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Design of a Robust Polytopic Unknown Input Observer for FDI:
Application for Systems described by a Multi-Model Representatn

Mickaél Rodrigues, Didier Theilliol and Dominique Sauter

Abstract— The main goal of this paper consists in fault diag- these methods consider a particular multi-model approach
nosis of systems represented by a multi-model approach. Partial where each model is dedicated to a specified fault. A fuzzy
knowledge of the system representation around operating points logic development is also mentioned in [1] for diagnosis

must allow to obtain its dynamic behaviour under modeling but onl ith Kal L b filt hich d t
errors consideration. The goal of this paper is to decouple u o.ny wi f’:lman or. uenberger Titers whic _0 n.o
mode”ng errors through a wide Operating range by a dedi- permlt to deal W|th mOde|Ing errors. Moreover, the actimati
cated polytopic Unknown Input Observer ({Z0O). The robust functions for each model may be not robust to faults.
polytopic observer allows an optimization of modeling errors  This paper addresses a different method that could allow
matrix distribution and permits to develop a fault diagnosis 1 getect hoth actuator or sensor fault in nonlinear systems

strategy on a wide operating range. Polytopic observer stability . .
is guaranteed by pole assignment established through Linear which are known and exploited around few local models,

Matrix Inequality ( £MZT). The effectiveness and performances 1-€. We suppose only local identification as in some indus-
of the method are illustrated in simulation considering a CSTR. trial systems around specific operating point. Compared to
methods that could detect both operating conditions elamiut
and detect, isolate and estimate faults in nonlinear system
) ) . ~as proposed by [12] and [15], this paper considers time
The increasing demands for good performance and high@ting modeling errors. Thus, the main contribution of
standards of safety and reliability result in more emph@sis s haner consists in the synthesis of a residual generator
fault diagnosis. Fault detection and isolation (FDI) refay based on a Polytopic Unknown Input ObservéiAZO)
the task of inferring the occurrence of faults in a process anyich generates robust residual against error modelingrund
finding the root causes of the faults. Fault diagnosis basegl i1 occurrence. Another kind QIO was developed in
on analytical models is developed for exact and uncertaiig) for communication purposes but not for fault diagnosis
linear mathematical description of the system, severak®00 .4 more over we would like to consider possible multiple

are dedicated to these topics: [1] and [2]. FDI on nonlin€gfiterent unknown inputs matrices which can be re-designed
systems remains a challenge due to the problem of discrimy; 5 nique matrix in order to ensure fault detection during
nating between disturbances and faults through a wide rangg jels transitions.

of operating conditions. Different techniques based on ag,, paper is organized as follows:

exact knowledge of the nonlinear system allow (0 generalgq tion || deals with the nonlinear system representation
residuals insensitive to fault by specific decoupling métho |, qar a convex set through a multi-model approach with

[3], [4] or geometric approach [5], [6]. _ _taking into account modeling errors in the state space rep-
An attractive alternative to nonlinear modeling problem I$esentation. Section Il presents an optimal represemtati

to use a multi-linear model approach. This approach i modeling errors and the synthesis of tRYZO. In
successfully used for some nonlinear systems in contrelecion |v, stability of thePUZO is performed by use
field but rarely in FDI, and consists in partitioning theg¢ | inear Matrix Inequalities £MZ) for observer gain

operating range of a system into separate regions in ord&fnesis. In the last Section, the performances ofHEQ
to synthesize a global representation. The reader coutd ret, . iustrated through a nonlinear CSTR simulation.
to [7] for a global review on multiple models strategy, and

also for well developed identification method and modeling |,

problems. A polytopic representation is sometimes used in

multi-model for nonlinear systems modeling as for example

in fault-free case in [8], [9], [10] and [11], and in faulty A. Nonlinear Representation

case in [12]. Multiple Model Adaptive Estimation (MMAE) : . : . . .

. : ) te-t I I t

[13] or Interacting Multiple Model (IMM) [14] introduce Consider a dlscre_e 'me .non inear dynamical system in
. . fault-free case described by:

a multi-model approach for FDI, but these techniques are

developed around an unique operating poifi?). Indeed, { Tepr = g(zkun) 1)

I. INTRODUCTION

. NONLINEAR REPRESENTATION ANDFDI FOR
PoLYTOPIC SYSTEMS

ye = h(zk,ug)
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It is assumed that dynamic behaviour of the systems referred in (3), a new set of matrices is designed with the
operating at different operating points can be approxithateadditional termAz; such that:
by a set of N linear time invariant models. Consider the _ |4 Bi E; Fi Az .
; X X P = ,Vie[l...N] @)
following state space representation of a nonlinear system Ci

around i-th operating pointyi  [1,..., N}, with additive  gaged on the representation (5), we focus our attention on

actuator faults: . . the synthesis of the Polytopic Unknown Input Observer. In
Tt — e =Ailzn — ) + Biug —ue) + Eidi + Fife order to realize an efficient FDI, a decoupled residual again

Y = Ye = Cilwr — x¢) + Difuy, — ue) 2) modeling errors should be generated and modeling errors

Matrices (A;, B;, C;, D;) are invariant matrices deﬁ‘ined matrices definition must be reconsidered.

around thei'" operating point QP;) generally obtained 1. M ODELING ERRORSREPRESENTATION

from a nonlinear system using a first-order Taylor expansion

around (z%,u!) with y¢ = C;z¢ + D;ul or identification

of a nonlinear system around predefined operating poinPs0

as for example in chemical processes in [11] and [10];. . o . .
The fault distribution matrix is represented by € R™*P, Elsturbance de-cpupllng condlltlo'ns hOId true.(ln an o.ptlma
sense) for all disturbance distribution matrices. This can

fx € RP represents the actuator fault vector and in fault: . . . . o
; o . : be done by using a single optimal disturbance distribution
ree case it is obviously equal to zero. The modeling errors

matrix are noted a%; € R"*? and are supposed to be full ma_trlx E o appr oxima}te all-of them as proposed bY [1].
. ) ; This optimal matrix* with full column rank makes possible
column rank for each operating point adg € R? is the

associated modeling error vector. These matrigesan be de-coupling residual from modeling errors between diffiere

obtained from a second-order Taylor expansion or through é%?’. An exact de-coupling for eacWP is robust against

identification procedure as treated in [1]. In the followimg modeling errors around th@’P but not during transitions
. . . between the differenOP.
consider thatD; = 0. As proposed in fault-free case in [7], ; : . .
) . . Let consider a seR? which containsN modeling errors
[9] and in faulty-case in [17](wher&; was not considered), : :
o o modeling matrices such that
(2) can be specified by the set of system matrices:

Modeling errorsE; are likely different for each operating
int with different distribution matrices. One way to asbe
fault diagnosis robust to modeling errors is to make

[Ey E>...Exy] = R (8)
M; = [C- } ,Vie[l...N] (3) An optimal matrix E* that can approximate the sé#t is
! equivalent to the following optimization problem:
Let S, be a matrix sequence varying within a convex set, Hllzi*nHR - R*||% 9)

defined as:

N ; N subject torank(R*) <m
Miy:=9 Y2y PeMi: pf, 2 0,352, pj=1 4)

where ||.||2 denotes the Frobenius norm. The matfiX

. . is thus chosen so that the sum of the squared distances
So, My, characterizes at each sample the nonlinear SySteS%tween the columns oR and R* is minimized subject

from anOP to another. Consequently, the dynamic behawolro the constraintR* < m. Moreover, the rank condition is

of nonlinear system can be defined by a convex set Ofd'flue to the fact that FDI scheme can distinguish faults and

multiple LTI models, notedl" (Y := {[M;,..., My]}). deling errors with all most» independent outputs. This
The representation (4) under a convex set can be conmdere%mizaﬂon problem can be solved by using Singular Value

as a conventional modeling approach for nonlinear smoo%D

lant wherep? is an appropriate weighting function. The ecomposition (SVD) on the set",
plant Wherep;, IS an appropriate weighting function. The second step is to obtain the required distribution
function pj, embodies the nonlinearity of the plant and

X o : matrix £* with appropriate dimension by decomposing the
pi Vi€ [l...N]lie in a convex sef) = {pi € RN p;, = pprop y posing

L VT g0 Wi and Zi]\;/’}; 1} and rank deficient matrle]%%* as._ . 0
these functions are directly generated via works of [15] and o 1 (10)
[12], which permit to generate insensitive residual to ful where R, € R"*4 is full column rank andR, € R?*(Nxa),
Under the assumptions that these weighting functjgnare ~ An optimal approximation for the modeling errors distribu-
considered as scheduling variables which are not affegted tion matrix is R, with rank ¢ equivalent to matrix*.

faults or modeling errors as proposed by [15] and [12], the Consequently, the following state space representation
nonlinear system (1) can be described by the following stat®uld be considered to describe the dynamic behaviour of

space representation: the nonlinear system:
N N
x = 1P| Asey + Biug + Eidy + Fi fi, + Ax; i *
h 2;1 p’f[ F F ¥ T ] Tt1 = Z pi [Aizk + Biug + E*di, + F fr, + Aw;]
Uk = 2o PilCiz] o
(5) yr = Cxy, (11)

with the termAz;, around anth operating point, equals to: o ) .
Moreover, it is often possible to consider only one output

Az; = —Aizt — Bul + 2t (6) matrix C if there is no nonlinearity on the outputs.



So, based on equation (11), a robust polytopic unknown input If condition (¢) is true, the synthesis of matrii *, which
observer against modeling errors is developed in the negan permit to avoid unknown input effects, is performed by:
section.

H* = FE*(CE")* (16)

IV. POLYTOPIC UNKNOWN INPUT OBSERVERDESIGN It should be noted that the matrik* is a constant matrix

Definition 1: (Polytopic Unknown Input Observer) A Vi € [1,2,...,N]. If conditions (15) hold true, the estima-
polytopic observer is defined as a polytopic unknown inpution errore; and the residuat, are described as:
observer_for the _syst.em described by (11) .without fault err = S(plen + (I — H*C)F(p)fi
(fr = 0), if the estimation error tends asymptotically to zero - — Cey
despite unknown disturbances on the system. d
This polytopic unknown input observer is defined such thatoreover, condition(ii) ensures that a gaif('(p) can be
synthesized in order to obtain a Hurwitz mat(p) =
TA(p) — K'(p)C and an estimation error which tends to
zero without fault. E* is a fixed matrix over the operating
range and for detection and isolation purposes, it is ingort
to constrainty + f < m, i.e. the rankg of modeling errors
whereZ is the state space estimation of The estimation Matrix and the rankf of the faulty distribution matrix have
error is equivalent to to be smaller than the number of the outputs. For an
actuator fault isolation, a bank pfpolytopict/ZO has to be
= @pp1 — (Zhst + Hypsr) used wher_e each polytogitZ O is cgmpufced wit_h a different
= w1 — H(Czpsr) — 201 unknown input such anew = [E R (p)l(Wlth rank of
= [I— H*Clzpi1 — (S(p)zr + TB(p)us E,cw €quals tog + f), with FY(p) is the jth column of

T K LA matrix F'(p).
QU () (12) If (15) and (16) are fulfilled, the estimation erref and

with notation (.)(p) stands foer.V:1 pi(.);. By taking into  residualr, lead to:

17)

N

2py1 = Z Pl [Sizi + TBiuk + Kiyi, + Az
i=1

Trt1 = 2p41 + H Ypga

€k+1 = Thk+1 — Tk+1

account gain decompositiali (p) such ask (p) = K*(p) + ex+1 = S(plex +TF(p)fr
II(p), the equation (12) leads to: - = Cep (18)
err1 = [ —H*Cl(A(p)xr + B(p)ur + E*di + F(p)fi. with an exact de-coupling o*. However, it is essential
+ Az(p)) — Az(p) — TB(p)ug to examine faulty distribution matrices; with modeling
— S(p)(@k — e — H*yr) — K'(p)Cxp — U(p)yr  error matrix E* which have to generate different spaces.
o . _ (13)  Indeed, de-coupling can reject perturbations throughehe t
The estimation error is equivalent to: TE* in equation (15), whereas fault are represented by the
- g —1S(p) — (I — H*CVA(0) — KX (p\C termTF(p). If it is very important in FDI scheme to cancel
ChHt + (I(/)—)?I*C[)lgfc)lk —([H(p) _ ;(p()p]){*}yk (p)Cl perturbation on a system, it is widely important to be able
v [ — H*C|Az(p) + (I — H*C)F(p)fx to detect and isolate fault through estimation ereprand
— Az(p) = [T — (I — H*C)|B(p)ux ' ri. Thus, some relations have to be verified around all the
(14) operating points:
S(p),T,K(p) and H* are designed so as to ensure the Rank[TF(p)] = rank|[F(p)],¥p € O (19)

stability and the convergence of the estimation eepr=

x, — Zp without fault on the systemf{. = 0). To obtain This condition allows to verify that de-coupling do not affe
an exact decoupling, based on an optimal modeling errofault detection by the estimation error. This condition &&n
distribution matrix E*, the following conditions should be translated in a geometric way such as:

satisfied:

N
T

S(p) =TA(p) =K' (p)C Tl(p) = S(p)H"  (15) U m(£) € Im(1%) (20)
[~ H*C)E* = T=1-HC TAz(p)=A -
( ) 0 ¢ z(p) 2(p) If the union imageF; is included in the image of de-
The robust polytopi¢/ZO design is realized when equationscoupling matrix 7', then fault detection is possible over
(15) hold true andb(p) is stable. So, estimation error without all the operating range. It is equivalent to:

fault occurrence, denoteg],, tends asymptotically to zero if

N
all these conditions (15) are satisfied. The gain desig(yp) U Im(F) ﬂ Ker(T) = {0}
is addressed in the next section. The necessary and sufficien =}
conditions for the existence of a polytogZ O are: =Im([F,...F;...Fy)) ﬂKer(T) = {0} (21)

(1) Rank(CE*) = Rank(E™)
(i1) (T'A;, C) are detectable pairsi € [1,2,..., N]. These If condition (21), which can be checked off-line, is fulfille
conditions are related in linear case [1]. de-coupling do not affect fault detection. It could be netic



that all F; are supposed to be full column rank in orden26) by p; and summing all of them witlzfi1 p; =1, the
to avoid fault compensation of non-independent columngnequality (26) leads to

The estimation error is not corrupt by modeling errors N _ LT
based on an approximated matiiX over the all operating _7")_( Yim pi(A — K;CO)' X <0
. . . N 1
range; but there should remain a little difference due to thg X -1 pi(Ai — K;C) —rX
minimization criterion (9). o B _ (@7
where matrixy_;_, p;(A; — K}C) can be written agA(p) —
V. GAIN SYNTHESIS BY LMT K'(p)C) under the convex sef), ensuring that poles of
A. Introduction onLMZ Region the estimatign erroe; in (24) lie in regionD with gains
1 _ . —1p. . . .
Pole assignment by M7 is dedicated for convex sets & () = 2= piX ™' Ri, Vi € [1,..., N]. The estimation

[18]. The main objective is to ensure, at first, polytopidS Said quz'a.draticD-stable. , U
observer stability and in a second time to constraint itepol Reémark:if parameter- = 1 then LMZ in (25) expresses

in a specified region of the complex plane. The observéjuadratic stability in discrete case with notatifin = X &/

dynamic is performed by decomposing complex plane ifNd With a Sctir Complement, we find after some compu-

LMT region. tations: ) _
Definition 2: £LMZ region [19] (Ai — K;O)"P(A; — K;C) — P < 0 and P > 0 that is

A subsetD of the complex plane is called aAMZ region the quadratic stability of estimation error with respect to

-1 _ .
if there exists a symmetric matrix € R™*™ and a matrix -~ =1 >0 ateach vertexic [1,...,N]. _
3 € R™*™ such that We should note that using MZ, observer gain synthesis

) is made through a polytopic form and estimation error (24)
D=zeC:fo(2) <0 (22) satisfies to the condition of quadrafizstability with X > 0
with fp(z) = a + 28 + 28T where fp(z) is called the for the Lyapunov matrix. This proposed solution allows
characteristic function. 0 to ensure a quadrati®-stability for the estimation error
Eigenvalues of a real matrix lie in D [19], if and only if  (without fault) and to fixe the dynamic of the polytogZ O
there exists a symmetric positive definite matiix> 0, such for the considered system. Poles constraints are specified
that with LMZ defining a prescribed region of the complex plan.

_ T T
Mp(A,P)=a®@ P+ 3@ (AP)+ (" @ (AP)" <0 (23) VI. CSTR: CONTINUOUS STIRRED TANK REACTION

Then, it is both possible to constraint poles of the observeX. System Description

to a prescribed region and ensure it stability. The performance of the robust polyto@ZO is illus-
B. Poles Placement of the Robust Polytopi€® under trated through a Continuous Stirred Tank Reaction simarati
LMT Constraints (CSTR). A full description of the CSTR could be found in

[20]. This system is a nonlinear chemical reactor that diib

. many interesting properties like input multiplicity, a gaign

IS gz(pzess:ed g?ﬂ)_k _ ((I — H*C)A(p) — Kl(p)C)ék change, asymmetric response and both minimum and non-
o+ — (A(p) - K'(p)C)ex ’ minimum phase behavior [21]. The, so called van der Vusse

(24) reaction, is summarized by the following reaction scheme:
Proposition 1: Let D(r) a LMZ region defining a disk 4 = B with B= C and24 = D.
(included in the unit circle) with a cent¢6, 0) and a radius The dynamic behaviour of the reactor is classically desctib
0 < r < 1. The estimation error (24) is called quadraticallyby the following nonlinear differential equations:

According to (18), the estimation erray,, without fault,

D-stabilizable (all the complex poles lie MT regionD) Ca = 7-(Cao—Ca)—ki(v)Ca — k3(v)C}
if there exists matrice®R; for i = [1...N] and a positive COp = LCp+ki()Ca—ka(v)Cp
symmetric matrixX > 0 with appropriate dimensions such{ . _ é(vo —v) = =L (K1(0)CaAHRAB + k2(0)Cp
- . ™ (]
thatvi € [1...NJ: X AHppckl(v) + ha(v)CAAHRAD) + 2842 (v — vy)
—rX ATX — CTRT Uk = e X (Qk — k) + kwAr(v — vg))
( XA, — RiC X <029 . (28)

_ ) with k;(v) = ke 2515, The model has four states:
with R; = X K. B concentration of A (4) with an initial concentrationC 4,
Proof . ’ _ ~ concentration of B ((z), temperaturev with a fixed value
If (25) is 1fu_|f|lled Vi € [1...N], then by using notation for the feed temperature, and cooling jacket temperature
R; = X K7, it follows that vg. It is assumed that states are directly measurable except

—rX (4 — KlO)TX o6 for v,. The input variables are the flow rate normalized by
X(4; - K!O) —rX 0 (26)  the reactor volumq‘,ir and the heat remova);,.

The poles of the matrix4; — K!C) lie in a circle with a B- Operating Conditions
center(0,0) and a radiug) < r < 1 (Cf. Definitions of such A specific condition, reported in the benchmark [20],
elementaryC MZ regions in [19]). By weighting eacBMZ  underlines the fact that concentration of B should be taken



into the rang€0.8; 1.09] mol.l~! for manipulated variables to provide discrete linear models represented in equation
¥ lying in [3h~1;35h7"] and [-9000kJ.h~1;0] for Q.  (11). Disturbance matrices of modeling erdoy are directly
The feed temperature, is considered as a fixed value obtained by a second order linearization and an unique xnatri
at 105°C as proposed in [20]. In the proposed study, thé’* is computed through an optimization technique based on
CSTR is controlled in an open-loop way with multiple Singular Value Decomposition as proposed in [1]. An unique
desirable concentrations of product B, each of them definiractuator fault on the manipulated variablésis considered,

an operating point. Thus, CSTR could produce differerfault matricesF; are related with the column d8;. Accord-
concentrations”g and the system is described around preing to the four linear models and under the assumptions that
defined operating points. By taking into account the statithe interpolation functiong; are insensitive to faults , figure
characteristic illustrated in figure (1) and in order to eXpl (3) shows the sequence of activation functipngyenerated
the nonlinear system in a wide range, concentrations of B afeom [17].

Cg1,Cga, Cps with respectively0.85,1.00, 1.09mol . L1,

1

L 1 2 3 4
1.2F C ] o p p p : p
B T ]
FR NP H \.\ il -7 :

o.8r f H : : g os

: : : : o.a
o6t : : : : B
: : : o3

o.at : : H : B °2r

Cp (mol.L™1)

0.1

o

20 30 a0 50 60

;5 20 "fs 30 35 40
Flow rateW Fig. 3. Weighting functions
Fig. 1. Steady state gains
Based on the unique disturbance matrige € R**2,
It can be noted that concentrati@z, = 1.00mol.L~*  the polytopic observer gain synthesis is performed by pole

could be obtained for two different control valugs: two ~ Placement developed in the previous paragraph W\d7

operating points are associated to this concentration. region defined with- = 0.5. The different matrices are given
in the Appendix.
4 ‘ ‘ ‘ ‘ ‘ In a first experiment, the polytopit/ZO is evaluated
ST Ll ~ - / i without fault with the control input illustrated in figure
. ‘ ‘ ‘ ‘ ‘ (4). This residual norm is presented in figure (5). It can
e 2° so a0 s° 60 be observed that this norm is different from zero around
= 1 operating points because polytogZ© is synthesized in
L A ———h U . . . .
0;,—/ ] order to obtain an exact decoupling agaidst, but this
0.6 5 25 5 2 = . matrix is just an optimal approximation of modeling errors.
116 ‘ ‘ ‘ ‘ ‘ ] During transitions, uncertainties are minimized and themo
—11o| f - - g is very closed to zero. The magnitude of the residual norm is
or ‘ ‘ ‘ ‘ ‘ ] almost constant through all operating points and represent

10 20 40 50 60

30 .
Time (min)

the modeling errors due to approximations of modeling
error representation. We should underline that an adaptive
threshold could be taken into account the specificities ef th
olytopic UZO synthesis in order to generate an efficient
sidual evaluation.
In a second experiment, an actuator fault with a loss of
5% from the nominal value, is introduced as in figure (4)
n?iuring the second and the third operating point. The faulty
control input is sent to the system and the computed control
input is exploited by the polytopi¢/ZO. This experiment
C. Experiments and Results simulates an actuator_ fault that would be stuck b_etvs_(ééh
] ) ) andOP,, then, a partial lost of an actuator fault is simulated
~ Based on the physical dynamic equation of the Systergying transitions of0P, and OP;. At the last change of
linear state space models were obtained around @B herating point)P;-OP,, the actuator fault disappears. Due
using a first order linearization. These four operating f0iN 1, the fact that we consider only one actuator fault which can
developed areCpy = 0.85mol.L~}, Cpg = 1.09mol.L™"  oceyr into the system, the fault detection is equivalent to a
and Cpp = 1.00mol.L~" with 2t = 7.8570h"" and faylt isolation result. According to the synthesis of thbust
Cps = 1.00mol.L~! with % = 27.90h~!. The nonlinear polytopic YZO, the residual norm is sensitive to the fault
model has been discretizedrthrough a Tustin method in ordeccurrence. As illustrated in figure (5), the residual nofm o

Fig. 2. Dynamic evolution of the measurable states

Figure (2) shows the dynamic evolution of the measurab
states with a flow rate, in the nominal case, presented In

conditions. It could be noticed that there is non-minimu
phase behaviour appearing on concentrationsicdnd B
during a transition.



B

a

3

3

2

o

ol Nominal control input i [
“[Faulty control input 2]
il / \ \ 1 [3]
OO 10 20 30 40 — 50 60 [4]
Time (min)

(5]
Fig. 4. Faulty control input and nominal control input

(6]

the polytopici/ZO is sensitive to actuator fault and robust
to modeling errors. The actuator fault is detected easily dul’l

to the magnitude of the residual norm.

2

1.8

1.6

1.4

1.2

s

o.8

o.6

o.af

o.z2

o
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faulty casi 1 [9]
[10]
fault-free case 1
{ e Ve (11]
- e = =)
Fig. 5. Residual norms evolution with and without fault [12]
VIl. CONCLUSION [13]

In this paper, a new residual generator robust against
modeling errors was developed. This residual generation is
dedicated to fault diagnosis of systems based on a mulfir)
model approach which operate around specific and prede-

fined OP. The modelling errors approximation over a set o 1

OP allows an unique decoupling for all the system range
even during transitions. Our contribution is underlined by
a polytopicU/ZO that generates decoupled residuals fro
modeling errors. The observer gain synthesis is realized by
LMZ so as to ensure both stability and pole assignment

of the polytopic/ZO. Actuator fault diagnosis of nonlinear (a7

systems is realized under modeling errors. The illustnatio
is made through a CSTR simulation around multi operatin?
conditions. 18]

APPENDIX [19]
—0.8142 1.3831 0.42 —0.49  —0.03
g* — | —0.0032  —1.6090 | & | —0.49 0.57 —0.03
= 11.7210 0.0956 ~ | -0.03 -—0.03 0.99
0 0 0 0 0
[20]
0.43  0.51 0.03 0.38  0.47 0.02
1_ | 054 o0.24 0.02 1 0.50  0.20 0.02
Ky = 0.04 003 —o0.19 |X2 0.04 0.03 —0.19 [21]
3.78  3.27 0.79 3.64 3.21 0.78
0.41  0.50 0.03 0.30  0.41 0.02
0.43  0.15 0.02
1 0.52  0.23 0.02 1 p
K3=| 001 003 —o19 |Ka=| 0038 0.02 -—0.19
: . . 3.84 3.12 0.75
3.81 3.25 0.79
1.50 0.24 0.01 —0.06
0.24 1.42 0.01 —0.05 1 0 0 o0
X =103 x 0.01 0.01 1.21 —-0.01 |C=| 0 1 0 o0
—0.06 —0.05 —0.01 0.01 o 0o 1 o

Matrices Ry, Ro, R3, R4 are not reported. It could be done
by the relationR; = X K.
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