 

the derivatives up to the 4th order of the initial and 
destination points of the trajectory are set to zero. If 
equilibrium point is chosen, a destination point must be 
selected and the crane moves the load regardless of any 
derivatives. This type of displacement induces big 
oscillations in the load. In both cases, it is possible to drag 
the destination point directly on the view panel using the 
mouse. 

The other two types of trajectories are specified in Figures 
9.ii-iii. They are very similar as sinusoidal expressions are 
used to calculate the x-y coordinates. In both cases, the 
derivatives up to the 4th order of the x-y sinusoidal 
expressions are needed. Also, to calculate the z 
displacement, a linear trajectory is used so that the 
derivatives up to the 4th order in the initial and final z have to 
be set to zero.  

When a trajectory has been specified, it is depicted in the 
view panel by a red path. During the displacement, 
disturbances in the acceleration of the load can be applied. 
For this, it is necessary to fix the magnitude, direction, and 
duration of the disturbance (Figure 10.i). The disturbance is 
represented in the view panel by a green arrow. Since this 
arrow is enabled, the user can drag it to change the 
magnitude and direction of the disturbance too. 

 

 
(i) 

 

 
(ii) 

Fig. 10. (i) Sliders to pre-set the components of a disturbance. (ii) When the 
simulation is running, the Hit the load! button is enabled in the view panel 
to introduce the disturbance previously specified in the disturbance 
parameters panel.  

 

(i) (ii) 
Fig. 11. (i) A linear displacement where the green vector represents the 
disturbance before its application. (ii) The disturbance is applied, resulting 
in the load moving away from the reference. The disturbance is now in red, 
and the blue vector represents the velocity at that instant. 

 
Once the perturbation is pre-set and the simulation is 

running, the user can apply the disturbance by pressing the 
Hit the load! button (Figure 10.ii). From this moment on, the 
disturbance begins to be applied and lasts the time fixed in 
the disturbance panel. Figures 11.i-ii are two frames of a 
trajectory, before and after the disturbance. 

 
 
 
 

VI. CONCLUSIONS 

In order to illustrate the performance of SpiderCrane, an 
interactive 3D application has been developed using Ejs and 
Matlab/Simulink. This application lets the user program 
different types of load displacement, simulate disturbances, 
and change many parameters to test the performance of the 
modeled system.  

The application can be improved to explore new paths for 
both research and teaching. From a pedagogical point of 
view, the application can be used as a training step before 
operation with a real crane. For this purpose, the control of 
the crane by a joystick with force feedback is presently 
being programmed in Ejs. This will allow the user to feel the 
movement of the load when it is transported between two 
positions and under different configurations. 

REFERENCES 

[1] Y. Fang, W.E. Dixon, D.M. Dawson, and E. Zergeroglu, “Nonlinear 
Coupling Control Laws for an Underactuated Overhead Crane System”, 
IEEE/ASME Transactions on Mechatronics, vol. 8, no. 3, pp.  418-423, 
2003. 
[2] H.H. Lee, “A new approach for the anti-swing control of overhead 
cranes with high-speed load hoisting”, Int. J. Control, vol. 76, no. 15, pp 
.1493-1499.  
[3] T. Gustafsson, “On the design and implementation of a rotary crane 
controller”, European J. Control, vol. 2, no. 3, pp. 166-175, 1996. 
[4] D.T. Greenwood, Classical Dynamics. Englewood Cliffs, NJ: 
Prentice-Hall,  1977. 
[5] D. Buccieri, Ph. Mullhaupt, and D. Bonvin, “SpiderCrane: Model and 
properties of a fast weight-handling equipment”, IFAC World Congress, 
Prague, 2005.  
[6] B. Kiss, J Lévine, and Ph. Mullhaupt, “Modelling, flatness and 
simulation of a class of cranes”, Periodica Polytechnica, Ser. El. Eng., vol. 
43, no. 3, pp. 215-225. 
[7] P. Martin, S. Devasia, and B. Paden, ”A different look at output 
tracking: Control of a VTOL aircraft.”, Automatica 32, no.1, pp. 101-107, 
1996. 
[8] M. Fliess, J. Lévine, Ph Martin, and P. Rouchon “Flatness and defect 
of nonlinear systems: introductory theory and applications”, Int. J. Control, 
vol. 61, no. 6, pp. 1237-1361, 1995 
[9] M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon “A Lie-Bäcklund 
approach to equivalence and flatness of nonlinear systems”, IEEE 

Transactions on Automatic Control, vol 38, pp. 700-716, 1999. 
[10] F. Esquembre, “Easy Java Simulations: A software tool to create 
scientific simulations in Java”, Comp. Phys. Comm., vol. 156, pp. 199-204, 
2004.  
[11] J. Sánchez, S. Dormido, F. Esquembre. “The learning of control 
concepts using interactive tools (Accepted for publication)”. Computer 

Applications in Engineering Education, to be published. 


