

Abstract— In order to display the main characteristics of a

well-known flat system, an interactive 3D simulation of

SpiderCrane has been developed using Ejs (Easy Java

Simulations) and Matlab/Simulink. The application allows

users to set up different trajectories and introduce disturbances

in a very visual and attractive way.

I. INTRODUCTION

The control and stability problem of overhead cranes has
recently received great attention [1]-[3]. It is worth
mentioning that this problem is quite different from other
nonlinear mechanical systems such as robot manipulators.
For example, length variations during crane operation can
produce a negative damping effect in the dynamics.
Moreover, the number of degrees of freedom in cranes is
larger than the number of actuators contrary to robots.
Hence, the problem of designing automatic controllers for
cranes described by highly nonlinear models is quite
relevant and merits a certain degree of attention.

SpiderCrane is a new crane design. It was imagined in
order to reduce, in a significant way, the time involved in
carrying loads. The problem of classical cranes is the large
inertia of the boom, which limits the crane dynamics. Hence,
to improve the work rate, it is necessary to minimize the
inertia of the system. In order to solve this problem,
SpiderCrane is devoid of heavy mobile components.

The main contribution of this paper is to develop a
complete virtual laboratory for the SpiderCrane system. A
virtual laboratory is a distributed environment of software
and estimation tools, intended to perform the interactive
simulation of a mathematical model. Interactivity provides a
flexible and user-friendly method to define the experiments
performed on the model. During a simulation run, the user
can modify the value of the model inputs and parameters and
instantly view their influence on the overall dynamics. This

Manuscript received March 1, 2005.
D. Buccieri is with the Laboratoire d’Automatique, École Polytechnique

Fédérale de Lausanne, Switzerland (e-mail: davide.buccieri@epfl.ch).
J. Sánchez is with the Department of Computer Science and Automatic

Control, Universidad Nacional de Educación a Distancia, Madrid, Spain (e-
mail: jsanchez@ dia.uned.es).

S. Dormido is with the Department of Computer Science and Automatic
Control, Universidad Nacional de Educación a Distancia, Madrid, Spain (e-
mail: sdormido@ dia.uned.es).

Ph. Mullhaupt is with the Laboratoire d’Automatique, École
Polytechnique Fédérale de Lausanne, Switzerland (e-mail:
philipe.muellhaupt@epfl.ch).

D. Bonvin is with the Laboratoire d’Automatique, École Polytechnique
Fédérale de Lausanne, Switzerland (e-mail: dominique.bonvin@epfl.ch).

strategy allows the user to design and conduct the
experiments easily and, as a consequence, remain an active
actor throughout the learning process.

The control choices made for the virtual laboratory
controller have two parts. The first part is a feedforward
controller that computes the open-loop input to the system so
that it follows a trajectory specified by the user in the
absence of perturbation and model mismatch. The trajectory
is given in the virtual laboratory environment by choosing
among a class of available trajectories (e.g. circular,
polynomial, Lissajous curves and so forth). The second part
of the control structure is a simple PD controller that takes
care of eventual discrepancies both in the model and in the
form of external disturbances. These disturbances are
specified in the virtual laboratory environment in real-time
by simple mouse clicks.

As mentioned above, the system is highly nonlinear.
Hence, it is of no surprise that the most difficult part in the
controller design lies in the computation of the open-loop
input. To this effect, the full spectrum of nonlinear couplings
are taken into account by exploiting the flatness property,
which stipulates a one-to-one correspondence between the
system variables (states and inputs) and the trajectory of a
particular choice of system variables called the flat outputs.
The importance of the dynamic possibilities offered by the
use of this property is not always obvious by algebraic
manipulations alone. Hence, the virtual laboratory is of great
help in underlining the importance and simplicity of the
results through interactively playing with different
parameters of the system and the feedforward, and feedback
controllers.

The paper is organized as follows. In Section II, the
structure of SpiderCrane is presented together with some of
its properties such as flatness, which is illustrated
graphically. The foundation of Easy Java Simulations (Ejs),
a software package that supports the creation of interactive
dynamic simulation, is introduced in Section III. Section IV
describes how Ejs can be employed in a very easy way in
order to provide existing Simulink models with the level of
interactivity required in a virtual control laboratory. The
design and implementation of a SpiderCrane virtual
laboratory is discussed in Section V, showing the suitability
of Ejs in the development of complex 3D interactive
interfaces. Finally, Section VI provides concluding remarks.

Interactive 3D Simulation of Flat Systems: The
SpiderCrane as a Case Study

Davide Buccieri, José Sánchez, Sebastián Dormido, Philippe Mullhaupt, Dominique Bonvin

II. THE SPIDERCRANE DESIGN AND ITS PROPERTIES

SpiderCrane is made of three fixed pylons and a fixed
gibbet. A pulley is mounted at the top of each pylon,
allowing the sliding of a cable. These three cables are
attached to a ring and, by varying their length, the ring can
be moved in the surrounding space. The end of the gibbet is
above the plane formed by the three pulleys and at the centre
of the triangle formed by the pylons. At the end of the
gibbet, another pulley is mounted, allowing the passage of
the main cable. This cable goes through the centre of the
ring and is attached to the load. The position of the load in
space is done by adjusting both the position of the ring and
the length of the main cable. All the cables are controlled by
means of motors equipped with encoders, making it possible
to measure the length as well as the speed of the cables.

Fig.1 SpiderCrane.

The system has four inputs, namely three voltages applied

to the motors for pulling the cables attached to the ring and
the voltage applied to the motor for winching the main cable.

The dynamic equations of SpiderCrane are obtained using
a Lagrange formalism with constraints [4]. The derivation of
the dynamical model is given in [5].

SpiderCrane is a member of the class of cranes defined in
[6]. According to this general formulation for 3D cranes,
SpiderCrane has the following properties.

- The dimension of the working space is p = 3.
- There is no rigid articulated actuated system.
- The number of motors is s+1 = 4.
- The main pulley (the ring) moves in a manifolds of

dimension n=3.
Naturally, SpiderCrane has the same property as its class;

in particular, it is a flat system [6]. The flat outputs are given
by the load positions (x,y,z) and the height of the ring.
Notice that, for some mechanical systems, it is not always
the case that the outputs to be steered are among the flat
outputs (for instance, in the vertical take-off and landing
aircraft (VTOL), the flat output is not at the position of the
pilot, but lies below him [7]). Here, however, it is the case,

which greatly simplifies motion planning for crane
displacements (for example in obstacle avoidance problems).

 This flatness property indicates a correspondence
between the flat outputs and their derivatives on the one
hand and the state of the system and the inputs on the other.
Consequently, if the flat output describes a specific
trajectory, the states and inputs will automatically follow
corresponding trajectories. This is extremely useful for
designing a feedforward controller. First, a trajectory with
sufficient differentiability with respect to time is specified,
which corresponds to the task at hand (lifting the load,
changing the load from the current position to another pre-
specified position, performing fancy trajectories, i.e.
circular, Lissajous or polynomial, avoiding obstacles, etc.).
Then, by the mere definition of flatness, there corresponds
an input expression of only the flat outputs and their time
derivatives up to a fixed determined order. Hence, a fixed set
of closed-form formula exists (one for each input) that
express the inputs necessary to follow exactly the
trajectories specified, without integrating the system’s
differential equations, and independent of the type of
trajectories chosen as long as they are known to have a
sufficiently high (but fixed) level of differentiability.

Flatness is essentially a differential algebraic property [8]
with a clear geometric meaning at least in the differential
geometric sense [9]. However, flatness is not always easy to
perceive and understand from a mechanical and physical
point of view. The purpose of the forthcoming discussion is
to illustrate with simple sketches how the algebra and
geometry translate into tractable quantities such as positions,
velocities, acceleration and forces of the constitutive
elements of SpiderCrane. For a complete analytical
treatment, the reader is invited to consult [5].

As mentioned previously, a choice of flat outputs for
SpiderCrane is the load position (x,y,z) and the height of the
ring position. Therefore, when trajectories for the flat
outputs are chosen, their values at time t specify the position
of the load in an unambiguous way. However, the position
of the ring is still partly undefined, and only its height is
given by one of the flat outputs (Figure 2.i).

In order to obtain the other coordinates of the ring, it is
necessary to consider the second derivatives of the load
position, i.e. its acceleration. Knowing the gravity direction
and intensity, it is then possible to compute the resulting
force acting on the load (Figure 2.ii). This force lies
necessarily along the direction of the cable and thus, after
intersection with the plane corresponding to the constant
height of the ring, the ring position can be deduced (Figure
2.iii).

Pursuing this unraveling mechanism one step further by
differentiating the ring position again twice (whence
increasing the order of differentiability of the flat outputs),
the ring acceleration is obtained. Together with its position
and the direction and intensity of the gravity, it is then
possible to deduce the forces to be applied to the cables.
From this, the inputs of the system, which are forces, can be

obtained (Figure 2.iiii). The correspondence is then complete
and the feedforward inputs to be applied can be obtained.

Fig. 2. Sketches illustrating the feedforward inputs computation based on
flatness.

III. EASY JAVA SIMULATIONS FUNDAMENTALS

Easy Java Simulations (Ejs) is a freeware, open source,
Java-based tool intended to create interactive dynamic
simulations [10]. Ejs was originally designed to be used by
students for interactive learning, under the supervision of
educators with a low programming level. As a consequence,
simplicity was a requirement. Ejs guides the user in the
process of creating interactive simulations. This process
includes the definition of the model and the view. Ejs
implements its own procedure to define the model: a simple
structure that the user needs to complete in order to specify
the model variables and equations. In addition, Ejs version
3.4 supports the option of describing and simulating the
model using Matlab/Simulink: (1) Matlab code and calls to
any Matlab function (either built-in or defined in an M-file)
can be used at any point in the Ejs model; and (2) the Ejs
model can be partially or completely developed using
Simulink block diagrams.

The view is the user-to-model interface of Ejs interactive
simulations. It is intended to: (1) provide a visual
representation of the relevant properties and dynamic
behavior of the model; and (2) facilitate the user’s
interactive actions on the model. Ejs includes a set of ready-
to-use visual elements that the modeler can use to compose a
sophisticated view in a simple, drag-and-drop way. The
properties of the view elements can be linked to the model

variables, producing a bi-directional flow of information
between the view and the model. Any change of a model
variable value is automatically displayed by the view.
Reciprocally, any user interaction with the view
automatically modifies the value of the corresponding model
variable.

Once the modeler has defined the model and the view of
the interactive simulation, Ejs generates the Java source code
of the simulation program, compiles the program, packs the
resulting object files into a compressed file, and generates
HTML pages containing the narrative and the simulation as
an applet and an application.

IV. COMBINED USED OF EJS AND MATLAB/SIMULINK

Ejs 3.4 supports the option of describing and simulating
the model (or just some parts) using Matlab/Simulink. In
order to simulate the Ejs part of the model, Ejs implements a
set of built-in ODE solvers, and it allows the modeler to
program and use his own numerical algorithms. The
Simulink part of the model is simulated by Matlab/Simulink,
using Simulink numerical algorithms.

Let’s focus our attention in the combined use of Ejs to
create the interactive user interface and Simulink and
develop the complete model. The procedure consists of three
main steps: (1) adapt the Simulink model in order to be ruled
by the Ejs interface, (2) develop the Ejs interface taking into
account the inherent interactivity of the model, and (3)
connect both parts by establishing the link between the Ejs
variables and the Matlab/Simulink variables.

The first step, i.e. the adaptation of a Simulink model to
be controlled by an Ejs view, consists essentially in the
connection in the original Simulink diagram of specific
blocks to produce the exchange of information with the
Matlab workspace. At every integration step, the Simulink
model must read the input variables and parameters from the
Matlab workspace, simulate the system using this
information, and write the resulting state model to the
workspace (Figure 3). This cyclical operation is due to the
fact that Matlab workspace is really the buffer that Ejs and
Simulink use to exchange data. Every change in the Ejs
views is sent to the Matlab workspace and read by Simulink
blocks. At the same time, the outputs of Simulink are written
in the workspace, read by Ejs and used to refresh the
different simulation views.

Furthermore, Ejs operates in a similar cyclical way as
Simulink: at every cycle, it reads the Simulink outputs from
the Matlab workspace and refresh the Ejs view. At the same
time, any change in an Ejs variable linked to a Simulink
variable is sent to the Matlab workspace. Synchronization
between the two worlds is guaranteed: a particular block
must be included in the Simulink diagram, and the final Ejs
application contains the necessary built-in Java methods.

Fig. 3. Exchange of data between the Ejs views, the Matlab workspace, and
the Simulink model. The “From workspace” and “To workspace” boxes
represent the new blocks included in the Simulink block diagram to
read/write the variables from/to the workspace.

The second step, i.e. the construction of the Ejs view, is

performed to take advantage of the inherent interactivity of
the simulation system. The idea is that the designer creates
the view to illustrate the relationships among the state
variables and the parameters of the model [11]. During the
interactive simulation run, the user can change the values of
the system inputs and parameters and instantly see how these
changes affect system behavior. Interacting with an
instructional simulation can help learners gain a better
understanding of a real process or a phenomenon through
exploring, testing hypotheses, and discovering explanations
for the mechanisms and relationships. This interactivity may
provide opportunities for students to modify their mental
models, by comparing the outputs of the simulated system
with their expectations, and to explore and associate actions
with effects, which will lead to better understanding.

Hence, the creation of an interactive Ejs view consists of
establishing the connections needed for:

a) The correct visualization of the state of the
phenomenon being simulated, and
b) the appropriate interaction of the user with the view
(either to modify this state or to perform the actions
defined by the model).

For this, Ejs provides a broad range of elements that let
designers build sophisticated interactive interfaces without
deep knowledge of programming: 2D and 3D objects,
buttons, sliders, scopes, labels, etc. If we want this
interaction to have certain relevance on the program, the
gestures on the interface need to trigger actions that affect
the model variables. By doing some gestures (such as
clicking or dragging the mouse, hitting the keyboard, or
moving a joystick) with the computer peripherals on the
program interface (or view), the view itself can be used to
control the simulation. In order to do that, every element has
a panel of properties to allow users to interact with them by
writing Java code or using built-in Ejs methods.

The third and last step to complete the interactive
simulation is to set up the bi-directional link between the Ejs
view and the Simulink model. In short, this step consists of

writing a plain file with the list of Simulink variables to be
linked and, finally, importing this file in Ejs (Figure 4). The
linking process is done by explicitly defining pairs of Ejs
and Simulink variables. When the final application is
compiled, the Java code contents the built-in methods to do
the link among the pairs of variables in a way transparent to
the user.

model='Simulgrue.mdl'; %EJS Model
t; %EJS Variable
ChoixTrajectoire; %EJS Variable
g; %Ejs Variable
m; %Ejs Variable
……………………………………………
……………………………………………
KP; %Ejs Variable
KD; %Ejs Variable

Fig. 4. Excerpt of the text file showing some of the Simulink variables used
in the model of the crane. The first line lets Ejs application know the name
of the Simulink block diagram corresponding to the spider crane model.
The text file must content all the Simulink variables to be linked with Ejs
variables.

V. CASE STUDY: INTERACTIVE SIMULATION OF

SPIDERCRANE

To demonstrate the suitability of Ejs in the development
of 3D interactive views of simulated systems, SpiderCrane
has been selected as the case study. The reasons for such a
selection are:

 a) The mathematical model has been developed in
Matlab/Simulink. So, the Ejs is just used to develop the
interactive view, and

b) the system is visually very interesting since it is
composed of elements with mobile components. It allows
one to use a 3D representation of the mechanical system in
the view using some of the Ejs graphical objects and to draw
the trajectories of the load and the effect of the disturbances.

Fig. 5. Simulink diagram of SpiderCrane with the blocks to exchange data
with the Ejs views.

As was described in the previous section, the first step is
to modify the original Simulink block diagram in order to
exchange information with the Ejs views. Figure 5 shows the
diagram with the inclusion of these new blocks. It is noticed
that there are two groups of blocks: source blocks to read
Matlab variables from the workspace, and sink blocks to

Ejs views

Simulink

Matlab workspace

Model From
workspace

To
workspace

State vars
Input vars

Parameters

write the model state to the workspace. In this case study,
some of the variables to be read are general parameters
(gravity, mass), control parameters (KD, KD), trajectories
configurations (type, destination point, time, velocity), and
load disturbances. The values to be written at every
integration step are position and velocity of the load and
ring, cable lengths, and motor forces.

Fig. 6. Main window of the SpiderCrane application. The frame shows the
load being moved to reach the equilibrium point. The two vectors represent
the composition of the velocity and disturbance in every simulation step.

Figure 6 presents the main window of the 3D graphical

user interface developed by Ejs using the previous Simulink
diagram as the model. This window is composed of two
elements to get a complete control of the flat system: the
view panel and the control panel. The view panel presents a
3D representation of SpiderCrane in agreement with the
existing physical set-up (positions of the pylons, pulleys,
gibbet, ring, and load). This view lets us visualize in a very
realistic fashion the movement of the cables, the ring and the
load in accordance with the trajectory and the control
parameters specified by the user; also, the view shows two
vectors corresponding to the instant velocity of the load, and
the magnitude of the applied disturbance. At the bottom of
the view panel, there are seven text fields showing the time,
and the load position and velocity.

The control panel is located at the lower part of the main
window. It gathers all the elements necessary for control of
the flat system. The left part of the panel has three buttons to
run the crane: once the reference trajectory is specified (type
of displacement, initial and final positions, duration, etc.),
the user has to press the Play button to start the simulation;
if the Pause is pressed, the simulation is stopped and a new
trajectory can be specified; the Reset button reinitializes both
Ejs interface and Matlab/Simulink environment.

The four check buttons on the right-hand side of the
control panel are to open/close new windows. These
windows let change various parameters (Figure 7) and
visualize scopes with the states of the crane (Figure 8).

Fig. 7. The parameters of the PD controllers of the pulleys can be modified
with the window on the left. Also, the mass of the load and the gravitational
acceleration can be changed to simulate different situations.

Fig. 8. The same window is used to present two groups of scopes with the
states of the crane. The scopes on the left give the reference (red) and the
real (blue) trajectory. The scopes on the right present the motor forces.

Figures 9.i-iii present different views of the window to set

up the reference trajectory of the load. The set of parameters
changes according to the type of displacement chosen. The
application has four types of trajectories: equilibrium point,
linear, circular and Lissajous.

(i)

(ii)

(iii)

Fig. 9. Different views of the same
window to specify different types
of displacements. The circular and
Lissajous windows let the user to
prescribe a trajectory, for example
even changing the z-coordinate, i.e.
not only planar trajectories are
considered.

The first two are used for transporting the load from an

initial to a destination point but with different conditions.
When linear trajectory is chosen, the displacement of the
load is done in limited time, taking into account the fact that

the derivatives up to the 4th order of the initial and
destination points of the trajectory are set to zero. If
equilibrium point is chosen, a destination point must be
selected and the crane moves the load regardless of any
derivatives. This type of displacement induces big
oscillations in the load. In both cases, it is possible to drag
the destination point directly on the view panel using the
mouse.

The other two types of trajectories are specified in Figures
9.ii-iii. They are very similar as sinusoidal expressions are
used to calculate the x-y coordinates. In both cases, the
derivatives up to the 4th order of the x-y sinusoidal
expressions are needed. Also, to calculate the z
displacement, a linear trajectory is used so that the
derivatives up to the 4th order in the initial and final z have to
be set to zero.

When a trajectory has been specified, it is depicted in the
view panel by a red path. During the displacement,
disturbances in the acceleration of the load can be applied.
For this, it is necessary to fix the magnitude, direction, and
duration of the disturbance (Figure 10.i). The disturbance is
represented in the view panel by a green arrow. Since this
arrow is enabled, the user can drag it to change the
magnitude and direction of the disturbance too.

(i)

(ii)

Fig. 10. (i) Sliders to pre-set the components of a disturbance. (ii) When the
simulation is running, the Hit the load! button is enabled in the view panel
to introduce the disturbance previously specified in the disturbance
parameters panel.

(i) (ii)
Fig. 11. (i) A linear displacement where the green vector represents the
disturbance before its application. (ii) The disturbance is applied, resulting
in the load moving away from the reference. The disturbance is now in red,
and the blue vector represents the velocity at that instant.

Once the perturbation is pre-set and the simulation is

running, the user can apply the disturbance by pressing the
Hit the load! button (Figure 10.ii). From this moment on, the
disturbance begins to be applied and lasts the time fixed in
the disturbance panel. Figures 11.i-ii are two frames of a
trajectory, before and after the disturbance.

VI. CONCLUSIONS

In order to illustrate the performance of SpiderCrane, an
interactive 3D application has been developed using Ejs and
Matlab/Simulink. This application lets the user program
different types of load displacement, simulate disturbances,
and change many parameters to test the performance of the
modeled system.

The application can be improved to explore new paths for
both research and teaching. From a pedagogical point of
view, the application can be used as a training step before
operation with a real crane. For this purpose, the control of
the crane by a joystick with force feedback is presently
being programmed in Ejs. This will allow the user to feel the
movement of the load when it is transported between two
positions and under different configurations.

REFERENCES

[1] Y. Fang, W.E. Dixon, D.M. Dawson, and E. Zergeroglu, “Nonlinear
Coupling Control Laws for an Underactuated Overhead Crane System”,
IEEE/ASME Transactions on Mechatronics, vol. 8, no. 3, pp. 418-423,
2003.
[2] H.H. Lee, “A new approach for the anti-swing control of overhead
cranes with high-speed load hoisting”, Int. J. Control, vol. 76, no. 15, pp
.1493-1499.
[3] T. Gustafsson, “On the design and implementation of a rotary crane
controller”, European J. Control, vol. 2, no. 3, pp. 166-175, 1996.
[4] D.T. Greenwood, Classical Dynamics. Englewood Cliffs, NJ:
Prentice-Hall, 1977.
[5] D. Buccieri, Ph. Mullhaupt, and D. Bonvin, “SpiderCrane: Model and
properties of a fast weight-handling equipment”, IFAC World Congress,
Prague, 2005.
[6] B. Kiss, J Lévine, and Ph. Mullhaupt, “Modelling, flatness and
simulation of a class of cranes”, Periodica Polytechnica, Ser. El. Eng., vol.
43, no. 3, pp. 215-225.
[7] P. Martin, S. Devasia, and B. Paden, ”A different look at output
tracking: Control of a VTOL aircraft.”, Automatica 32, no.1, pp. 101-107,
1996.
[8] M. Fliess, J. Lévine, Ph Martin, and P. Rouchon “Flatness and defect
of nonlinear systems: introductory theory and applications”, Int. J. Control,
vol. 61, no. 6, pp. 1237-1361, 1995
[9] M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon “A Lie-Bäcklund
approach to equivalence and flatness of nonlinear systems”, IEEE

Transactions on Automatic Control, vol 38, pp. 700-716, 1999.
[10] F. Esquembre, “Easy Java Simulations: A software tool to create
scientific simulations in Java”, Comp. Phys. Comm., vol. 156, pp. 199-204,
2004.
[11] J. Sánchez, S. Dormido, F. Esquembre. “The learning of control
concepts using interactive tools (Accepted for publication)”. Computer

Applications in Engineering Education, to be published.

